ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

発光ダイオードと電気抵抗

ショートカット: 違い類似点ジャカード類似性係数参考文献

発光ダイオードと電気抵抗の違い

発光ダイオード vs. 電気抵抗

光ダイオード(はっこうダイオード、light emitting diode: LED)はダイオードの一種で、順方向に電圧を加えた際に発光する半導体素子である。 1962年、ニック・ホロニアックにより発明された。発明当時は赤色のみだった。1972年にによって黄緑色LEDが発明された。1990年代初め、赤崎勇、天野浩、中村修二らによって、窒化ガリウムによる青色LEDの半導体が発明された。 発光原理はエレクトロルミネセンス (EL) 効果を利用している。また、有機エレクトロルミネッセンス(OLEDs、有機EL)も分類上、LEDに含まれる。. 電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

発光ダイオードと電気抵抗間の類似点

発光ダイオードと電気抵抗は(ユニオンペディアに)共通で12ものを持っています: 半導体伝導帯価電子帯バンドギャップバンド理論ツェナーダイオードダイオード直列回路と並列回路電圧電流抵抗器正孔

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

半導体と発光ダイオード · 半導体と電気抵抗 · 続きを見る »

伝導帯

伝導帯(でんどうたい、Conduction band)は、バンドギャップのある系において、バンドギャップの直上にある、空のバンドのこと。バンドギャップのない場合にも、価電子帯、伝導帯の区別ができる場合がある(例:半金属)。しかし、純然たる金属のバンドにおいては、価電子帯、伝導帯の区別が判然としない(区別できない)場合もある。.

伝導帯と発光ダイオード · 伝導帯と電気抵抗 · 続きを見る »

価電子帯

金属、および半導体・絶縁体のバンド構造の簡単な模式図 価電子帯(かでんしたい、valence band)とは、絶縁体や半導体において、価電子によって満たされたエネルギーバンドのこと。荷電子帯とも表記される。 絶対零度において「電子を含む一番エネルギーの高いバンド」が完全に電子で満たされている場合、これを狭義の充満帯 (filled band) と呼ぶ。これは絶縁体や半導体にのみ存在する。特に共有結合型結晶の充満帯を、価電子帯と呼ぶ。価電子帯の頂上から伝導帯の底までのギャップが、バンドギャップである。半導体や絶縁体においては、バンドギャップ中にフェルミ準位が存在する。 金属では価電子を含むバンドに空き準位がある(バンド中にフェルミ準位がある)ため、価電子がそのまま伝導電子(自由電子)となる。これに対し、半導体や絶縁体においては通常、価電子にバンドギャップを超えるエネルギーを与えて価電子帯から伝導帯へ励起することで、初めて伝導電子を得られる。完全に電子で占有された価電子帯では、電流は流れない。 なお広義には、電子で満たされた全てのエネルギーバンドを充満帯と呼ぶ。 Category:電子 Category:電子状態 Category:半導体.

価電子帯と発光ダイオード · 価電子帯と電気抵抗 · 続きを見る »

バンドギャップ

バンドギャップ(Band gap、禁止帯、禁制帯)とは、広義の意味は、結晶のバンド構造において電子が存在できない領域全般を指す。 ただし半導体、絶縁体の分野においては、バンド構造における電子に占有された最も高いエネルギーバンド(価電子帯)の頂上から、最も低い空のバンド(伝導帯)の底までの間のエネルギー準位(およびそのエネルギーの差)を指す。 E-k空間上において電子はこの状態を取ることができない。バンドギャップの存在に起因する半導体の物性は半導体素子において積極的に利用されている。 半導体のバンド構造の模式図。Eは電子の持つエネルギー、kは波数。Egが'''バンドギャップ'''。半導体(や絶縁体)では「絶対零度で電子が入っている一番上のエネルギーバンド」が電子で満たされており(価電子帯)、その上に禁制帯を隔てて空帯がある(伝導帯)。 金属、および半導体・絶縁体のバンド構造の簡単な模式図(k空間無視) バンドギャップを表現する図は、E-k空間においてバンドギャップ周辺だけに着目した図、さらにk空間を無視してエネルギー準位だけを表現した図も良く用いられる。.

バンドギャップと発光ダイオード · バンドギャップと電気抵抗 · 続きを見る »

バンド理論

固体物理学における固体のバンド理論(バンドりろん、band theory)または帯理論とは、結晶などの固体物質中に分布する電子の量子力学的なエネルギーレベルに関する理論を言う。1920年代後半にフェリックス・ブロッホ、ルドルフ・パイエルス、レオン・ブリルアンらによって確立された。.

バンド理論と発光ダイオード · バンド理論と電気抵抗 · 続きを見る »

ツェナーダイオード

ツェナーダイオード ツェナーダイオード(Zener diode)はダイオードの一種。別名を定電圧ダイオードともいい、その名の通り、一定の電圧(リファレンス)を得る目的で使用される素子である。 一般的な呼称はツェナーと省略されることが多く、文献によってはジーナーダイオードの記述もみられる。 通常のダイオードは、逆方向に電圧をかけても、ほとんど電流は流れないため、整流や検波などの用に供される。ところが、ある一定の電圧(降伏電圧もしくはツェナー電圧という)を上回ると、アバランシェ降伏と呼ばれる現象により、急激に電流が流れるようになる。 ツェナーダイオードが一般のダイオードと異なる点は、定電圧を得る目的で、降伏電圧が大幅に低くなるように設計されていることである。PN接合部に大量の不純物を添加し、P チャネルの価電子帯から N チャネルの伝導帯へ電子が移動しやすくなっている。この現象はトンネル効果によるもので、原子モデルでは共有結合のイオン化に該当する。 このツェナー効果は、物理学者のクラレンス・ツェナーにより発見された。逆バイアスを印加されたツェナーダイオードは、制御された降伏を示し、ダイオードにかかる電圧が降伏電圧に等しくなるように電流が流れる。ここから印加電圧を上げてもダイオードでの電圧降下はあまり変わらず電流量が増大してゆく。たとえば、ツェナー降伏電圧が3.2Vの素子に対してそれ以上の逆バイアス電圧を印加した場合は、電圧降下が3.2Vになる。しかし、いくらでも電流を流せるわけではないので、増幅段の基準電圧を発生させたり、あまり電流を必要としない場面での電圧を安定化させたりする素子として使われるのが一般的である。 この降伏電圧は、添加処理で極めて正確に調整することができる。このため、一般的に入手できるツェナーダイオードは種類が多く、1.2Vから200V程度まで販売されている。また、その誤差は、一般的なものでは5%や10%だが、0.05%以内といった超高精度の商品も存在する。 アバランシェダイオードにおけるアバランシェ現象も、これと類似している。実際には、同じ方法で2種類のダイオードが製造されているが、両方の現象の影響を受ける。約5.6Vまでのシリコンダイオードではツェナー現象による影響が支配的で、負の温度係数を示す。5.6V以上ではアバランシェ現象が支配的となり、正の温度係数を示す。 5.6Vのダイオードでは、この2つの現象が同時に起こり、各々の温度係数が丁度相殺される。このため、温度による影響を極力抑えたい用途には5.6Vのダイオードが適している。 最新の製造技術により、電圧が5.6V未満であれば温度係数を無視できる程度の素子を生産できるようになったが、電圧の高い素子では温度係数が劇的に大きくなる。たとえば、75Vのダイオードの温度係数は、12Vのダイオードの10倍にもなる。 通常、このようなダイオードはすべて、降伏電圧によらず「ツェナーダイオード」の総称で市場に出回っている。.

ツェナーダイオードと発光ダイオード · ツェナーダイオードと電気抵抗 · 続きを見る »

ダイオード

図1:ダイオードの拡大図正方形を形成しているのが半導体の結晶を示す 図2:様々な半導体ダイオード。下部:ブリッジダイオード 図3:真空管ダイオードの構造 図4 ダイオード(英: diode)は整流作用(電流を一定方向にしか流さない作用)を持つ電子素子である。最初のダイオードは2極真空管で、後に半導体素子である半導体ダイオードが開発された。今日では単にダイオードと言えば、通常、半導体ダイオードを指す。 1919年、イギリスの物理学者 William Henry Eccles がギリシア語の di.

ダイオードと発光ダイオード · ダイオードと電気抵抗 · 続きを見る »

直列回路と並列回路

列回路と並列回路(ちょくれつかいろとへいれつかいろ、英語:series and parallel circuits)とは、電子回路や電気回路の回路構成である。 電子部品の回路上の接続方法には直列(series)と並列(parallel)がある。2つの端子を持つ部品を数珠繋ぎに接続した回路を直列回路(series circuit)、2つの端子をそれぞれ互いに接続した回路を並列回路(parallel circuit)と呼ぶ。直列回路では、電流の経路が1つであり、同じ電流が各部品を順に流れる。並列回路では、電流の経路が分岐して各部品に同じ電圧がかかる。 例えば、2つの豆電球と電池を使った簡単な回路を考えてみよう。電池から伸びた導線が1つの豆電球に接続され、そこから次の豆電球に接続され、最終的に電池に戻るという回路構成は直列回路である。電池から2本の導線が伸びて、それぞれ別の豆電球に繋がり、そこからまた別々に電池に戻る場合、回路構成は並列回路である。.

発光ダイオードと直列回路と並列回路 · 直列回路と並列回路と電気抵抗 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

発光ダイオードと電圧 · 電圧と電気抵抗 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

発光ダイオードと電流 · 電気抵抗と電流 · 続きを見る »

抵抗器

抵抗器(ていこうき、resistor)とは、一定の電気抵抗値を得る目的で使用される電子部品であり受動素子である。通常は「抵抗」と呼ばれることが多い。 電気回路用部品として、電流の制限や、電圧の分圧、時定数回路などの用途に用いられる。集積回路など半導体素子の内部にも抵抗素子が形成されているが、この項では独立した回路部品としての抵抗器について述べる。.

抵抗器と発光ダイオード · 抵抗器と電気抵抗 · 続きを見る »

正孔

正孔(せいこう)は、ホール(Electron hole または単にhole)ともいい、物性物理学の用語。半導体(または絶縁体)において、(本来は電子で満たされているべき)価電子帯の電子が不足した状態を表す。たとえば光や熱などで価電子が伝導帯側に遷移することによって、価電子帯の電子が不足した状態ができる。この電子の不足によってできた孔(相対的に正の電荷を持っているように見える)が正孔(ホール)である。 半導体結晶中においては、周囲の価電子が次々と正孔に落ち込み別の場所に新たな正孔が生じる、という過程を順次繰り返すことで結晶内を動き回ることができ、あたかも「正の電荷をもった電子」のように振舞うとともに電気伝導性に寄与する。なお、周囲の価電子ではなく、伝導電子(自由電子)が正孔に落ち込む場合には、伝導電子と価電子の間のエネルギー準位の差に相当するエネルギーを熱や光として放出し、電流の担体(通常キャリアと呼ぶ)としての存在は消滅する。このことをキャリアの再結合と呼ぶ。 正孔は、伝導電子と同様に、電荷担体として振舞うことができる。正孔による電気伝導性をp型という。半導体にアクセプターをドーピングすると、価電子が熱エネルギーによってアクセプタ準位に遷移し、正孔の濃度が大きくなる。また伝導電子の濃度に対して正孔の濃度が優越する半導体をp型半導体と呼ぶ。 一般に正孔のドリフト移動度(あるいは単に移動度)は自由電子のそれより小さく、シリコン結晶中では電子のおよそ1/3になる。なお、これによって決まるドリフト速度は個々の電子や正孔の持つ速度ではなく、平均の速度であることに注意が必要である。 価電子帯の頂上ではE-k空間上で形状の異なる複数のバンドが縮退しており、それに対応して正孔のバンドも有効質量の異なる重い正孔(heavy hole)と軽い正孔(light hole)のバンドに分かれる。またシリコンなどスピン軌道相互作用が小さい元素においてはスピン軌道スプリットオフバンド(スピン分裂バンド)もエネルギー的に近く(Δ.

正孔と発光ダイオード · 正孔と電気抵抗 · 続きを見る »

上記のリストは以下の質問に答えます

発光ダイオードと電気抵抗の間の比較

電気抵抗が75を有している発光ダイオードは、258の関係を有しています。 彼らは一般的な12で持っているように、ジャカード指数は3.60%です = 12 / (258 + 75)。

参考文献

この記事では、発光ダイオードと電気抵抗との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »