ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

共通祖先

索引 共通祖先

共通祖先(きょうつうそせん、Common descent)とは生物進化をさかのぼることで生まれた『全生物の祖先型生命』の概念を表す語である。共通祖先の存在は概念的には古くから提唱されていたものの科学的にその存在が提唱されたのは1987年以降であり、そこにはカール・ウーズによる古細菌の発見が重要な役割を演じている。本記事は『生命の起源』と重複するが、生命の起源では論じられない生命誕生後の進化やそのあり方について解説する。なお、化学進化後の原始生命体については当該記事を参照。 別名としては様々な名前が多くの学者によって提唱されており、その全てのニュアンスが微妙に異なっているために後述する。.

29 関係: ATPアーゼ原始生命体原核生物古細菌好熱菌乳酸脱水素酵素リンゴ酸デヒドロゲナーゼデオキシリボ核酸ドメイン (分類学)カール・ウーズ系統樹細胞内共生説翻訳 (生物学)真核生物真正細菌生命の起源遺伝子遺伝子型表現型進化16S rRNA系統解析1977年1986年1987年1988年1989年1994年1995年1996年

ATPアーゼ

ATPアーゼ(ATPエース、ATPase、ATPases (ion transport))とは、アデノシン三リン酸 (ATP) の末端高エネルギーリン酸結合を加水分解する酵素群の総称である(EC番号 3.6.1.3、3.6.3、3.6.4)。ATP は生体内のエネルギー通貨であるから、エネルギーを要する生物活動に関連したタンパク質であれば、この酵素の活性を持っていることが多い。 日本語ではATPアーゼを「アデノシン三リン酸分解酵素」などと表現できる。なお、「ホスファターゼ」は「リン酸分解酵素」のことであるから、「アデノシン三リン酸ホスファターゼ」という呼び方は「リン酸」の重言となり、正しくない。.

新しい!!: 共通祖先とATPアーゼ · 続きを見る »

原始生命体

原始生命体(げんしせいめいたい、Protobionta、Protobiont)とは化学進化による生命誕生直後の状態を有する生命のことである。現在の研究では共通祖先は古細菌および真正細菌にそれぞれ進化したとされているが、共通祖先が誕生する以前の生命についても論じられており、そのような生命を『原始生命体』と定義する。記事の内容では共通祖先と重複する部分はあるが、時系列的には.

新しい!!: 共通祖先と原始生命体 · 続きを見る »

原核生物

原核生物(げんかくせいぶつ、ラテン語: Prokaryota プローカリオータ、英語: Prokaryote プロカリオート)とは真核、つまり明確な境界を示す核膜を持たない細胞からなる生物のことで、すべて単細胞生物。 真核生物と対をなす分類で、性質の異なる真正細菌(バクテリア)と古細菌(アーキア)の2つの生物を含んでいる。.

新しい!!: 共通祖先と原核生物 · 続きを見る »

古細菌

古細菌(こさいきん、アーキア、ラテン語:archaea/アルカエア、単数形:archaeum, archaeon)は、生物の分類の一つで、''sn''-グリセロール1-リン酸のイソプレノイドエーテル(他生物はsn-グリセロール3-リン酸の脂肪酸エステル)より構成される細胞膜に特徴付けられる生物群、またはそこに含まれる生物のことである。古"細菌"と名付けられてはいるが、細菌(バクテリア。本記事では明確化のため真正細菌と称する)とは異なる系統に属している。このため、始原菌(しげんきん)や後生細菌(こうせいさいきん)という呼称が提案されたが、現在では細菌や菌などの意味を含まない を音写してアーキアと呼ぶことが多くなっている。 形態はほとんど細菌と同一、細菌の一系統と考えられていた時期もある。しかしrRNAから得られる進化的な近縁性は細菌と真核生物の間ほども離れており、現在の生物分類上では独立したドメインまたは界が与えられることが多い。一般には、メタン菌・高度好塩菌・好熱好酸菌・超好熱菌など、極限環境に生息する生物として認知されている。.

新しい!!: 共通祖先と古細菌 · 続きを見る »

好熱菌

好熱菌(こうねつきん)は、至適生育温度が45以上、あるいは生育限界温度が55以上の微生物のこと、またはその総称。古細菌の多く、真正細菌の一部、ある種の菌類や藻類が含まれる。特に至適生育温度が80以上のものを超好熱菌と呼ぶ。極限環境微生物の一つ。 生息域は温泉や熱水域、強く発酵した堆肥、熱水噴出孔など。ボイラーなどの人工的熱水からも分離される。この他、地下生物圏という形で地殻内に相当量の好熱菌が存在するという推計がある。 なお、2009年時点で最も好熱性が強い(高温環境を好む)生物は、ユーリ古細菌に含まれる''Methanopyrus kandleri'' Strain 116である。この生物はオートクレーブ温度を上回る122でも増殖することができる。.

新しい!!: 共通祖先と好熱菌 · 続きを見る »

乳酸脱水素酵素

乳酸脱水素酵素(にゅうさんだっすいそこうそ、lactate dehydrogenase; LDH)は、ほぼ全ての生物に存在する酵素である。.

新しい!!: 共通祖先と乳酸脱水素酵素 · 続きを見る »

リンゴ酸デヒドロゲナーゼ

リンゴ酸デヒドロゲナーゼまたはリンゴ酸脱水素酵素(malate dehydrogenase, MDH)は、リンゴ酸とオキサロ酢酸との相互変換を触媒する酸化還元酵素である。 用いる電子受容体によって以下の表のように分類されているほか、さらに脱炭酸してピルビン酸にするリンゴ酸酵素に対しても「リンゴ酸デヒドロゲナーゼ」と呼ぶことがある。 本項ではNAD依存型の酵素(EC 1.1.1.37)について記述する。 ---- リンゴ酸デヒドロゲナーゼまたはリンゴ酸脱水素酵素(malate dehydrogenase, MDH)は、リンゴ酸をオキサロ酢酸へと酸化する(またはその逆の)化学反応を触媒する酸化還元酵素である。クエン酸回路を構成する酵素の1つであり、また真核生物においてはリンゴ酸-アスパラギン酸シャトルに関与している。.

新しい!!: 共通祖先とリンゴ酸デヒドロゲナーゼ · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 共通祖先とデオキシリボ核酸 · 続きを見る »

ドメイン (分類学)

生物分類学におけるドメイン(domainドメイン、regioレギオー)とは、界よりも上の、最も高いランクの階級である。この階級における分類は、基礎的なゲノムの進化の違いを反映して行われる。3ドメイン説においては、真核生物ドメイン、真正細菌ドメイン、古細菌ドメインの3つのタクソンがこの階級に位置づけられる。日本語では、中国語に由来する「域」あるいはregio/domainを直訳した「領域」と呼ばれることもある。 この項目では、ドメインと同程度、あるいは代替となる階級についても扱う。empire(エンパイアー)、superkingdom(スーパーキングダム)と呼ばれるものがそれで、それぞれ日本語では帝国、上界、ラテン語ではimperium(インペリウム)、superregnum(スペッレグヌム)が充てられる。 この階級の新設は、これまでの分類の最も高い階層である界が本来は植物と動物を分けるために設定されたものであったことに由来する。様々な生物の発見により界は徐々に増加したが、原核生物についての研究が進むにつれ、植物と動物の差よりも原核生物内部の多様性の方が遥かに大きいことが分かってきため、界より上のランクを設定した方がよい、との判断が生まれてきたことによる。古細菌の発見がこれを後押しした。.

新しい!!: 共通祖先とドメイン (分類学) · 続きを見る »

カール・ウーズ

ール・リチャード・ウーズ(Carl Richard Woese, 1928年7月15日 - 2012年12月30日)はアメリカ合衆国(ニューヨーク州シラキューズ出身)の微生物学者。1977年に六界説、1990年に三ドメイン説という生物の分類体系を提唱したことで有名である。イリノイ大学アーバナ・シャンペーン校の教授を務めた。 アマースト大学で数学と物理学を学んだ後、エール大学で微生物学に転向する。 リボソームRNA(rRNA)による生物分類学の先駆者であり、1977年にRNAワールド仮説を考案している(RNAワールドという呼び方はギルバートによる)。彼は、遺伝子の類似点から生物を23の門に分け分岐図を描き、真正細菌、古細菌、真核生物の3つを比べ、古細菌は真正細菌でも真核生物でもないと考えた。それまでは生物の分類には、形態などの物理的分類、代謝などの化学的分類が主であり、遺伝子による分類は生物学・細菌学では用いられておらず、旧来の方法とは全く異なる新しい手法であった。この理論はサルバドール・エドワード・ルリア、エルンスト・マイヤーらに代表される生物学者たちから激しい反発を招き、受容に時間を要した。 1992年に微生物学の最高栄誉であるレーウェンフック・メダルを受賞。2000年にはアメリカ学界の栄誉であるアメリカ国家科学賞を授与された。2003年にクラフォード賞を受賞し、2006年にはロンドン王立協会の国外メンバーに選出された。 Pyrococcus woesei、Methanobrevibacterium woesei、Conexibacter woeseiなどの微生物は、彼に献名されたものである。 2012年12月30日、イリノイ州アーバナの自宅で死去。。.

新しい!!: 共通祖先とカール・ウーズ · 続きを見る »

系統樹

全生物を対象にした系統樹。青が真正細菌、赤が真核生物、緑が古細菌、真ん中付近が共通祖先 ヘッケルの系統樹 系統樹(けいとうじゅ)とは、生物の進化やその分かれた道筋を枝分かれした図として示したものである。樹木の枝分かれのように描かれることがあるので、こう呼ばれる。.

新しい!!: 共通祖先と系統樹 · 続きを見る »

細胞内共生説

細胞内共生説(さいぼうないきょうせいせつ)とは、1967年マーギュリスが提唱した、真核生物細胞の起源を説明する仮説。ミトコンドリアや葉緑体は細胞内共生した他の細胞(それぞれ好気性細菌、藍藻に近いもの)に由来すると考える。.

新しい!!: 共通祖先と細胞内共生説 · 続きを見る »

翻訳 (生物学)

分子生物学などにおいては、翻訳(ほんやく、Translation)とは、mRNAの情報に基づいて、タンパク質を合成する反応を指す。本来は細胞内での反応を指すが、細胞によらずに同様の反応を引き起こす系(無細胞翻訳系)も開発されている。.

新しい!!: 共通祖先と翻訳 (生物学) · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

新しい!!: 共通祖先と真核生物 · 続きを見る »

真正細菌

真正細菌(しんせいさいきん、bacterium、複数形 bacteria バクテリア)あるいは単に細菌(さいきん)とは、分類学上のドメインの一つ、あるいはそこに含まれる生物のことである。sn-グリセロール3-リン酸の脂肪酸エステルより構成される細胞膜を持つ原核生物と定義される。古細菌ドメイン、真核生物ドメインとともに、全生物界を三分する。 真核生物と比較した場合、構造は非常に単純である。しかしながら、はるかに多様な代謝系や栄養要求性を示し、生息環境も生物圏と考えられる全ての環境に広がっている。その生物量は膨大である。腸内細菌や発酵細菌、あるいは病原細菌として人との関わりも深い。語源はギリシャ語の「小さな杖」(βακτήριον)に由来している。.

新しい!!: 共通祖先と真正細菌 · 続きを見る »

生命の起源

生命の起源(せいめいのきげん、Origin of life)は、地球上の生命の最初の誕生・生物が無生物質から発生した過程『岩波生物学事典』 第四版 p.766「生命の起源」のことである。それをテーマとした論や説は生命起源論(Abiogenesis)という。.

新しい!!: 共通祖先と生命の起源 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: 共通祖先と遺伝子 · 続きを見る »

遺伝子型

遺伝子型(いでんしがた、いでんしけい、、ジェノタイプ、ジーノタイプ)は、ある生物個体が持つ遺伝子の構成のこと。 ある遺伝子が存在しても、その形質が発現しない場合もあり、表出する形質(表現型)と遺伝子型は必ずしも 1:1 に対応しない。例えば、ヒトのABO式血液型ならば、A型というひとつの表現型に対してAAとAOという二つの遺伝子型があり得る。.

新しい!!: 共通祖先と遺伝子型 · 続きを見る »

表現型

表現型(ひょうげんがた、ひょうげんけい、)とは、ある生物のもつ遺伝子型が形質として表現されたものである。その生物の形態、構造、行動、生理的性質などを含む。獲得形質は含まない。.

新しい!!: 共通祖先と表現型 · 続きを見る »

進化

生物は共通祖先から進化し、多様化してきた。 進化(しんか、evolutio、evolution)は、生物の形質が世代を経る中で変化していく現象のことであるRidley(2004) p.4Futuyma(2005) p.2。.

新しい!!: 共通祖先と進化 · 続きを見る »

16S rRNA系統解析

16S rRNA系統解析(16S rRNAけいとうかいせき)は、リボソームの小サブユニットのRNA塩基配列を基にした微生物の進化系統を明らかにする方法の一つである。真核生物の場合は18S rRNAなのでリボソーム小サブユニットRNA系統解析 ('S'mall 'S'ub 'U'nit-rRNA、SSU-rRNA) と呼ばれることもある。.

新しい!!: 共通祖先と16S rRNA系統解析 · 続きを見る »

1977年

記載なし。

新しい!!: 共通祖先と1977年 · 続きを見る »

1986年

この項目では、国際的な視点に基づいた1986年について記載する。.

新しい!!: 共通祖先と1986年 · 続きを見る »

1987年

この項目では、国際的な視点に基づいた1987年について記載する。.

新しい!!: 共通祖先と1987年 · 続きを見る »

1988年

この項目では、国際的な視点に基づいた1988年について記載する。.

新しい!!: 共通祖先と1988年 · 続きを見る »

1989年

この項目では、国際的な視点に基づいた1989年について記載する。.

新しい!!: 共通祖先と1989年 · 続きを見る »

1994年

この項目では、国際的な視点に基づいた1994年について記載する。.

新しい!!: 共通祖先と1994年 · 続きを見る »

1995年

この項目では、国際的な視点に基づいた1995年について記載する。.

新しい!!: 共通祖先と1995年 · 続きを見る »

1996年

この項目では、国際的な視点に基づいた1996年について記載する。.

新しい!!: 共通祖先と1996年 · 続きを見る »

ここにリダイレクトされます:

LUCAプロゲノートコモノートセンアンセスター

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »