ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

進化論と遺伝学

ショートカット: 違い類似点ジャカード類似性係数参考文献

進化論と遺伝学の違い

進化論 vs. 遺伝学

進化論(しんかろん、theory of evolution)とは、生物が進化したものだとする提唱、あるいは進化に関する様々な研究や議論のことである『岩波生物学辞典第4版』。 生物は不変のものではなく長期間かけて次第に変化してきた、という仮説(学説)に基づいて、現在見られる様々な生物は全てその過程のなかで生まれてきたとする説明や理論群である。進化が起こっているということを認める判断と、進化のメカニズムを説明する理論という2つの意味がある。なお、生物学における「進化」は純粋に「変化」を意味するものであって「進歩」を意味せず、価値判断について中立的である。 進化は実証の難しい現象であるが(現代では)生物学のあらゆる分野から進化を裏付ける証拠が提出されている (詳細は、進化の項目も参照のこと)。 初期の進化論は、ダーウィンの仮説に見られるように、画期的ではあったが、事実かどうか検証するのに必要な証拠が十分に無いままに主張されていた面もあった。だが、その後の議論の中で進化論は揉まれて改良されつつある。現代的な進化論は単一の理論ではない。それは適応、種分化、遺伝的浮動など進化の様々な現象を説明し予測する多くの理論の総称である。現代の進化理論では、「生物の遺伝的形質が世代を経る中で変化していく現象」だと考えられている。 本項では進化思想、進化理論、進化生物学の歴史、社会や宗教との関わりについて概説する。 なお、生物学において「進化論」の名称は適切ではないため、「進化学」という名称に変更すべきだとの指摘がある。. 遺伝学(いでんがく、)は、生物の遺伝現象を研究する生物学の一分野である。遺伝とは世代を超えて形質が伝わっていくことであるが、遺伝子が生物の設計図的なものであることが判明し、現在では生物学のあらゆる分野に深く関わるものとなっている。.

進化論と遺伝学間の類似点

進化論と遺伝学は(ユニオンペディアに)共通で22ものを持っています: ネオダーウィニズムハーマン・J・マラーメンデルの法則ユーゴー・ド・フリーストーマス・ハント・モーガンデオキシリボ核酸分子遺伝学ウィリアム・ベイトソンカール・ピアソングレゴール・ヨハン・メンデル優生学系統学生物生物学生物統計学発生生物学遺伝遺伝子胚発生自然選択説集団遺伝学染色体説

ネオダーウィニズム

ネオダーウィニズム(neo-Darwinism)または新ダーウィン主義(しんダーウィンしゅぎ)は生物学において、自然選択説と遺伝学を中心に生物学諸分野のアイディアの結合によって形成されている理論的なフレームワークで、しばしば現代進化論 (英: modern evolutionary synthesis)と同一視される。総合進化説、総合説、現代の総合とも呼ばれる。現在では単にダーウィン主義といった場合には新ダーウィン主義/総合説を指す場合が多い。本項では新ダーウィン主義と総合説を同じものとして扱う。1920年から1930年代にかけて成立した集団遺伝学を刺激として、 1940年代に成立した。 遺伝学の成果により、新ダーウィン主義はダーウィニズムが進化の原動力とした自然選択に加えて倍数化、雑種形成なども進化の原動力として視野に入れるようになった。さらに、ダーウィニズムの選択説とは異質な説として議論を呼んだ中立進化説なども取り込んだ総合説が現代進化論の主流であり、これも含めて新ダーウィン主義と称する。近年では生態学や発生学(進化発生学)の知見なども取り入れており、自然選択と突然変異を中心とはするがそれだけで進化を説明しようとするのではなく、より大きな枠組みとなっている。 「現代の総合(Modern synthesis)」という呼称はジュリアン・ハクスリーが1942年に提唱した。1930年以降、ロナルド・フィッシャー、J・B・S・ホールデン、シューアル・ライト、テオドシウス・ドブジャンスキーといった集団生物学者が自然選択説と遺伝学が統合できることを示した。さらにエルンスト・マイヤー、エドモンド・フォードなどの生態学者、古生物学者ジョージ・ゲイロード・シンプソン、植物学者レッドヤード・ステビンズ、そのほか細胞学者や分類学者などの生物諸分野の研究者たちが、集団遺伝学に新たな広範な洞察を加えた。.

ネオダーウィニズムと進化論 · ネオダーウィニズムと遺伝学 · 続きを見る »

ハーマン・J・マラー

ハーマン・ジョーゼフ・マラー(Hermann Joseph Muller、1890年12月21日 - 1967年4月5日)はアメリカの遺伝学者。ショウジョウバエに対するX線照射の実験で人為突然変異を誘発できることを発見した。この業績により1946年にノーベル生理学・医学賞を受賞している。精子バンクの提唱者でもある。.

ハーマン・J・マラーと進化論 · ハーマン・J・マラーと遺伝学 · 続きを見る »

メンデルの法則

メンデルの法則(メンデルのほうそく)は、遺伝学を誕生させるきっかけとなった法則であり、グレゴール・ヨハン・メンデルによって1865年に報告された。分離の法則、独立の法則、優性の法則の3つからなる。.

メンデルの法則と進化論 · メンデルの法則と遺伝学 · 続きを見る »

ユーゴー・ド・フリース

1890年当時の肖像 1907年当時の肖像 ユーゴー・マリー・ド・フリースまたはヒューゴー・マリー・デ・ヴリース(、 1848年2月16日 - 1935年5月21日)は、オランダの植物学者・遺伝学者。なお、ドフリスと呼称している日本の理科の教科書もある。オオマツヨイグサの栽培実験によって、1900年にカール・エーリヒ・コレンスやエーリヒ・フォン・チェルマクらと独立にメンデルの法則を再発見した。さらにその後も研究を続け、1901年には突然変異を発見した。この成果に基づいて、進化は突然変異によって起こるという「突然変異説」を提唱した。.

ユーゴー・ド・フリースと進化論 · ユーゴー・ド・フリースと遺伝学 · 続きを見る »

トーマス・ハント・モーガン

トーマス・ハント・モーガン(Thomas Hunt Morgan、1866年9月25日 - 1945年12月4日)はアメリカ合衆国の遺伝学者。キイロショウジョウバエを用いた研究で古典遺伝学の発展に貢献し、染色体が遺伝子の担体であるとする染色体説を実証した。その業績により、1933年、ノーベル生理学・医学賞を受賞した。.

トーマス・ハント・モーガンと進化論 · トーマス・ハント・モーガンと遺伝学 · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

デオキシリボ核酸と進化論 · デオキシリボ核酸と遺伝学 · 続きを見る »

分子遺伝学

分子遺伝学(ぶんしいでんがく、英語:molecular genetics)は生物学の研究分野であるが、二つの異なる分野を指す。塩基配列の比較から生物の進化を議論する分野と、遺伝現象の仕組みを分子のレベルで理解しようとする分野である。.

分子遺伝学と進化論 · 分子遺伝学と遺伝学 · 続きを見る »

ウィリアム・ベイトソン

ウィリアム・ベイトソン(William Bateson, 1861年8月8日 - 1926年2月8日)は、イギリスの遺伝学者。メンデルの法則を英語圏の研究者に紹介し、その普及の先頭に立った人物である。英語で遺伝学を意味する "genetics" という語を考案したことでも有名。 人類学者グレゴリー・ベイトソンは彼の息子である。ウィリアムのいとこの孫、パトリック・ベイトソンは進化生物学者。.

ウィリアム・ベイトソンと進化論 · ウィリアム・ベイトソンと遺伝学 · 続きを見る »

カール・ピアソン

ール・ピアソン(Karl Pearson, 1857年3月27日 - 1936年4月27日)はイギリスの数理統計学者、優生学者で、記述統計学の大成者である。.

カール・ピアソンと進化論 · カール・ピアソンと遺伝学 · 続きを見る »

グレゴール・ヨハン・メンデル

レゴール・ヨハン・メンデル(Gregor Johann Mendel、1822年7月20日 - 1884年1月6日)は、オーストリア帝国・ブリュン(現在のチェコ・ブルノ)の司祭。植物学の研究を行い、メンデルの法則と呼ばれる遺伝に関する法則を発見したことで有名。遺伝学の祖。 当時、遺伝現象は知られていたが、遺伝形質は交雑とともに液体のように混じりあっていく(混合遺伝)と考えられていた。メンデルの業績はこれを否定し、遺伝形質は遺伝粒子(後の遺伝子)によって受け継がれるという粒子遺伝を提唱したことである。.

グレゴール・ヨハン・メンデルと進化論 · グレゴール・ヨハン・メンデルと遺伝学 · 続きを見る »

優生学

優生学(ゆうせいがく、eugenics)は、応用科学に分類される学問の一種で、一般に「生物の遺伝構造を改良する事で人類の進歩を促そうとする科学的社会改良運動」と定義される。1883年にフランシス・ゴルトンが定義した造語である。 優生学は20世紀初頭に大きな支持を集めた。その最たるものがナチス政権による人種政策である。しかし、多くの倫理的問題を引き起こしたことから、優生学は人権問題としてタブーとなり、第二次世界大戦後は公での支持を失っていった。.

優生学と進化論 · 優生学と遺伝学 · 続きを見る »

系統学

系統学(けいとうがく、英語:phylogenetics)とは、生物の種の系統的な発生、つまり生物の進化による系統分化の歴史を研究する学問。種や系統群の分化と進化を研究目的とする。 研究技術として、比較解剖学、比較発生学などによって得られた形態などの情報を、統計学を駆使した分岐学などを用いて解析する。生化学的手法も古くから植物の色素などの代謝産物の比較研究が系統解析の手法として用いられてきたが、これに加えて1980年代以降は、DNAやRNAといった情報高分子の塩基配列の解析などによる分子系統学も発達してきた。.

系統学と進化論 · 系統学と遺伝学 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

生物と進化論 · 生物と遺伝学 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

生物学と進化論 · 生物学と遺伝学 · 続きを見る »

生物統計学

生物統計学(せいぶつとうけいがく、英語:biostatistics)または生物測定学(せいぶつそくていがく、biometry)は、統計学の生物学に対する応用領域で、様々な生物学領域を含む。特に医学と農学への応用が重要である。医学では生物統計学、農学では生物測定学の名を用いることが多い。古くは"biometrics"の名が使われたが、現在バイオメトリクスという呼称は異なる分野を指す語となっている。しかしバイオメトリクスの基本的な理念や方法論(例えば指紋による個人識別)は古典的な生物統計学にルーツを求めることができる。また理論生物学とも密接な関係がある。.

生物統計学と進化論 · 生物統計学と遺伝学 · 続きを見る »

発生生物学

生生物学(はっせいせいぶつがく, Developmental biology)とは多細胞生物の個体発生を研究対象とする生物学の一分野である。個体発生とは配偶子の融合(受精)から、配偶子形成を行う成熟した個体になるまでの過程のことである。広義には老化や再生も含む。.

発生生物学と進化論 · 発生生物学と遺伝学 · 続きを見る »

遺伝

遺伝(いでん、)は、生殖によって、親から子へと形質が伝わるという現象のことであり、生物の基本的な性質の一つである。素朴な意味では、親子に似通った点があれば、「遺伝によるものだ」、という言い方をする。しかし、生命現象としての遺伝は、後天的な母子感染による疾患や、非物質的情報伝達(学習など)による行動の類似化などを含まない。.

進化論と遺伝 · 遺伝と遺伝学 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

進化論と遺伝子 · 遺伝子と遺伝学 · 続きを見る »

胚発生

胚発生(はいはっせい、英語:embryogenesis)または生物学における発生(はっせい)とは、多細胞生物が受精卵(単為発生の場合もある)から成体になるまでの過程を指す。広義には老化や再生も含まれる。発生生物学において研究がなされる。.

胚発生と進化論 · 胚発生と遺伝学 · 続きを見る »

自然選択説

自然選択説(しぜんせんたくせつ、)とは、進化を説明するうえでの根幹をなす理論。厳しい自然環境が、生物に無目的に起きる変異(突然変異)を選別し、進化に方向性を与えるという説。1859年にチャールズ・ダーウィンとアルフレッド・ウォレスによってはじめて体系化された。自然淘汰説(しぜんとうたせつ)ともいう。日本では時間の流れで自然と淘汰されていくという意味の「自然淘汰」が一般的であるが、本項では原語に従って「自然選択」で統一する。.

自然選択説と進化論 · 自然選択説と遺伝学 · 続きを見る »

集団遺伝学

集団遺伝学(しゅうだんいでんがく、)は、生物集団内における遺伝子の構成・頻度の変化に関する遺伝学の一分野。チャールズ・ダーウィンの自然選択説とグレゴール・ヨハン・メンデルの遺伝法則の融合から誕生した分野と呼ぶこともできる。 個体群や生物群集の遺伝子プールを対象とし、進化と遺伝を確率論や統計学などの数学的手法を用いて研究する。ロナルド・フィッシャー、シューアル・ライトや J・B・S・ホールデンらによって考えだされた近代進化論を、ジョン・メイナード=スミス、ウィリアム・ドナルド・ハミルトンらが発展させ、現在に至る。 扱われる進化のプロセスとしては、突然変異(mutation)、遺伝的浮動(genetic drift)、自然選択(natural selection)、遺伝子流動 (gene flow)、遺伝的組み換え(recombination)、集団構造などがある。そのようなプロセスが適応や種分化に及ぼす影響を論じる。 理論的なアプローチの他、ショウジョウバエを用いた実験的なアプローチも行われている。デオキシリボ核酸(DNA)の二重らせん構造が解明されるまでは、主に数理生物学的な理論的アプローチがとられてきたが、分子生物学の発展に従って、木村資生の中立進化説のように、分子遺伝学的手法もとられるようになった。今日的なテーマとしては、自然集団の遺伝的過程において進化がどのように起こるか研究することも可能となった。 集団遺伝学の手法や理論は、交配実験が不可能な人類集団の遺伝学的組成に関する研究や、動植物の育種学などに寄与している。.

進化論と集団遺伝学 · 遺伝学と集団遺伝学 · 続きを見る »

染色体説

染色体説(せんしょくたいせつ、chromosome theory (of inheritance))とは、遺伝の様式を染色体の性質や挙動によって説明する学説。この学説は遺伝子が染色体上にあることを示しており、現在生物学では当然の前提とされる。メンデルの法則の実証、古典遺伝学の発展、分子遺伝学の基礎形成に深く関連したことで、生物学において重要である。ただしミトコンドリアDNAなど細胞核外の遺伝因子による細胞質遺伝はこれに従わない。 染色体説はバッタの染色体を用いた細胞学的観察からウォルター・サットン(Walter Sutton)によって1902年に提唱され、トーマス・ハント・モーガン(Thomas Hunt Morgan)らのショウジョウバエを用いた遺伝学的研究により、1920年代ごろ確立された。もうひとりの提唱者テオドール・ボヴェリ(Theodor Boveri)の名前と併せて「サットン-ボヴェリの染色体説」ともいう。発癌のメカニズムについてもボヴェリによる染色体説があり、これと区別する必要がある場合は「遺伝の染色体説」と呼ばれる。.

染色体説と進化論 · 染色体説と遺伝学 · 続きを見る »

上記のリストは以下の質問に答えます

進化論と遺伝学の間の比較

遺伝学が95を有している進化論は、280の関係を有しています。 彼らは一般的な22で持っているように、ジャカード指数は5.87%です = 22 / (280 + 95)。

参考文献

この記事では、進化論と遺伝学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »