ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

触媒と酵素

ショートカット: 違い類似点ジャカード類似性係数参考文献

触媒と酵素の違い

触媒 vs. 酵素

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。. 核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

触媒と酵素間の類似点

触媒と酵素は(ユニオンペディアに)共通で30ものを持っています: 反応速度塩基化学反応化学工業化学平衡化学ポテンシャルノーベル化学賞リボザイムリボ核酸ドイツイェンス・ベルセリウスイギリスコバルトスウェーデンタンパク質生物無機化合物物質発酵過酸化水素抗体抗体酵素活性化エネルギー洗剤溶媒担体2001年

反応速度

反応速度(はんのうそくど、reaction rate)とは化学反応の反応物あるいは生成物に関する各成分量の時間変化率を表す物理量。通常、反応速度を表現する式は濃度のべき関数として表現される。.

反応速度と触媒 · 反応速度と酵素 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

塩基と触媒 · 塩基と酵素 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

化学反応と触媒 · 化学反応と酵素 · 続きを見る »

化学工業

1928年にソ連で刊行された『ドイツの化学工業と未来の戦争』 化学工業(かがくこうぎょう)とは、原料を化学反応によって加工することによって得られた物質を製品とする工業のことである。化学工業で製造されたものは、化学製品と呼ばれる。石油のクラッキングによって各種化合物を製造する石油精製工業や、金属の鉱石から還元等によって単体金属を得る冶金工業のように、混合物を原料としている工業は化学工業とは分けることもある。特に精密化学を中心に化学工業の製品は化成品と呼ばれる。 おおまかに製品が有機化合物である有機化学工業と製品が無機化合物である無機化学工業に分類される。そしてさらにその製品や原料によって細分化されている。しかし、無機化学工業で使用される硫黄は、有機化学工業である石油化学工業での石油の脱硫によって得られていたり、また有機化学工業で有機塩素化合物を製造するために使用される塩素は無機化学工業であるソーダ工業で製造されていたりするように、両者は密接に結びついている部分もあり、境界は明確とは言えないところもある。 なお、重化学工業の語は産業統計上の用語で、軽工業に相対する、金属工業と機械製造業からなる重工業と化学工業を合一した産業分野を意味する。.

化学工業と触媒 · 化学工業と酵素 · 続きを見る »

化学平衡

化学平衡(かがくへいこう、chemical equilibrium)とは可逆反応において、順方向の反応と逆方向との反応速度が釣り合って反応物と生成物の組成比が巨視的に変化しないことをいう。.

化学平衡と触媒 · 化学平衡と酵素 · 続きを見る »

化学ポテンシャル

化学ポテンシャル(かがくポテンシャル、)は熱力学で用いられる示強性状態量の一つである。 推奨される量記号は、μ(ミュー)である。 化学ポテンシャルはアメリカの化学者ウィラード・ギブズにより導入され、浸透圧や化学反応のようなマクロな物質量の移動が伴う現象で重要な量である。.

化学ポテンシャルと触媒 · 化学ポテンシャルと酵素 · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

ノーベル化学賞と触媒 · ノーベル化学賞と酵素 · 続きを見る »

リボザイム

リボザイム (ribozyme) は、触媒としてはたらくリボ核酸 (RNA) のこと。リボ酵素ともよばれる。トーマス・チェック、シドニー・アルトマンによって発見された(両名はこの功績により、1989年にノーベル化学賞を受賞している)。 以前は、生体反応はすべてタンパク質でできた触媒である酵素が制御していると考えられていた。しかし、一部の反応はRNAが制御していることが見出され、これをRNAと酵素 (Enzyme) に因んでリボザイムと命名した。 リボザイムは、それだけでRNA自身を切断したり、貼り付けたり、挿入したり、移動したりする活性・能力(自己スプライシング機能)を持っている。つまり、RNAが自分で自分を編集することを可能にしている。リボザイムは、RNAの翻訳産物であるタンパク質の多様化に非常に貢献していると考えられている。 リボザイムの発見は、RNAが遺伝情報と反応の両方を扱うことができることを証明し、生命の起源時はRNAが重要な役割を果たしていたとするRNAワールド仮説を生み出すきっかけとなった。またヒト免疫不全ウイルス (HIV) 治療の新たな戦略になる可能性を提供し、幅広く研究が行われている。.

リボザイムと触媒 · リボザイムと酵素 · 続きを見る »

リボ核酸

リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

リボ核酸と触媒 · リボ核酸と酵素 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

ドイツと触媒 · ドイツと酵素 · 続きを見る »

イェンス・ベルセリウス

イェンス・ヤコブ・ベルセリウス(スウェーデン語:Jöns Jacob Berzelius、1779年8月20日 - 1848年8月7日)は、スウェーデンリンシェーピング出身の化学者、医師。 イギリスの化学者ジョン・ドルトンによる複雑な元素記法に代わり、現在でも広く用いられている元素記号をラテン名やギリシャ名に則ってアルファベットによる記法を提唱し、原子量を精密に決定したことで知られる。また、セリウム、セレン、トリウムといった新しい元素を発見。「タンパク質」や「触媒」といった化学用語を考案。近代化学の理論体系を組織化し、集大成した人物である。クロード・ルイ・ベルトレーやハンフリー・デービーら当代の科学者だけでなく、政治家クレメンス・フォン・メッテルニヒや文豪ヨハン・ヴォルフガング・フォン・ゲーテとも親交があった。弟子にフリードリヒ・ヴェーラーやジェルマン・アンリ・ヘスがいる。.

イェンス・ベルセリウスと触媒 · イェンス・ベルセリウスと酵素 · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

イギリスと触媒 · イギリスと酵素 · 続きを見る »

コバルト

バルト (cobalt、cobaltum) は、原子番号27の元素。元素記号は Co。鉄族元素の1つ。安定な結晶構造は六方最密充填構造 (hcp) で、強磁性体。純粋なものは銀白色の金属である。722 K以上で面心立方構造 (fcc) に転移する。 鉄より酸化されにくく、酸や塩基にも強い。.

コバルトと触媒 · コバルトと酵素 · 続きを見る »

スウェーデン

ウェーデン王国(スウェーデンおうこく、スウェーデン語: )、通称スウェーデンは、北ヨーロッパのスカンディナヴィア半島に位置する立憲君主制国家。首都はストックホルム。西にノルウェー、北東にフィンランドと国境を接し、南西にカテガット海峡を挟んでデンマークと近接する。東から南にはバルト海が存在し、対岸のロシアやドイツとの関わりが深い。法定最低賃金は存在しておらず、スウェーデン国外の大企業や機関投資家に経済を左右されている。.

スウェーデンと触媒 · スウェーデンと酵素 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

タンパク質と触媒 · タンパク質と酵素 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

生物と触媒 · 生物と酵素 · 続きを見る »

無機化合物

無機化合物(むきかごうぶつ、inorganic compound)は、有機化合物以外の化合物であり、具体的には単純な一部の炭素化合物(下に示す)と、炭素以外の元素で構成される化合物である。“無機”には「生命力を有さない」と言う意味があり、“機”には「生活機能」と言う意味がある。 炭素化合物のうち無機化合物に分類されるものには、グラファイトやダイヤモンドなど炭素の同素体、一酸化炭素や二酸化炭素、二硫化炭素など陰性の元素と作る化合物、あるいは炭酸カルシウムなどの金属炭酸塩、青酸と金属青酸塩、金属シアン酸塩、金属チオシアン酸塩、金属炭化物などの塩が挙げられる。 無機化合物の化学的性質は、元素の価電子(最外殻電子)の数に応じて性質が多彩に変化する。特に典型元素は周期表の族番号と周期にそれぞれ特有の性質の関連が知られている。 典型元素.

無機化合物と触媒 · 無機化合物と酵素 · 続きを見る »

物質

物質(ぶっしつ)は、.

物質と触媒 · 物質と酵素 · 続きを見る »

発酵

酵(はっこう。醱酵とも表記).

発酵と触媒 · 発酵と酵素 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

触媒と銅 · 酵素と銅 · 続きを見る »

過酸化水素

過酸化水素(かさんかすいそ、Hydrogen peroxide)は、化学式 HO で表される化合物。しばしば過水(かすい)と略称される。主に水溶液で扱われる。対象により強力な酸化剤にも還元剤にもなり、殺菌剤、漂白剤として利用される。発見者はフランスのルイ・テナール。.

触媒と過酸化水素 · 過酸化水素と酵素 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

触媒と酸 · 酵素と酸 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

触媒と鉄 · 酵素と鉄 · 続きを見る »

抗体

免疫グロブリン(抗体)。色の薄い部分が軽鎖、先端の黒い部分が可変部。適合する抗原が可変部に特異的に結合する。 抗体(こうたい、antibody)とは、リンパ球のうちB細胞の産生する糖タンパク分子で、特定のタンパク質などの分子(抗原)を認識して結合する働きをもつ。抗体は主に血液中や体液中に存在し、例えば、体内に侵入してきた細菌やウイルス、微生物に感染した細胞を抗原として認識して結合する。抗体が抗原へ結合すると、その抗原と抗体の複合体を白血球やマクロファージといった食細胞が認識・貪食して体内から除去するように働いたり、リンパ球などの免疫細胞が結合して免疫反応を引き起こしたりする。これらの働きを通じ、脊椎動物の感染防御機構において重要な役割を担っている(無脊椎動物は抗体を産生しない)。1種類のB細胞は1種類の抗体しか作れないうえ、1種類の抗体は1種類の抗原しか認識できないため、ヒト体内では数百万〜数億種類といった単位のB細胞がそれぞれ異なる抗体を作り出し、あらゆる抗原に対処しようとしている。 「抗体」の名は、抗原に結合するという機能を重視した名称で、物質としては免疫グロブリン(めんえきグロブリン、immunoglobulin)と呼ばれ、「Ig(アイジー)」と略される。 全ての抗体は免疫グロブリンであり、血漿中のγ(ガンマ)ーグロブリンにあたる。.

抗体と触媒 · 抗体と酵素 · 続きを見る »

抗体酵素

抗体酵素(こうたいこうそ)とは、触媒活性を有するモノクローナル抗体のことである。抗体触媒、アブザイム(abzyme、antibody と enzyme の合成語)、あるいは catmab (catalytic monoclonal antibody から)ともいう。元来は人工的に創生されたものをいうが、ヒト体内にも見出されており、正常なヒトの抗-血管作動性小腸ペプチド(VIP:vasoactive intestinal peptide)抗体や、全身性エリテマトーデス(自己免疫疾患)患者の抗体(DNAに結合し加水分解する)がある。 酵素は反応過程で生じる(酵素がない場合には不安定な)中間体を安定化させることにより触媒機能を果たす。ある反応の中間体に類似した分子を結合するような抗体があれば、その抗体は中間体を安定化し、それによって反応を触媒できる可能性がある。このような戦略により、天然の酵素にないような酵素活性を有する抗体酵素を生み出す試みが行われている。抗体酵素はまたバイオテクノロジーにおいても、たとえばDNAに対して特異的な反応を起こすなど有用なツールとなる可能性がある。.

抗体酵素と触媒 · 抗体酵素と酵素 · 続きを見る »

活性化エネルギー

活性化エネルギー(かっせいかエネルギー)とは、反応の出発物質の基底状態から遷移状態に励起するのに必要なエネルギーである。アレニウスパラメータとも呼ばれる。活性化エネルギーが高いことを活性化障壁と表現することもある。 吸熱反応においては、反応物と生成物の内部エネルギー(またはエンタルピー)に差がある場合には、最低限その差に相当するエネルギーを外部から受け取らなければならない。しかし、実際の反応においてはそれだけでは十分でなく、その差以上のエネルギーを必要とする場合がほとんどである。大きなエネルギーを受け取ることで、出発物質は生成物のエネルギーよりも大きなエネルギーを持った遷移状態となり、遷移状態となった出発物質はエネルギーを放出しながら生成物へと変換する。これは発熱反応の場合にも当てはまり、たとえ出発物質よりも生成物のエネルギーの方が低いとしても、活性化エネルギーの壁を越えられなければ反応は進行しない。例えば炭素と酸素を常温・常圧で混ぜても反応しないが、熱などにより活性化エネルギー分を供給してやることによって燃焼反応が進行する。 触媒作用とは、遷移状態を安定化することにより反応に必要な活性化エネルギーを下げ、反応を進みやすくすることである。.

活性化エネルギーと触媒 · 活性化エネルギーと酵素 · 続きを見る »

洗剤

洗剤(せんざい、Reinigungsmittel、Detergent)は、衣類(Waschmittel、Laundry detergent)や食器(Geschirrspülmittel、Dishwashing liquid)、人体や機械などの洗浄を目的とした、界面活性剤を主成分とする製品である。.

洗剤と触媒 · 洗剤と酵素 · 続きを見る »

溶媒

水は最も身近で代表的な溶媒である。 溶媒(ようばい、solvent)は、他の物質を溶かす物質の呼称。工業分野では溶剤(ようざい)と呼ばれることも多い。最も一般的に使用される水のほか、アルコールやアセトン、ヘキサンのような有機物も多く用いられ、これらは特に有機溶媒(有機溶剤)と呼ばれる。 溶媒に溶かされるものを溶質(solute)といい、溶媒と溶質を合わせて溶液(solution)という。溶媒としては、目的とする物質を良く溶かすこと(溶解度が高い)、化学的に安定で溶質と化学反応しないことが最も重要である。目的によっては沸点が低く除去しやすいことや、可燃性や毒性、環境への影響などを含めた安全性も重視される。水以外の多くの溶媒は、きわめて燃えやすく、毒性の強い蒸気を出す。また、化学反応では、溶媒の種類によって反応の進み方が著しく異なることが知られている(溶媒和効果)。 一般的に溶媒として扱われる物質は常温常圧では無色の液体であり、独特の臭気を持つものも多い。有機溶媒は一般用途としてドライクリーニング(テトラクロロエチレン)、シンナー(トルエン、テルピン油)、マニキュア除去液や接着剤(アセトン、酢酸メチル、酢酸エチル)、染み抜き(ヘキサン、石油エーテル)、合成洗剤(オレンジオイル)、香水(エタノール)あるいは化学合成や樹脂製品の加工に使用される。また抽出に用いる。.

溶媒と触媒 · 溶媒と酵素 · 続きを見る »

担体

担体(たんたい、英:catalytic support)は、吸着や触媒活性を示し、他の物質を固定する土台となる物質のこと。アルミナやシリカがよく用いられる。担体自体は化学的に安定したもので、目的操作を阻害しないものが望ましい。また、固定する物質によって担体との相性が異なるのでその使い分けが重要である。.

担体と触媒 · 担体と酵素 · 続きを見る »

2001年

また、21世紀および3千年紀における最初の年でもある。この項目では、国際的な視点に基づいた2001年について記載する。.

2001年と触媒 · 2001年と酵素 · 続きを見る »

上記のリストは以下の質問に答えます

触媒と酵素の間の比較

酵素が362を有している触媒は、113の関係を有しています。 彼らは一般的な30で持っているように、ジャカード指数は6.32%です = 30 / (113 + 362)。

参考文献

この記事では、触媒と酵素との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »