ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

黒板太字

索引 黒板太字

黒板太字(こくばんふとじ、Blackboard bold; 黒板ボールド、ブラックボードボールド)あるいは中抜き文字は、しばしば数学の書籍におけるある種の記号に対して用いられる、記号の一部の線(主に垂直線あるいはそれに近い線)を二重打ちにする書体のスタイルである。この記号は数の成す集合によく用いられる。黒板太字体の文字は、重ね打ち体 (double struck) として言及されることもある(実際にはタイプライターで重ね打ちをしてもこの字体になるわけではないけれども)。 は1993年の第14版では "lackboard bold should be confined to the classroom(黒板太字は教室内に限るべきである)" (13.14) と忠告しているが、2003年の第15版では、"pen-faced (blackboard) symbols are reserved for familiar systems of numbers(よく知られた数の体系のために黒板太字の記号が用意されている)" (14.12) と記述している。 書籍によってはこれらの文字を単なるボールド体で示しているものもある。もとを正せば黒板太字体は、黒板に太字を書く際に太くない文字との違いをはっきりさせるための方法として用いられたのだが、そこから離れて印刷でも普通の太字と異なる一つのスタイルとして用いられたのは、恐らく複素解析の教科書の が最初である。だから数学者の中には黒板太字と通常の太字を区別しない者もある。例えばセールは、黒板以外で「黒板太字」を用いることに対して公に強く非難していて、自身は黒板で太字を書くときに重ね打ち字体を用いるけれども、それと同じ記号に対して自身の出版物においては一貫して通常の太字を用いている。クヌースも出版物における黒板太字の使用について苦言を呈している。 黒板太字記法はブルバキが導入したものだという誤った主張がされることがあるが、それに反して秘密結社ブルバキの個々のメンバーは黒板において重ね打ち書体が普及してからも、彼らの著書において通常の太字体を用いている。 黒板太字で書かれる記号は、普通の文字で組版されたものが多くの異なる意味を以って用いられるのと異なり、それらの持つ意味の解釈はほぼ普遍的なものである。 数学書で標準的な組版システムであるTeXは黒板太字体を直接サポートしているわけではないが、アメリカ数学会 (AMS) によるアドオンの AMS フォントパッケージ (amsfonts) がそれを担っており、例えば黒板太字体の R は \mathbb と打てば出る。 ユニコードでは、比較的よく用いられるごく僅かの黒板太字体の文字 (C, H, N, P, Q, R, Z) が基本多言語面 (BMP) の文字様記号 (2100–214F) に、DOUBLE-STRUCK CAPITAL C などとして収録されている。しかし残りは BMP の外の U+1D538 から U+1D550 まで(BMP 収録分以外のアルファベット大文字)と、U+1D552 から U+1D56B まで(アルファベット小文字)および U+1D7D8 から U+1D7E1 まで(数字)に収録されている。BMP の外にあるということは、これらは比較的新しく、広くサポートされているわけではないということである。.

69 関係: 基本多言語面十六元数可換体実数射影空間上半平面代数的閉包代数的構造代数的数代数群強制法微分ネイピア数ポワンカレの円板モデルモチーフ (数学)モンスター群ユークリッド空間ボールドトーラスヘッケ環ブラウアー群ブール領域ドナルド・クヌースドイツ語ニコラ・ブルバキベクトル空間アメリカ数学会アデール環アフィン空間ウィリアム・ローワン・ハミルトンコンパクト空間ジャン=ピエール・セールタイプライター冪集合円周群円板八元数四元数球面確率確率変数素数群 (数学)無理数順序集合行列環袋文字複素平面複素数距離空間...開集合自由群自然数集合虚数虚数単位LaTeXTeXUnicode恒等写像期待値有理数有限体文字様記号数学整数書体01の冪根 インデックスを展開 (19 もっと) »

基本多言語面

基本多言語面(きほんたげんごめん、Basic Multilingual Plane, BMP)は、ISO/IEC 10646の第0群第0面およびUnicodeの第0面。最初の65536の符号位置である000016~FFFF16からなる。 最もよく使う、基本的な文字・記号のほとんどが含まれる。 UCS-2は、BMPのみからなる。また、Unicode 3.0までのUnicodeは、BMPのみからなっていた。.

新しい!!: 黒板太字と基本多言語面 · 続きを見る »

十六元数

抽象代数学における十六元数(じゅうろくげんすう、sedenion)は、全体として実数体 上次元の(双線型な乗法を持つベクトル空間という意味での)非結合的分配多元環を成す代数的な対象で、その全体はしばしば で表される。八元数にケーリー=ディクソンの構成法を使って得られる対合的二次代数である。 「十六元数」という用語は、他の十六次元代数構造、例えば四元数の複製二つのテンソル積や実数体上の四次正方行列環などに対しても用いられ、 で調べられている。.

新しい!!: 黒板太字と十六元数 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 黒板太字と可換体 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 黒板太字と実数 · 続きを見る »

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: 黒板太字と射影空間 · 続きを見る »

上半平面

数学、とくにリーマン幾何学あるいは(局所)コンパクト群の調和解析において上半平面(じょうはんへいめん、upper half plane)は、虚部が正である複素数全体の成す集合をいう。上半平面は連結な開集合であり、それがリーマン球面に埋め込まれているとみなしたとき、その閉包を閉上半平面と呼ぶ。閉上半平面は上半平面に実軸と無限遠点を含めたものである。(開いた)上半平面を慣例的に H や H あるいは \mathfrak と記す(このとき、下半平面は H− や H− などと書かれ、対比的に上半平面を H+ などと記すこともある)。上半平面は、リー群の表現論やロバチェフスキーの双曲幾何学などの舞台として数論・表現論的、幾何学的に重要な役割を果たす。 または.

新しい!!: 黒板太字と上半平面 · 続きを見る »

代数的閉包

数学、特に抽象代数学において、体 K の代数的閉包(だいすうてきへいほう、algebraic closure)は、代数的に閉じている K の代数拡大である。数学においてたくさんある閉包のうちの1つである。 ツォルンの補題を使って、すべての体は代数的閉包をもつMcCarthy (1991) p.21Kaplansky (1972) pp.74-76ことと、体 K の代数的閉包は K のすべての元を固定するような同型の違いを除いてただ1つであることを証明できる。この本質的な一意性のため、an algebraic closure of K よりむしろ the algebraic closure of K と呼ばれることが多い。 体 K の代数的閉包は K の最大の代数拡大と考えることができる。このことを見るためには、次のことに注意しよう。L を K の任意の代数拡大とすると、L の代数的閉包は K の代数的閉包でもあり、したがって L は K の代数的閉包に含まれる。K の代数的閉包はまた K を含む最小の代数的閉体でもある。なぜならば、M が K を含む任意の代数的閉体であれば、K 上代数的な M の元全体は K の代数的閉包をなすからだ。 体 K の代数的閉包の濃度は、K が無限体ならば K と同じで、K が有限体ならば可算無限である。.

新しい!!: 黒板太字と代数的閉包 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 黒板太字と代数的構造 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 黒板太字と代数的数 · 続きを見る »

代数群

代数幾何学において,代数群(だいすうぐん,algebraic group, あるいは群多様体,group variety)とは,代数多様体であるような群であって,積と逆元を取る演算がその多様体上の正則写像によって与えられるものである. 圏論のことばでは,代数群は代数多様体の圏におけるである..

新しい!!: 黒板太字と代数群 · 続きを見る »

強制法

数学の集合論における強制法(きょうせいほう、Forcing)とは、ポール・コーエンによって開発された、無矛盾性や独立性を証明するための手法である。強制法が初めて使われたのは1962年、連続体仮説と選択公理のZFからの独立性を証明した時のことである。強制法は60年代に大きく再構成されシンプルになり、集合論や、再帰理論などの数理論理学の分野で、極めて強力な手法として使われてきた。.

新しい!!: 黒板太字と強制法 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 黒板太字と微分 · 続きを見る »

ネイピア数

1.

新しい!!: 黒板太字とネイピア数 · 続きを見る »

ポワンカレの円板モデル

ポワンカレ円板模型の、大斜方切頭 3,7 充填. 双曲三次元空間内の二十面体ハニカム格子と見たポワンカレ球体模型 非ユークリッド幾何学におけるポワンカレ円板模型(ポワンカレえんばんもけい、Poincaré disk model)、ポワンカレ球体模型(ポワンカレきゅうたいもけい、Poincaré ball model)あるいは共形円板模型 (conformal disk model) とは、n-次元双曲幾何学のモデルで、その幾何のもとでの各点が n-次元円板あるいは球体に属し、かつその幾何のもとでの直線がその円板に含まれる円板の境界と直交する円弧または直径によって与えられるものを言う。円板模型は、クライン模型、ポワンカレ上半平面模型とともに、によって提案され、ベルトラミはそれらを用いて双曲幾何学とユークリッド幾何学との等無矛盾性 (equiconsistency) を示した。.

新しい!!: 黒板太字とポワンカレの円板モデル · 続きを見る »

モチーフ (数学)

代数幾何学では、モチーフ(motive、ときにはフランス語の使いかたに従い motif とすることもある)は、「代数多様体の本質的な部分を表す。今日まで、ピュアモチーフは定義されているが、一方、予想されている混合モチーフは定義されていない。 ピュアモチーフは、三つ組 (X, p, m) で、この X は滑らかな射影多様体、p: X ⊢ X はべき等な(idempotent)対応、m は整数である。(X, p, m) から (Y, q, n) への射(morphism)は、次数 n - m の対応により与えられる。 アレクサンドル・グロタンディーク(Alexander Grothendieck)に従い、混合モチーフに限っては、数学者たちが「普遍的」なコホモロジー論をもたらす適切な定義を求めている。圏論の言葉では、普遍的なコホモロジーは代数的代数的対応の圏で(splitting idempotents)を通した定義を意図していた。しかし、数十年間、標準予想を証明することに失敗して、これを定義することができなかった。現在示されているように、このことは「充分な」多くの射を持つことができない。 一方、モチーフの圏は、1960年代から1970年代にかけて、多く議論された普遍ヴェイユコホモロジーであることが想定されたが、この期待は完全に証明されてはいない。他方、現在は、全く異なる方法より、(motivic cohomology)が、現在、テクニカルな定義が数多くある。.

新しい!!: 黒板太字とモチーフ (数学) · 続きを見る »

モンスター群

群論という現代代数学の分野において、モンスター群(モンスターぐん、Monster group) とは最大のであり、その位数は である。・モンスターあるいは Friendly Giant と呼ばれることもある。 有限単純群は完全にされている。そのような群は18種類の可算無限族の1つに属するか、あるいはそのような系統的なパターンに従わない26個の散在群の1つである。モンスター群は他の散在群のうち6個を除くすべてをとして含む。 (Robert Griess) はこれら6個の例外を と呼び、他の20個を happy family と呼んでいる。 モンスターの良い構成的定義をすることはその複雑さのため難しい。.

新しい!!: 黒板太字とモンスター群 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 黒板太字とユークリッド空間 · 続きを見る »

ボールド

ボールド(Bold)は英語で「大胆な」などの意。.

新しい!!: 黒板太字とボールド · 続きを見る »

トーラス

初等幾何学におけるトーラス(torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 (に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた に同相な図形の総称として用いられ、 の(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは では不可能で、 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。.

新しい!!: 黒板太字とトーラス · 続きを見る »

ヘッケ環

数学における岩堀ヘッケ環あるいは単にヘッケ環(へっけかん、Hecke algebra; ヘッケ代数)はコクセター群の群環の一径数変形版で、表現論における重要な対象である。 ほかにも局所体上の簡約代数群の表現論や保型形式論、作用素環論において考察されるような、群とその部分群の対に付随する両側不変関数のなす畳み込み積環によって与えられる一連の系列がある。 A-型の岩堀ヘッケ環はアルティンの組紐群と密接な関係があり、ヴォーン・ジョーンズによる新しい結び目不変量の構成に応用がある。また、ヘッケ環の表現は神保道夫による量子群の発見を導いた。さらに、マイケル・フリードマンはヘッケ環をトポロジカル量子コンピュータの基礎付けとして提示した。.

新しい!!: 黒板太字とヘッケ環 · 続きを見る »

ブラウアー群

数学において、体 に対するブラウアーの多元環類群(たげんかんるい、algebra class group)あるいは単に のブラウアー群(ブラウアーぐん、Brauer group) は、体 上の中心的単純環の森田同値類(多元環類、ブラウアー類)を元とするアーベル群で、その演算は多元環のテンソル積から誘導される。ブラウアー群は体上の斜体の分類の過程で考え出されたもので、名称は代数学者のリチャード・ブラウアーに由来する。さらに一般に、スキームのブラウアー群の概念も東屋多元環(東屋代数)を用いて定義される。.

新しい!!: 黒板太字とブラウアー群 · 続きを見る »

ブール領域

ブール領域(ブールりょういき)またはブーリアン領域(英: Boolean domain)は、「偽」と「真」(真理値ないし真偽値)に対応する2つの元のみから成る集合である。 数学では、束の圏における始対象がブール領域である。記号としては 等を当てることもあるが、真偽値から離れた議論では や 等を当てることもある。ブール領域は、二値ブール代数としての構造を持つ。位相幾何学における類似のオブジェクトとして、2つの元からなる位相空間であるシェルピンスキー空間がある。 コンピュータプログラミング言語には、これに相当するブーリアン型があるものが多いが、C言語のように数値の0と1で代用している言語も多い。詳細はブーリアン型の記事を参照。.

新しい!!: 黒板太字とブール領域 · 続きを見る »

ドナルド・クヌース

ドナルド・エルビン・クヌース(Donald Ervin Knuth, 1938年1月10日 -)は数学者、計算機科学者。スタンフォード大学名誉教授。 クヌースによるアルゴリズムに関する著作 The Art of Computer Programming のシリーズはプログラミングに携わるものの間では有名である。アルゴリズム解析と呼ばれる分野を開拓し、計算理論の発展に多大な貢献をしている。その過程で漸近記法で計算量を表すことを一般化させた。 理論計算機科学への貢献とは別に、コンピュータによる組版システム TeX とフォント設計システム METAFONT の開発者でもあり、Computer Modern という書体ファミリも開発した。 作家であり学者であるクヌースは、文芸的プログラミングのコンセプトを生み出し、そのためのプログラミングシステム WEB / CWEB を開発。また、MIX / MMIX 命令セットアーキテクチャを設計。.

新しい!!: 黒板太字とドナルド・クヌース · 続きを見る »

ドイツ語

ドイツ語(ドイツご、独:Deutsch、deutsche Sprache)は、インド・ヨーロッパ語族・ゲルマン語派の西ゲルマン語群に属する言語である。 話者人口は約1億3000万人、そのうち約1億人が第一言語としている。漢字では独逸語と書き、一般に独語あるいは独と略す。ISO 639による言語コードは2字が de、3字が deu である。 現在インターネットの使用人口の全体の約3パーセントがドイツ語であり、英語、中国語、スペイン語、日本語、ポルトガル語に次ぐ第6の言語である。ウェブページ数においては全サイトのうち約6パーセントがドイツ語のページであり、英語に次ぐ第2の言語である。EU圏内では、母語人口は域内最大(ヨーロッパ全土ではロシア語に次いで多い)であり、話者人口は、英語に次いで2番目に多い。 しかし、歴史的にドイツ、オーストリアの拡張政策が主に欧州本土内で行われたこともあり、英語、フランス語、スペイン語のように世界語化はしておらず、基本的に同一民族による母語地域と、これに隣接した旧支配民族の使用地域がほとんどを占めている。上記の事情と、両国の大幅な領土縮小も影響して、欧州では非常に多くの国で母語使用されているのも特徴である。.

新しい!!: 黒板太字とドイツ語 · 続きを見る »

ニコラ・ブルバキ

ニコラ・ブルバキ(Nicolas Bourbaki, ブールバキとも)は架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日本で出版された38冊に及ぶ数学原論や、定期的に開催されるで有名。.

新しい!!: 黒板太字とニコラ・ブルバキ · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 黒板太字とベクトル空間 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: 黒板太字とアメリカ数学会 · 続きを見る »

アデール環

アデール環(adele ring) (単にアデールと呼ぶ事もある)とは、有理数の体(あるいはより一般的な任意の代数体)の上に構成された自己双対な位相環であり、整数論における基本的な対象である。アデール環は有理数体の全ての完備化の情報をもっている。 アデール環は、はじめ類体論の簡素化と明確化のためにクロード・シュヴァレー(Claude Chevalley)により導入されたが、現代の整数論では欠かせない概念となっている。 アデール環の乗法群を代数体の乗法群わってできる群は類体論において中心的な対象である。また多項式の有理数解を研究する(Diophantine geometry)において、まず有理数体をふくむ完備なアデール環において解を発見し、それが実際に有理数体における解となるかを決定するという手法をとることもある。 「アデール」という用語は、「additive idèle」(加法的なイデール)を短くしたものでありNeukirch (1999) p. 357.

新しい!!: 黒板太字とアデール環 · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: 黒板太字とアフィン空間 · 続きを見る »

ウィリアム・ローワン・ハミルトン

ウィリアム・ローワン・ハミルトン(William Rowan Hamilton、1805年8月4日 - 1865年9月2日)は、アイルランド・ダブリン生まれのイギリスの数学者、物理学者。四元数と呼ばれる高次複素数を発見したことで知られる。また、イングランドの数学者アーサー・ケイリーに与えた影響は大きい。.

新しい!!: 黒板太字とウィリアム・ローワン・ハミルトン · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 黒板太字とコンパクト空間 · 続きを見る »

ジャン=ピエール・セール

ャン=ピエール・セール(Jean-Pierre Serre, 1926年9月15日 - )はフランスの数学者。もとブルバキのメンバーの一人。 アンリ・カルタンに学び、はじめは複素解析や代数トポロジーを研究した。28歳の若さでフィールズ賞(最年少)を受賞。その後代数幾何学に傾倒していき、グロタンディークに多くの示唆を与え、4&5で作成された道具がヴェイユ予想に大きく貢献した。 業績として代数トポロジーにおけるを発展させた(–)。SerreのC理論による球面のホモトピー群の研究。 GAGA (Géométrie Algébrique et Géométrie Analytique) で代数幾何において複素解析幾何学的手法を導入し、大きな成功を収めた。FAC (Faisceaux algébriques cohérents)を発表し、代数的連接層を構築。層の言葉とホモロジーを用いて代数幾何学、可換環論の書き直し、層係数コホモロジーを構成した。整数論における 進表現論において、楕円曲線、L関数、モジュラー形式、アーベル多様体などに応用し多くの成果をあげた。 進モジュラー形式の理論の構成、類体論への貢献、代数的K-理論への貢献。アーベル多様体にかんするSerre–Tate理論。その他にリー群などにも業績がある。.

新しい!!: 黒板太字とジャン=ピエール・セール · 続きを見る »

タイプライター

タイプライター(typewriter)とは、文字盤を打鍵することで活字を紙に打ち付け、文字を印字する機械。筆記業務の高速化、各種原稿の清書といった目的で使用され、カーボン紙を挟んで複数枚の紙に同時に印字することで文書の複写もできたことから、会社での事務や個人の文章作成などに幅広く使われた。.

新しい!!: 黒板太字とタイプライター · 続きを見る »

冪集合

冪集合(べきしゅうごう、power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。 集合と呼ぶべき対象を公理的に構成的に与える公理的集合論では、集合から作った冪集合が集合と呼ばれるべきもののうちにあることを公理の一つ(冪集合公理)としてしばしば提示する。.

新しい!!: 黒板太字と冪集合 · 続きを見る »

円周群

数学における円周群(えんしゅうぐん、circle group; 円群)は の複素数(単位複素数)全体(つまり複素数平面上の単位円)\mathbb T.

新しい!!: 黒板太字と円周群 · 続きを見る »

円板

閉包である。 各種幾何学における円板(えんばん、disk; disc と綴ることもある)は、平面上で円で囲まれた有界領域である。 円板はその境界となる円周を「すべて含む」または「全く含まない」ことを以ってそれぞれ「閉円板」または「開円板」という。.

新しい!!: 黒板太字と円板 · 続きを見る »

八元数

数学における八元数(はちげんすう、octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性である冪結合律は満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたジョン・グレイヴスによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。.

新しい!!: 黒板太字と八元数 · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: 黒板太字と四元数 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 黒板太字と球面 · 続きを見る »

確率

率(かくりつ、)とは、偶然性を持つある現象について、その現象が起こることが期待される度合い、あるいは現れることが期待される割合のことをいう。確率そのものは偶然性を含まないひとつに定まった数値であり、発生の度合いを示す指標として使われる。.

新しい!!: 黒板太字と確率 · 続きを見る »

確率変数

率変数(かくりつへんすう、random variable, aleatory variable, stochastic variable)とは、確率論ならびに統計学において、ランダムな実験により得られ得る全ての結果を指す変数である。 数学で言う変数は関数により一義的に決まるのに対し、確率変数は確率に従って定義域内の様々な値を取ることができる。.

新しい!!: 黒板太字と確率変数 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 黒板太字と素数 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 黒板太字と群 (数学) · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: 黒板太字と無理数 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 黒板太字と順序集合 · 続きを見る »

行列環

抽象代数学において、行列環 (matrix ring) は、および行列の乗法のもとで環をなす、行列の任意の集まりである。別の環を成分に持つ n×n 行列全体の集合や無限次行列環 (infinite matrix ring) をなす無限次行列のある部分集合は行列環である。これらの行列環の任意の部分環もまた行列環である。 R が可換環のとき、行列環 Mn(R) は行列多元環 (matrix algebra) と呼ばれる結合多元環である。この状況において、M が行列で r が R の元であれば、行列 Mr は行列 M の各成分に r をかけたものである。 行列環は単位元をもたない環上作ることができるが、終始 R は単位元 1 ≠ 0 をもつ結合的環であると仮定する。.

新しい!!: 黒板太字と行列環 · 続きを見る »

袋文字

袋文字(ふくろもじ)は文字修飾の一種で、輪郭線だけがある文字を指す。白抜き文字(しろぬきもじ)、縁取り文字(ふちどりもじ)、アウトライン文字とも呼ぶ。.

新しい!!: 黒板太字と袋文字 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: 黒板太字と複素平面 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 黒板太字と複素数 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 黒板太字と距離空間 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 黒板太字と開集合 · 続きを見る »

自由群

自由群(じゆうぐん、free group)とは、公理から来る自明なもの以外に元の間の等式がない群のことである。ただし、二つの元を取り出したとき、同じ元であるかどうか、および一方が他方の逆元であるかどうかは判定できる。.

新しい!!: 黒板太字と自由群 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 黒板太字と自然数 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 黒板太字と集合 · 続きを見る »

虚数

虚数(きょすう)とは、実数ではない複素数のことである。ただし、しばしば「虚数」と訳される は、「2乗した値がゼロを超えない実数になる複素数」として定義される場合がある。 または で表される虚数単位は代表的な虚数の例である。 1572年にラファエル・ボンベリ は虚数を定義した。しかし当時は、ゼロや負の数ですら架空のもの、役に立たないものと考えられており、負の数の平方根である虚数は尚更であった。ルネ・デカルトも否定的にとらえ、著書『La Géométrie(幾何学)』で「想像上の数」と名付け、これが英語の imaginary number の語源になった。その後徐々に多くの数学者に認知されていった。.

新しい!!: 黒板太字と虚数 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: 黒板太字と虚数単位 · 続きを見る »

LaTeX

(ラテック、ラテフ)とは、レスリー・ランポートによって開発されたテキストベースの組版処理システムである。電子組版ソフトウェア TeX にマクロパッケージを組み込むことによって構築されており、単体の に比べて、より手軽に組版を行うことができるようになっている。\LaTeX と表記できない場合は“LaTeX”と表記する。 なお、 を基にアスキーが日本語処理に対応させたものとして日本語 が、さらに縦組み処理にも対応させたものとして pLaTeX がある。 専門分野にもよるが、学術機関においては標準的な論文執筆ツールとして扱われている。.

新しい!!: 黒板太字とLaTeX · 続きを見る »

TeX

(TeX; テック、テフ)はアメリカ合衆国の数学者・計算機科学者であるドナルド・クヌース (Donald E. Knuth) により開発されている組版処理システムである。.

新しい!!: 黒板太字とTeX · 続きを見る »

Unicode

200px Unicode(ユニコード)は、符号化文字集合や文字符号化方式などを定めた、文字コードの業界規格である。文字集合(文字セット)が単一の大規模文字セットであること(「Uni」という名はそれに由来する)などが特徴である。 1980年代に、Starワークステーションの日本語化 (J-Star) などを行ったゼロックス社が提唱し、マイクロソフト、アップル、IBM、サン・マイクロシステムズ、ヒューレット・パッカード、ジャストシステムなどが参加するユニコードコンソーシアムにより作られた。1993年に、国際標準との一致が図られ、DIS 10646の当初案から大幅に変更されて、Unicodeと概ね相違点のいくつかはDIS 10646に由来する互換のISO/IEC 10646が制定された。.

新しい!!: 黒板太字とUnicode · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 黒板太字と恒等写像 · 続きを見る »

期待値

率論において、期待値(きたいち、expected value)または平均は、確率変数の実現値を, 確率の重みで平均した値である。 例えば、ギャンブルでは、掛け金に対して戻ってくる「見込み」の金額をあらわしたものである。ただし、期待値ぴったりに掛け金が戻ることを意味するのではなく、各試行で期待値に等しい掛け金が戻るわけでもない。.

新しい!!: 黒板太字と期待値 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 黒板太字と有理数 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: 黒板太字と有限体 · 続きを見る »

文字様記号

文字様記号(もじようきごう、Letterlike Symbols)は、Unicodeのブロックの一つであり、主として1つまたは複数の字母の字体から構成された80のキャラクタが収録されている。 このブロックの他に、Unicodeにはが含まれているが、Unicodeではこれらの文字を明示的に「文字様(letterlike)」には分類していない。 文字様記号のうち、、、については、正準等価である普通の文字を使用することが推奨されている。また、とについては、(度)と通常の文字(C, F)を組み合わせて使用し、検索の際はこれと一文字の文字様記号と同一視することを推奨している。.

新しい!!: 黒板太字と文字様記号 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 黒板太字と数学 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 黒板太字と整数 · 続きを見る »

書体

書体(しょたい)とは、一定の文字体系のもとにある文字について、それぞれの字体が一貫した特徴と独自の様式を備えた字形として、表現されているものをいう。基礎となる字体の特徴、およびその字形の様式から導かれる、形態の差異によって分類される。例えば、漢字という文字体系のもとにある書体として、篆書・隷書・楷書・行書・草書の五体に加え、印刷用の書体(明朝体やゴシック体など)がある。これらはいずれも共通の文字集合から生まれながら、時代・地域・目的などにより、その形態を変化させていったものである。 英語の typeface の訳語としても用いられる。この場合は、広義における活字とその意匠についての概念として扱われる。 近年ではフォントと同義に用いられることがあり、フォントの使用ライセンスの単位として、1書体、2書体と数えることもある。しかし本来、書体は文字に通底する概念であって、金属活字の字面や写真植字の文字盤、またデジタルフォントのアウトラインデータそれ自体を指すものではない。 以下は字形から見た書体の類別(組版の視点から見た分類)に従って叙述する。.

新しい!!: 黒板太字と書体 · 続きを見る »

0

0 |- | Divisors || all numbers |- | Roman numeral || N/A |- | Arabic || style.

新しい!!: 黒板太字と0 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: 黒板太字と1の冪根 · 続きを見る »

ここにリダイレクトされます:

ブラックボード・ボールドブラックボード・ボールド体ブラックボードボールドブラックボードボールド体黒板ボールド黒板ボールド体黒板太字体黒板太文字

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »