ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

カルノーの定理 (熱力学)

索引 カルノーの定理 (熱力学)

熱力学におけるカルノーの定理とは、熱機関の最大効率に関する定理である。ニコラ・レオナール・サディ・カルノーの名にちなむ。カルノーの原理とも呼ばれる。.

15 関係: 山本義隆広重徹ラザール・カルノールドルフ・クラウジウスニコラ・レオナール・サディ・カルノーアンリ・ヴィクトル・ルニョーウィリアム・トムソンエミール・クラペイロンカルノーの定理 (幾何学)カルノーサイクルカロリック説熱力学第二法則熱力学温度逆カルノーサイクル永久機関

山本義隆

山本 義隆(やまもと よしたか、1941年(昭和16年)12月12日 - )は、日本の科学史家、自然哲学者、教育者、元学生運動家。駿台予備学校物理科講師。元・東大闘争全学共闘会議代表。妻は装幀家の山本美智代。.

新しい!!: カルノーの定理 (熱力学)と山本義隆 · 続きを見る »

広重徹

廣重 徹(広重 徹、ひろしげ てつ、1928年8月28日 - 1975年1月7日)は、日本の科学史家。.

新しい!!: カルノーの定理 (熱力学)と広重徹 · 続きを見る »

ラザール・カルノー

ラザール・ニコラ・マルグリット・カルノー(Lazare Nicolas Marguerite Carnot, 1753年5月13日 - 1823年8月2日)は、フランスの軍人、政治家、数学者。フランス革命戦争にあたってフランス軍の軍制改革を主導し、「勝利の組織者」と称えられた。政治的には穏健な共和主義者の立場を貫き、反対派からも尊敬されたという。また数学者としても功績を残した。著名な子孫たちとの区別のため大カルノーとも呼ばれる。.

新しい!!: カルノーの定理 (熱力学)とラザール・カルノー · 続きを見る »

ルドルフ・クラウジウス

ルドルフ・ユリウス・エマヌエル・クラウジウス(Rudolf Julius Emmanuel Clausius, 1822年1月2日 - 1888年8月24日)は、ドイツの物理学者。熱力学第一法則・第二法則の定式化、エントロピーの概念の導入など、熱力学の重要な基礎を築いた。.

新しい!!: カルノーの定理 (熱力学)とルドルフ・クラウジウス · 続きを見る »

ニコラ・レオナール・サディ・カルノー

ニコラ・レオナール・サディ・カルノー(, 1796年6月1日 パリ - 1832年8月24日 パリ)は、フランスの軍人、物理学者、技術者で、仮想熱機関「カルノーサイクル」の研究により熱力学第二法則の原型を導いたことで知られる。.

新しい!!: カルノーの定理 (熱力学)とニコラ・レオナール・サディ・カルノー · 続きを見る »

アンリ・ヴィクトル・ルニョー

アンリ・ヴィクトル・ルニョー(Henri Victor Regnault、1810年7月21日-1878年1月19日)は、フランスの化学者・物理学者。気体比熱、気体の圧力と体積の関係などの精密測定を行った。.

新しい!!: カルノーの定理 (熱力学)とアンリ・ヴィクトル・ルニョー · 続きを見る »

ウィリアム・トムソン

初代ケルヴィン男爵ウィリアム・トムソン(William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE、1824年6月26日 - 1907年12月17日)は、アイルランド生まれのイギリスの物理学者。爵位に由来するケルヴィン卿(Lord Kelvin)の名で知られる。特にカルノーの理論を発展させた絶対温度の導入、クラウジウスと独立に行われた熱力学第二法則(トムソンの原理)の発見、ジュールと共同で行われたジュール=トムソン効果の発見などといった業績がある。これらの貢献によって、クラウジウス、ランキンらと共に古典的な熱力学の開拓者の一人と見られている。このほか電磁気学や流体力学などをはじめ古典物理学のほとんどの分野に600を超える論文を発表した。また、電磁誘導や磁気力を表すためにベクトルを使い始めた人物でもある。.

新しい!!: カルノーの定理 (熱力学)とウィリアム・トムソン · 続きを見る »

エミール・クラペイロン

ブノワ・ポール・エミール・クラペイロン(Benoît Paul Émile Clapeyron、1799年2月26日 - 1864年1月28日)はフランスの物理学者、工学者。パリ出身。蒸気機関の設計に従事し、カロリック説の信奉者であったが、熱力学でクラウジウス-クラペイロンの式を発見するなどの業績を残した。 パリのエコール・ポリテクニークで、カルノー(1796-1832)と同時期に学生であった。1834年カルノーの考え方を発展させた論文を書いた。(カルノーは1832年に病死している。)可逆過程の概念を導入するなど、カルノーの考え方を数学的に定式化して発展させた。1844年からパリで国立土木学校で機械工学と力学の教授を務めた。.

新しい!!: カルノーの定理 (熱力学)とエミール・クラペイロン · 続きを見る »

カルノーの定理 (幾何学)

ルノーの定理は、フランスの数学者ラザール・カルノーに由来する、初等平面幾何学における定理である。.

新しい!!: カルノーの定理 (熱力学)とカルノーの定理 (幾何学) · 続きを見る »

カルノーサイクル

ルノーサイクル(Carnot cycle)は、温度の異なる2つの熱源の間で動作する可逆熱サイクルの一種である。ニコラ・レオナール・サディ・カルノーが熱機関の研究のために思考実験として 1824 年に導入したものである S. カルノー(広重徹訳)、『カルノー・熱機関の研究』、みすず書房(1973).

新しい!!: カルノーの定理 (熱力学)とカルノーサイクル · 続きを見る »

カロリック説

リック説(カロリックせつ、caloric theory 、théorie du calorique)とは、物体の温度変化をカロリック(熱素、ねつそ)という物質の移動により説明する学説。日本では熱素説とも呼ばれる。 物体の温度が変わるのは熱の出入りによるのであろうとする考えは古くからあったが、熱の正体はわからなかった。18世紀初頭になって、カロリック(熱素)という目に見えず重さのない熱の流体があり、これが流れ込んだ物体は温度が上がり、流れ出して減れば冷える、とするカロリック説が唱えられた。カロリックはあらゆる物質の隙間にしみわたり、温度の高い方から低い方に流れ、摩擦や打撃などの力が加わることによって押し出されるものとされた。この考えは多くの科学者によって支持され、19世紀初めまで信じられていた。.

新しい!!: カルノーの定理 (熱力学)とカロリック説 · 続きを見る »

熱力学第二法則

熱力学第二法則(ねつりきがくだいにほうそく、)は、エネルギーの移動の方向とエネルギーの質に関する法則である。またエントロピーという概念に密接に関係するものである。この法則は科学者ごとにさまざまな言葉で表現されているが、どの表現もほぼ同じことを示している。 例えば、電気エネルギーが電熱線を使って熱エネルギーに変換するが、電熱線に熱エネルギーを与えても、電気エネルギーには変換しないことは経験上知られている。つまり、電気エネルギーは質の高いエネルギーであるが、熱エネルギーの質は低い。.

新しい!!: カルノーの定理 (熱力学)と熱力学第二法則 · 続きを見る »

熱力学温度

熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

新しい!!: カルノーの定理 (熱力学)と熱力学温度 · 続きを見る »

逆カルノーサイクル

逆カルノーサイクル(ぎゃくカルノーサイクル、reversed Carnot cycle)は、理論的に最も効率の高い理想的な可逆熱サイクルである。カルノーサイクルを逆運転させたものであり、低温の熱源(絶対温度TC)から高温の熱源(TH)へ熱を移動させる。ヒートポンプなど冷凍サイクルとしては一番能率の良いものであるが、実現は不可能である(似たような物は作れる。この似たような物を逆カルノーサイクルと呼ぶこともある)。.

新しい!!: カルノーの定理 (熱力学)と逆カルノーサイクル · 続きを見る »

永久機関

永久機関(えいきゅうきかん、perpetual motion machine)とは、外部からエネルギーを受け取ることなく、仕事を行い続ける装置である。 古くは単純に外部からエネルギーを供給しなくても永久に運動を続ける装置と考えられていた。しかし、慣性の法則によれば外力が働かない限り物体は等速直線運動を続けるし、惑星は角運動量保存の法則により自転を続ける。そのため、単純に運動を続けるのではなく、外に対して仕事を行い続ける装置が永久機関と呼ばれる。 これが実現すれば石炭も石油も不要となり、エネルギー問題など発生しない。18世紀の科学者、技術者はこれを実現すべく精力的に研究を行った。しかし、18世紀の終わりには純粋力学的な方法では実現不可能だということが明らかになり、さらに19世紀には熱を使った方法でも不可能であることが明らかになった。永久機関は実現できなかったが、これにより熱力学と呼ばれる物理学の一分野が大いに発展した。.

新しい!!: カルノーの定理 (熱力学)と永久機関 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »