ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

核磁気共鳴と磁気モーメント

ショートカット: 違い類似点ジャカード類似性係数参考文献

核磁気共鳴と磁気モーメントの違い

核磁気共鳴 vs. 磁気モーメント

核磁気共鳴(かくじききょうめい、nuclear magnetic resonance、NMR) は外部静磁場に置かれた原子核が固有の周波数の電磁波と相互作用する現象である。. 磁気モーメント(じきモーメント、)あるいは磁気能率とは、磁石の強さ(磁力の大きさ)とその向きを表すベクトル量である。外部にある磁場からもたらされる磁石にかかるねじる方向に働く力のベクトル量を指す。ループ状の電流や磁石、電子、分子、惑星などもそれぞれ磁気モーメントを持っている。 磁気モーメントは強さと方向を持ったベクトルと考えることができる。磁気モーメントの方向は磁石のS極からN極へ向いている。磁石がつくる磁場は磁気モーメントに比例する。正確には「磁気モーメント」とは一般的な磁場をしたときの1次項が生成する磁気双極子モーメントの系を言う。物体の磁場の双極子成分は磁気双極子モーメントの方向について対称であり、物体からの距離の −3 乗に比例して減少していく。 磁気モーメントは周囲に磁束を作る。 対になる磁極の強さを ±m とし、負極から正極を指すベクトルを d とする。磁気モーメント m はモーメントの名のとおり、m と d の積である。 磁力は電荷が移動することで発生する。回転する電荷は中心に位置する磁気モーメントと等価であり、その磁気モーメントは電荷のもつ角運動量と比例関係にある。.

核磁気共鳴と磁気モーメント間の類似点

核磁気共鳴と磁気モーメントは(ユニオンペディアに)共通で19ものを持っています: 励起状態基底状態原子番号原子核同位体ラーモア歳差運動ディラック定数エネルギー準位スピン角運動量ゼーマン効果共鳴磁場磁気双極子磁気回転比質量数量子力学電子スピン共鳴歳差水素

励起状態

励起状態(れいきじょうたい、excited state)とは、量子力学において系のハミルトニアンの固有状態のうち、基底状態でない状態のこと。.

励起状態と核磁気共鳴 · 励起状態と磁気モーメント · 続きを見る »

基底状態

基底状態(きていじょうたい、)とは、系の固有状態の内で最低のエネルギーの状態をいう。 古典力学では系の取りうるエネルギーは連続して存在するはずだが、ミクロの世界では量子力学によりエネルギーはとびとびの値を取る。その中で最低エネルギーの状態を基底状態とよび、それ以外の状態は励起状態とよぶ。 分子のような少数多体系であれば、基底状態は絶対零度の波動関数を意味する。しかし固体物理学では、有限温度での状態に対しても、素励起がなく、量子統計力学で記述される熱平衡状態をもって基底状態ということがある。これらは厳密には区別すべきものである。.

基底状態と核磁気共鳴 · 基底状態と磁気モーメント · 続きを見る »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

原子番号と核磁気共鳴 · 原子番号と磁気モーメント · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

原子核と核磁気共鳴 · 原子核と磁気モーメント · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

同位体と核磁気共鳴 · 同位体と磁気モーメント · 続きを見る »

ラーモア歳差運動

ピンベクトル。粒子を負電荷とすると、磁気モーメントは緑矢印回りに歳差する。 ラーモア歳差運動(ラーモアさいさうんどう、)は、物理学において、電子・原子核・原子などの粒子の持つ磁気モーメントが外部磁場によって歳差運動を起こす現象である。ジョゼフ・ラーモアにちなんで名づけられた。.

ラーモア歳差運動と核磁気共鳴 · ラーモア歳差運動と磁気モーメント · 続きを見る »

ディラック定数

換算プランク定数(かんさんプランクていすう、reduced Planck constant)またはまれにディラック定数(ディラックていすう、Dirac's constant) は、プランク定数 を で割った値を持つ定数である。その値は である(2014CODATA推奨値)。 は「エイチ・バー」と読む。.

ディラック定数と核磁気共鳴 · ディラック定数と磁気モーメント · 続きを見る »

エネルギー準位

ネルギー準位(エネルギーじゅんい、)とは、系のエネルギーの測定値としてあり得る値、つまりその系のハミルトニアンの固有値E_1,E_2,\cdotsを並べたものである。 それぞれのエネルギー準位は、量子数や項記号などで区別される.

エネルギー準位と核磁気共鳴 · エネルギー準位と磁気モーメント · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

スピン角運動量と核磁気共鳴 · スピン角運動量と磁気モーメント · 続きを見る »

ゼーマン効果

ーマン効果(ゼーマンこうか、Zeeman effect)は原子から放出される電磁波のスペクトルにおいて、磁場が無いときには単一波長であったスペクトル線が、原子を磁場中においた場合には複数のスペクトル線に分裂する現象である。原子を電場中に置いた場合のスペクトル線の分裂はシュタルク効果という。.

ゼーマン効果と核磁気共鳴 · ゼーマン効果と磁気モーメント · 続きを見る »

共鳴

共鳴(きょうめい、)とは、物理的な系がある特定の周期で働きかけを受けた場合に、その系がある特徴的な振る舞いを見せる現象をいう。特定の周期は対象とする系ごとに異なり、その逆数を固有振動数とよぶ。 物理現象としての共鳴・共振は、主に の訳語であり、物理学では「共鳴」、電気を始め工学的分野では「共振」ということが多い。 共鳴が知られることになった始原は音を伴う振動現象であると言われるが、現在では、理論式の上で等価・類似の現象も広く共鳴と呼ばれる(バネの振動・電気回路・核磁気共鳴など)。.

共鳴と核磁気共鳴 · 共鳴と磁気モーメント · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

核磁気共鳴と磁場 · 磁場と磁気モーメント · 続きを見る »

磁気双極子

磁気双極子(じきそうきょくし、英語:magnetic dipole)は、正負の磁極の対のことを言う。単独の磁極(磁気単極子)の存在は現在に至るまで確認されていないので、磁気についての基本的な要素はこの磁気双極子となる。.

核磁気共鳴と磁気双極子 · 磁気モーメントと磁気双極子 · 続きを見る »

磁気回転比

磁気回転比(じきかいてんひ、英語:gyromagnetic ratio)とは、物理学において、角運動量に対する磁気双極子モーメントの割合である。 磁気回転比は一般に で表記される。国際単位系での単位は、s−1·T -1、もしくはC·kg−1である。 磁気回転比は、g因子と同じ意味で使われることがある 。しかし、因子は磁気回転比とは異なり、無次元量である。.

核磁気共鳴と磁気回転比 · 磁気モーメントと磁気回転比 · 続きを見る »

質量数

質量数(しつりょうすう、mass number)は、原子核を構成する陽子と中性子の数を合わせたものを言う長倉三郎ほか編、『』、岩波書店、1998年、項目「質量数」より。ISBN 4-00-080090-6。通常、Aで表す。 同位体や核種を区別するときに用いられることが多い。元素記号の左肩に示す。たとえば、質量数12の炭素の場合は、 と表す。 同じ原子番号であるが質量数(すなわち中性子数)が異なる原子は同位体である。これに対して同じ質量数であるが原子番号(すなわち陽子数)が異なる原子を同重体、中性子数が同じであるが原子番号が異なるものを同中性子体(同調体)という。 質量数は原子核自体の質量とは別物である為、実際の数値はほとんど変わらないもののごく僅か異なる。実際の計算では質量数を質量として用いる事も多い。核子一つ一つの質量と電子の質量の総和より、実際の原子の質量の方が僅かに少なくこの差が質量欠損である。 またある中性原子の質量を原子質量単位を用いて表した質量をM、質量数をAとしたとき、その差の核子1個あたりの値 をパッキングフラクション(packing fraction)という。繰り返すがこれらは全て実際の質量とはほとんど等しいが正確には僅かに異なる。.

核磁気共鳴と質量数 · 磁気モーメントと質量数 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

核磁気共鳴と量子力学 · 磁気モーメントと量子力学 · 続きを見る »

電子スピン共鳴

電子スピン共鳴(でんしスピンきょうめい: Electron Paramagnetic Resonance、略称EPR、Electron Spin Resonance、略称 ESR)は不対電子を検出する分光法の一種。遷移金属イオンもしくは有機化合物中のフリーラジカルの検出に用いられる。.

核磁気共鳴と電子スピン共鳴 · 磁気モーメントと電子スピン共鳴 · 続きを見る »

歳差

歳差(さいさ、precession)または歳差運動(さいさうんどう)とは、自転している物体の回転軸が、円をえがくように振れる現象である。歳差運動の別称として首振り運動、みそすり運動、すりこぎ運動などの表現が用いられる場合がある。.

核磁気共鳴と歳差 · 歳差と磁気モーメント · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

核磁気共鳴と水素 · 水素と磁気モーメント · 続きを見る »

上記のリストは以下の質問に答えます

核磁気共鳴と磁気モーメントの間の比較

磁気モーメントが73を有している核磁気共鳴は、126の関係を有しています。 彼らは一般的な19で持っているように、ジャカード指数は9.55%です = 19 / (126 + 73)。

参考文献

この記事では、核磁気共鳴と磁気モーメントとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »