ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

S型星

索引 S型星

S型星(S-type star)はスペクトル分類Sの後期の巨星である。スペクトル線中に、それぞれK型とM型に特徴的な酸化ジルコニウムと酸化チタンのバンドを見せる。酸化イットリウムやテクネチウムのようなその他のs過程元素も増加し、中性子捕獲が起きていることを示している。ジシアンやリチウムの特徴も持つ。多くは長周期変光星である。 ほとんどのS型星はM型の漸近巨星分枝がC-N型の炭素星に変換する際の途中段階であるという説がかつて提案されていた。通常、漸近巨星分枝は不活性の核を取り巻く水素殻での核融合によりエネルギーを供給されるが、熱パルスの間にはヘリウム殻の核融合が支配的になる。また、外因性S型星と呼ばれる別のタイプのS型星もあり、これは冷たいバリウム星で、スペクトル中に見える炭素やS過程元素は連星系からの質量転移の遺物である。このような系では、現在観測されるS型星は自身では過剰量の炭素やS過程元素は生成せず、これらは当時炭素星であった伴星で過去に生産されたものである。質量転移が終わって長い時間が経ってから観測されるため、伴星は白色矮星になってしまい、検出されないことが多い。 S型星は通常、同じくらいの光球温度を持つK型星やM型星よりも赤く見える。ミラ型変光星であるはくちょう座χ星は(最大光度にある時には)、全天で最も明るいS型星である。またおおぐま座S星もS型星である。HR 1105は、外因性S型星の例である。.

17 関係: はくちょう座カイ星巨星中性子捕獲ミラ型変光星リチウムテクネチウムジシアンスペクトル分類炭素星白色矮星長周期変光星酸化チタン酸化イットリウム(III)酸化ジルコニウム連星S過程漸近巨星分枝

はくちょう座カイ星

はくちょう座χ星(はくちょうざカイせい)は、はくちょう座にある有名なミラ型の脈動変光星である。学名はχ Cygni(略称はχ Cyg)。1686年にドイツのゴットフリート・キルヒによって変光が発見された星で、新星・超新星以外の変光星ではミラ、アルゴルに次いで3番目に発見された星である。.

新しい!!: S型星とはくちょう座カイ星 · 続きを見る »

巨星

ESO image.'' 巨星(きょせい、giant star)とは、同じ表面温度を持つ主系列星よりも半径および明るさが非常に大きい恒星のことである。Giant star, entry in Astronomy Encyclopedia, ed.

新しい!!: S型星と巨星 · 続きを見る »

中性子捕獲

原子核物理学における中性子捕獲(ちゅうせいしほかく、neutron capture)とは、核反応の一種で、中性子が原子核に吸収されたのちにガンマ線を放出する現象〔(n, γ)反応〕を言う。.

新しい!!: S型星と中性子捕獲 · 続きを見る »

ミラ型変光星

ミラ型変光星(みらがたへんこうせい、Mira variable)、ミラ型星 (Mira star)は、脈動変光星の1種である。くじら座のミラから名づけられた。非常に赤く、脈動周期は100日より長く、変光範囲が可視光で2.5等級より大きい(赤外線では1等級より大きい)という特徴を持つ。恒星の進化の最終段階の赤色巨星であり、数百万年の間に、外層を惑星状星雲として吹き飛ばし、白色矮星になる。 ミラ型変光星は、太陽質量の2倍よりも小さいと考えられるが、外層が膨張して非常に大きくなっているため、太陽の数千倍も明るくなりうる。恒星全体が膨張、収縮することで脈動していると考えられている。これにより半径とともに温度が変化し、光度の変化を引き起こす。脈動の周期は、恒星の質量と半径の関数になる。ミラ型変光星の当初のモデルでは、この過程によって球対称は保たれると考えられていたが、近年の調査で、IOTA(Infrared Optical Telescope Array)で観測されるミラ型変光星の75%は球対称ではないことが明らかとなった。この結果は、以前の各々のミラ型変光星の観測結果と一致し、これにより現在ではスーパーコンピューターでミラ型変光星の3次元モデルが得られている。 ほとんどのミラ型変光星は、その挙動や性質に共通性を持つが、実際には、年齢、質量、脈動周期、化学組成等に多様性を持つ異質な恒星が集まった分類である。例えば、うさぎ座R星は炭素のスペクトルを持ち、核を構成する物質が表面に移送されていることを示している。この物質は、しばしば恒星の周囲に塵の覆いを作り、周期的な明るさの変化をもたらす。ミラ型変光星の中には、自然のメーザー源になっているものもある。 また、ミラ型変光星の中には、時間が経つに従って、数十年から数世紀の単位で、脈動の周期が大きく変わるものもある。これは、核の近くのヘリウムの殻が一時的に密度が高くなって熱せられ、核融合が起こるためだと考えられている。この過程は全てのミラ型変光星で起こると予測されるが、恒星の生涯に比べると比較的この期間が短く、既知の数千個のミラ型変光星のうち、うみへび座R星等の数個でしか観測できていない。 ミラ型変光星は、明るさが大きく変化するため、アマチュア天文学者の観測のターゲットとして人気がある。ミラを含むいくつかのミラ型変光星は、信頼性のある観測データを数世紀も遡って得ることができる。 ミラ型変光星は比較的金属量が豊富な環境で生まれると考えられてきたが、非常に金属量が枯渇したろくぶんぎ座矮小楕円体銀河(~-2)でミラ型変光星が発見された。.

新しい!!: S型星とミラ型変光星 · 続きを見る »

リチウム

リチウム(lithium、lithium )は原子番号 3、原子量 6.941 の元素である。元素記号は Li。アルカリ金属元素の一つで白銀色の軟らかい元素であり、全ての金属元素の中で最も軽く、比熱容量は全固体元素中で最も高い。 リチウムの化学的性質は、他のアルカリ金属元素よりもむしろアルカリ土類金属元素に類似している。酸化還元電位は全元素中で最も低い。リチウムには2つの安定同位体および8つの放射性同位体があり、天然に存在するリチウムは安定同位体である6Liおよび7Liからなっている。これらのリチウムの安定同位体は、中性子の衝突などによる核分裂反応を起こしやすいため恒星中で消費されやすく、原子番号の近い他の元素と比較して存在量は著しく小さい。 1817年にヨアン・オーガスト・アルフェドソンがペタル石の分析によって発見した。アルフェドソンの所属していた研究室の主催者であったイェンス・ベルセリウスによって、ギリシャ語で「石」を意味する lithos に由来してリチウムと名付けられた。アルフェドソンは金属リチウムの単離には成功せず、1821年にウィリアム・トマス・ブランドが電気分解によって初めて金属リチウムの単離に成功した。1923年にドイツのメタルゲゼルシャフト社が溶融塩電解による金属リチウムの工業的生産法を発見し、その後の金属リチウム生産へと繋がっていった。第二次世界大戦の戦中戦後には航空機用の耐熱グリースとしての小さな需要しかなかったが、冷戦下には水素爆弾製造のための需要が急激に増加した。その後冷戦の終了により核兵器用のリチウムの需要が大幅に冷え込んだものの、2000年代までにはリチウムイオン二次電池用のリチウム需要が増加している。 リチウムは地球上に広く分布しているが、非常に高い反応性のために単体としては存在していない。地殻中で25番目に多く存在する元素であり、火成岩や塩湖かん水中に多く含まれる。リチウムの埋蔵量の多くはアンデス山脈沿いに偏在しており、最大の産出国はチリである。海水中にはおよそ2300億トンのリチウムが含まれており、海水からリチウムを回収する技術の研究開発が進められている。世界のリチウム市場は少数の供給企業による寡占状態であるため、資源の偏在性と併せて需給ギャップが懸念されている。 リチウムは陶器やガラスの添加剤、光学ガラス、電池(一次電池および二次電池)、耐熱グリースや連続鋳造のフラックスとして利用される。2011年時点で最大の用途は陶器やガラス用途であるが、二次電池用途での需要が将来的に増加していくものと予測されている。リチウムの同位体は水素爆弾や核融合炉などにおいて核融合燃料であるトリチウムを生成するために利用されている。 リチウムは腐食性を有しており、高濃度のリチウム化合物に曝露されると肺水腫が引き起こされることがある。また、妊娠中の女性がリチウムを摂取することでの発生リスクが増加するといわれる。リチウムは覚醒剤を合成するためのバーチ還元における還元剤として利用されるため、一部の地域ではリチウム電池の販売が規制の対象となっている。リチウム電池はまた、短絡によって急速に放電して過熱することで爆発が起こる危険性がある。.

新しい!!: S型星とリチウム · 続きを見る »

テクネチウム

テクネチウム(technetium)は原子番号43の元素。元素記号は Tc。マンガン族元素の1つで、遷移元素である。天然のテクネチウムは地球上では非常にまれな元素で、ウラン鉱などに含まれるウラン238の自発核分裂により生じるが、生成量は少ない。そのため、後述のように自然界からはなかなか発見できず、人工的に合成することで作られた最初の元素となった。安定同位体が存在せず、全ての同位体が放射性である。最も半減期の長いテクネチウム98でおよそ420万年である。.

新しい!!: S型星とテクネチウム · 続きを見る »

ジシアン

アン (dicyan) は分子式 C2N2 で表される化合物である。青素、シアノゲン、シアノジェン(cyanogen)あるいはシュウ酸ジニトリル(oxalonitrile)とも呼ばれ、また単にシアン(Cyan)といえばこの物質またはシアノ基のことを指す。.

新しい!!: S型星とジシアン · 続きを見る »

スペクトル分類

ペクトル分類(スペクトルぶんるい、spectral classification)は、恒星の分類法の一つである。スペクトル分類によって細分された星のタイプをスペクトル型 (spectral type) と呼ぶ。恒星から放射された電磁波を捉え、スペクトルを観察することによって分類する。恒星のスペクトルはその表面温度や化学組成により変わってくる。表面温度により分類する狭義のスペクトル型(ハーバード型とも)と、星の本来の明るさを示す光度階級 (luminosity class) があり、両者を合わせて2次元的に分類するMKスペクトル分類が広く使われる。.

新しい!!: S型星とスペクトル分類 · 続きを見る »

炭素星

炭素星(たんそせい、Carbon star)は、典型的な漸近巨星分枝星で、その恒星大気中に酸素よりも炭素が多く含まれている赤色巨星である。2つの元素が大気上層で結合して一酸化炭素を形成することによって恒星大気中の酸素が消費されてしまうため、他の炭化物を作るのに自由な炭素原子が残り、恒星大気はすすけた状態となり、際立って赤く見えるようになる。 太陽のような通常の恒星では、大気中に炭素よりも酸素の方が多い。このような炭素星としての特質を示さず、一酸化炭素分子を作る程度に温度の低い星は「酸素星」と呼ばれることもある。 炭素星は特異なスペクトル型を示し、天体分光学が始まった1860年代にアンジェロ・セッキによって初めて確認された。.

新しい!!: S型星と炭素星 · 続きを見る »

白色矮星

白色矮星(はくしょくわいせい、white dwarf)は、恒星が進化の終末期にとりうる形態の一つ。質量は太陽と同程度から数分の1程度と大きいが、直径は地球と同程度かやや大きいくらいに縮小しており、非常に高密度の天体である。 シリウスの伴星(シリウスB)やヴァン・マーネン星など、数百個が知られている。太陽近辺の褐色矮星より質量が大きい天体のうち、4分の1が白色矮星に占められていると考えられている。.

新しい!!: S型星と白色矮星 · 続きを見る »

長周期変光星

長周期変光星(ちょうしゅうきへんこうせい、long-period variable)は、明るさの変化の周期が数か月から数年と長期に及ぶ変光星の種類である。長周期変光星は巨星であり、スペクトル型はF以赤であるが、ほとんどは赤色巨星か漸近巨星分枝星であり、スペクトル型はM、S、Cである。深い橙色か赤色に見える。 オックスフォード天文学辞典によれば、ミラ型変光星だけを含めており、以前はおうし座RV型変光星や半規則型変光星も含めていた、としている。.

新しい!!: S型星と長周期変光星 · 続きを見る »

酸化チタン

酸化チタン(さんか-).

新しい!!: S型星と酸化チタン · 続きを見る »

酸化イットリウム(III)

酸化イットリウム(さんかイットリウム、yttrium oxide)は空気中で安定なイットリウムの酸化物で、その組成式は である。白色の固体で、無機化学や物質科学において出発物質としてよく使われる。.

新しい!!: S型星と酸化イットリウム(III) · 続きを見る »

酸化ジルコニウム

酸化ジルコニウム(さんか-).

新しい!!: S型星と酸化ジルコニウム · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

新しい!!: S型星と連星 · 続きを見る »

S過程

s過程(エスかてい、s-Process.

新しい!!: S型星とS過程 · 続きを見る »

漸近巨星分枝

なった質量における恒星の進化がヘルツシュプルング・ラッセル図に表されている。漸近巨星分枝は、2太陽質量の線で、AGBと書かれている。 漸近巨星分枝(ぜんきんきょせいぶんし、asymptotic giant branch)は、ヘルツシュプルング・ラッセル図(HR図)において、低温で明るい、進化の進んだ恒星が分布する部分。小中質量星(0.8から8太陽質量)は全てその生涯の後半にこの段階を経る。 観測上は、太陽より数千倍明るい赤色巨星のように見える。酸素と炭素からなるほとんど不活性な中心核と、ヘリウムの核融合で炭素が形成される殻、水素の核融合でヘリウムが形成される殻、通常の恒星と似た化学組成を持つ非常に大きな外層、といった内部構造を持つ。.

新しい!!: S型星と漸近巨星分枝 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »