ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

元素と炭素燃焼過程

ショートカット: 違い類似点ジャカード類似性係数参考文献

元素と炭素燃焼過程の違い

元素 vs. 炭素燃焼過程

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。. 炭素燃焼過程、炭素融合は炭素同士が融合する核融合反応。融合が始まるためには非常な高温(6×108 K か 50 KeV) 、高密度(おおよそ2×108 kg/m3)が必要となり、重さが誕生時に少なくとも太陽質量の5倍以上の恒星の場合、反応を起こすための条件を整えることができる。恒星は炭素燃焼が始まるまでに水素やヘリウムなどのより軽い元素を使い果たしている。 これらの温度と密度の数字は目安に過ぎない。より大きく、重い恒星は強い重力を相殺して静水圧平衡で止めるために核融合の燃料となる軽い元素をより早く使いきる。つまり、低質量の星に比べ、密度はより低いものの高い温度であることを意味している。Clayton, Donald.

元素と炭素燃焼過程間の類似点

元素と炭素燃焼過程は(ユニオンペディアに)共通で14ものを持っています: 中性子ナトリウムネオンヘリウムヘリウム燃焼過程ガンマ線CNOサイクル素粒子物理学炭素白色矮星酸素陽子-陽子連鎖反応S過程水素

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

中性子と元素 · 中性子と炭素燃焼過程 · 続きを見る »

ナトリウム

ナトリウム(Natrium 、Natrium)は原子番号 11、原子量 22.99 の元素、またその単体金属である。元素記号は Na。アルカリ金属元素の一つで、典型元素である。医薬学や栄養学などの分野ではソジウム(ソディウム、sodium )とも言い、日本の工業分野では(特に化合物中において)曹達(ソーダ)と呼ばれる炭酸水素ナトリウムを重炭酸ソーダ(重曹)と呼んだり、水酸化ナトリウムを苛性ソーダと呼ぶ。また、ナトリウム化合物を作ることから日本曹達や東洋曹達(現東ソー)などの名前の由来となっている。。毒物及び劇物取締法により劇物に指定されている。.

ナトリウムと元素 · ナトリウムと炭素燃焼過程 · 続きを見る »

ネオン

ネオン(neon )は原子番号 10、原子量 20.180 の元素である。名称はギリシャ語の'新しい'を意味する「νέος (neos)」に由来する。元素記号は Ne。 単原子分子として存在し、単体は常温常圧で無色無臭の気体。融点 −248.7 ℃、沸点 −246.0 ℃(ただし融点沸点とも異なる実験値あり)。密度は 0.900 g/dm (0 ℃, 1 atm)・液体時は 1.21 g/cm (−246 ℃)。空気中に18.2 ppm含まれ、希ガスとしてはアルゴンに次ぐ割合で存在する。工業的には、空気を液化・分留して作る手段が唯一事業性を持てる。磁化率 −0.334×10 cm/g。1体積の水に溶解する体積比は0.012。 ネオンの三重点(約24.5561 K)はITS-90の定義定点になっている。.

ネオンと元素 · ネオンと炭素燃焼過程 · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

ヘリウムと元素 · ヘリウムと炭素燃焼過程 · 続きを見る »

ヘリウム燃焼過程

ヘリウム融合、ヘリウム燃焼過程はヘリウム同士が融合する核融合。 恒星は初期には水素の燃焼反応によってエネルギーとヘリウムを生産し、これによって恒星は徐々にヘリウムの多い状態に姿を変えていき、水素が減少し、水素の核融合は恒星表面で行われるようになる。恒星表面で核融合を行うようになると恒星内部で核融合を行っていたときより外部へのエネルギーの流出が大きくなり、恒星の表層は拡大し、より重いヘリウムは恒星中心核にたまる。このとき太陽質量の0.47倍よりも重い恒星の場合はヘリウムの中心核は自らの重力によって収縮しながら温度を上げ、1億度を超えるとヘリウムが安定元素に合成される核融合反応が始まる。 なお、ヘリウム3同士の融合やヘリウム3とヘリウム4の融合は陽々連鎖の際にも発生するが、これは通常ヘリウム燃焼過程としては言及されない。.

ヘリウム燃焼過程と元素 · ヘリウム燃焼過程と炭素燃焼過程 · 続きを見る »

ガンマ線

ンマ線(ガンマせん、γ線、gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。 ガンマ線.

ガンマ線と元素 · ガンマ線と炭素燃焼過程 · 続きを見る »

CNOサイクル

CNOサイクルの模式図 CNOサイクル (CNO cycle) とは恒星内部で水素がヘリウムに変換される核融合反応過程の一種である。陽子-陽子連鎖反応が太陽程度かそれ以下の小質量星のエネルギー源であるのに対して、CNOサイクルは太陽より質量の大きな恒星での主なエネルギー生成過程である。 CNOサイクルの理論は1937年から1939年にかけて、ハンス・ベーテとカール・フリードリヒ・フォン・ヴァイツゼッカーによって提唱された。ベーテはこの功績によって1967年のノーベル物理学賞を受賞した。CNOサイクルの名前は、この反応過程に炭素(C)・窒素(N)・酸素(O)の原子核が関わるところに由来する。 恒星内部での水素燃焼には陽子-陽子連鎖反応とCNOサイクルの両方が働いているが、CNOサイクルは大質量星のエネルギー生成過程に大きく寄与している。太陽内部でCNOサイクルによって生み出されるエネルギーは全体の約1.6%に過ぎない。 CNOサイクルは温度が約1,400万-3,000万Kの環境で稼動する。さらに、サイクル反応が回り始めるための「種」として12Cや16Oといった原子核がある程度存在する必要がある。現在考えられている元素合成理論では、ビッグバン元素合成で炭素や酸素はほとんど生成されないと考えられるため、宇宙誕生後の第1世代(種族III)の恒星の内部ではCNOサイクルによるエネルギー生成は起こらなかったと考えられる。このような星の内部ではトリプルアルファ反応によってヘリウムから炭素が合成された。やがてこれらの星が超新星爆発によって炭素を星間物質として供給したため、そこから生まれた第2世代以後の恒星では炭素原子核が最初から恒星内に含まれており、CNOサイクルの触媒として働くようになっている。.

CNOサイクルと元素 · CNOサイクルと炭素燃焼過程 · 続きを見る »

素粒子物理学

素粒子物理学(そりゅうしぶつりがく、particle physics)は、物質の最も基本的な構成要素(素粒子)とその運動法則を研究対象とする物理学の一分野である。 大別して素粒子論(素粒子理論)と素粒子実験からなる。また実証主義、還元主義に則って実験的に素粒子を研究する体系を高エネルギー物理学と呼ぶ。 粒子加速器を用い、高エネルギー粒子の衝突反応を観測することで、主に研究が進められることから、そう命名された。しかしながら、現在、実験で必要とされる衝突エネルギーはテラ電子ボルトの領域となり、加速器の規模が非常に大きくなってきている。将来的に建設が検討されている国際リニアコライダーも建設費用は一兆円程度になることが予想されている。また、近年においても、伝統的に非加速器による素粒子物理学の実験的研究が模索されている。 何をもって素粒子とするのかは時代とともに変化してきており、立場によっても違い得るが標準理論の枠組みにおいては、物質粒子として6種類のクォークと6種類のレプトン、力を媒介する粒子としてグルーオン、光子、ウィークボソン、重力子(グラビトン)、さらにヒッグス粒子等が素粒子だと考えられている。超弦理論においては素粒子はすべて弦(ひもともいう)の振動として扱われる。.

元素と素粒子物理学 · 炭素燃焼過程と素粒子物理学 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

元素と炭素 · 炭素と炭素燃焼過程 · 続きを見る »

白色矮星

白色矮星(はくしょくわいせい、white dwarf)は、恒星が進化の終末期にとりうる形態の一つ。質量は太陽と同程度から数分の1程度と大きいが、直径は地球と同程度かやや大きいくらいに縮小しており、非常に高密度の天体である。 シリウスの伴星(シリウスB)やヴァン・マーネン星など、数百個が知られている。太陽近辺の褐色矮星より質量が大きい天体のうち、4分の1が白色矮星に占められていると考えられている。.

元素と白色矮星 · 炭素燃焼過程と白色矮星 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

元素と酸素 · 炭素燃焼過程と酸素 · 続きを見る »

陽子-陽子連鎖反応

'''陽子-陽子連鎖反応の概要''' 左上の反応では2個の陽子(赤)が反応し、陽電子(白)とニュートリノ(ν)を放出後、陽子と中性子(灰色)からなる重水素が形成される。次の反応では重水素と陽子が結合し、ガンマ線(γ)を放出してヘリウム3が生成する。最後の反応では2個のヘリウム3が結合し、陽子を2個放出してヘリウム4に至る。電子は反応に寄与しないため、省略されている。 陽子-陽子連鎖反応(ようしようしれんさはんのう、proton-proton chain reaction)とは恒星の内部で水素をヘリウムに変換する核融合反応の一種である。日本語ではppチェイン、pp連鎖反応などと呼ばれることが多い。CNOサイクルと並んで、恒星内で起こる水素の核融合反応の主要な過程であり、太陽と同程度かそれより質量の小さい恒星でのエネルギー生成の大半を担っている。 一般に、2つの水素原子(陽子)の間に働くクーロン力に打ち勝って核融合反応が起こるためには大きなエネルギー(すなわち高い温度)と圧力(密度)を必要とする。恒星内部で陽子-陽子連鎖反応が完了するまでの平均的な時間尺度は109年のオーダーである。このように反応の進行がゆっくりとしているため、太陽や小質量星は長い時間にわたって輝くことができる。 陽子-陽子連鎖反応が太陽や他の恒星のエネルギー生成の基本原理であることは1920年代にアーサー・エディントンによって提唱された。当時は、陽子がクーロン障壁を越えるためには太陽の温度は低過ぎると考えられていた。後に量子力学が発展すると、陽子の波動関数がトンネル効果によってクーロン障壁を越えることで、古典力学の予言より低い温度で陽子同士が融合できることが明らかとなった。.

元素と陽子-陽子連鎖反応 · 炭素燃焼過程と陽子-陽子連鎖反応 · 続きを見る »

S過程

s過程(エスかてい、s-Process.

S過程と元素 · S過程と炭素燃焼過程 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

元素と水素 · 水素と炭素燃焼過程 · 続きを見る »

上記のリストは以下の質問に答えます

元素と炭素燃焼過程の間の比較

炭素燃焼過程が42を有している元素は、322の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は3.85%です = 14 / (322 + 42)。

参考文献

この記事では、元素と炭素燃焼過程との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »