ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

面積分

索引 面積分

ベクトル解析における面積分(めんせきぶん、surface integral)は、曲面上でとった定積分であり、二重積分として捉えることもできる。線積分は一次元の類似物にあたる。曲面が与えられたとき、その上のスカラー場やベクトル場を積分することができる。 面積分は物理学、特に電磁気学の古典論に応用がある。 面積分の定義は、曲面を小さな面素へ分解することによって成される。.

31 関係: 偏微分古典論向き向き付け可能性多重積分媒介変数密度平行微分幾何学微分形式地理座標系ノルムメビウスの帯ドット積ベクトル場ベクトル解析クロス積ストークスの定理スカラー場円柱 (数学)球面積分法線積分物理学直交座標系発散定理質量電磁気学法線ベクトル流束曲面

偏微分

数学の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 の変数 に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。.

新しい!!: 面積分と偏微分 · 続きを見る »

古典論

物理学における古典論とは、物理学の理論・手法において量子力学を陽に扱わないもののことである。対義語は量子論。 現代物理学における基本理論の一つである量子力学は、ある対象に対して極めて高精度の結果を与える理論であり、物性物理学における問題のほとんどは原理的には量子力学によって完全に記述されると考えられる。量子力学的効果は、特に分子・原子レベルやより小さなスケールでは本質的な効果を持ち、量子力学を考慮しない場合は、例えば原子が安定に存在し得ない等、現実と大きく異なる結果となる。原子・分子レベルの現象の古典論的扱いと量子論的扱いによる結果の大きな差異は、量子論や自然の本質を理解する上で重要である。 なお、量子力学は数学的な取扱いが著しく困難であり、現実の複雑な系を量子力学を用いて描くことは不可能な場合がほとんどである。一方で量子力学的な効果は、原子レベルでは本質的な効果を持つが、マクロな系への効果は一般にわずかであり、実用的な理論・手法としては、量子力学的効果を無視したり、古典力学の範囲内で取扱い可能な形に埋め込んだりすることが行われる。このように量子力学を陽に扱うことを回避した理論・手法も古典論と呼ばれ、現代物理学における重要な部門の一つである。 古典論の体系の大半は、ニュートンから始まり量子力学にはいたらない期間に構築された非相対論的な古典力学であるが、量子力学と同時期あるいはそれ以降に構築され現代物理学の一角をなす相対性理論も、量子力学を考慮に入れない限りでは古典論に含まれる。このように物理学における「古典論」という言葉は、あくまで「量子論」の対義語であり、伝統的・現代的の対比で用いることは一般的ではない。.

新しい!!: 面積分と古典論 · 続きを見る »

向き

数学における実ベクトル空間の向き(むき、orientation) または向き付けとは、基底の順序付き組に対し「正」の向きまたは「負」の向きを指定する規約のことである。3次元ユークリッド空間における2種類の向きはそれぞれ右手系や左手系(あるいは右キラル・左キラル)と呼ばれる。しばしば右手系が正の向きにとられるものの、右手系を負の向きとするような向き付けももちろんありうる。 実ベクトル空間における向きの概念を基礎として、実多様体などの様々な幾何学的対象にも向きを考えることができる。.

新しい!!: 面積分と向き · 続きを見る »

向き付け可能性

数学では、向き付け可能性(orientability)とは、ユークリッド空間内の曲面の性質であり、曲面のすべての点で法線の方向を整合性を持って選択できるか否かという性質である。曲面の法線の方向の選択は、例えばストークスの定理に必要であるように、右手の法則を使い曲面内のループの「時計回り」方向を決めことができる。より一般に、抽象的な曲面や多様体の向き付け可能性とは、多様体内のすべてのループの「時計回り」方向を整合性を持って選択可能か否かという性質である。同じことであるが、曲面が向き付け可能であるとは、空間内の のような二次元の図形が、空間の中を(連続的に)動き回って、スタート地点へ戻ってきても、決して自分自身の鏡像 にはならない場合を言う。 向き付け可能性の考え方は、同じように高次元の多様体へ一般化できる。向きの選択が整合性を持つ多様体を向き付け可能といい、連結で向き付け可能な多様体は、ちょうど 2つの異なる向き付けが可能である。この設定で、必要な応用や一般性の度合いに依存した様々な向き付け可能性の同値な定式化が可能である。一般の位相多様体への応用する定式化は、ホモロジー論の方法を活用することが多いのに対し、微分可能多様体(differentiable manifold)に対してはより詳細な構造があり、微分形式の言葉で定式化できる。空間の向き付け可能性の考え方の重要な一般化は、ある他の空間(ファイバーバンドル)にパラメトライズされた空間の族の向き付け可能性である。その際には、向きは、パラメータの値の変化につれて、各々の空間が連続的に変化するよう選択せねばならない。.

新しい!!: 面積分と向き付け可能性 · 続きを見る »

多重積分

数学の微分積分学周辺分野における重積分(じゅうせきぶん、multiple integral; 多重積分)は、一変数の実函数に対する定積分を多変数函数に対して拡張したものである。n-変数函数の重積分は n-重積分とも呼ばれ、二変数および三変数函数に対する重積分は、それぞれ特に二重積分 (double integral) および三重積分 (triple integral) と呼ばれる。.

新しい!!: 面積分と多重積分 · 続きを見る »

媒介変数

数学において媒介変数(ばいかいへんすう、パラメータ、パラメタ、parameter)とは、主たる変数(自変数)あるいは関数に対して補助的に用いられる変数のことである。なおこの意味でのパラメータは助変数(じょへんすう)とも呼び、また古くは径数(けいすう)とも訳された(後者はリー群の一径数部分群(1-パラメータ部分群)などに残る)。母数と呼ぶこともある。 媒介変数の役割にはいくつかあるがその主なものとして、主たる変数たちの間に陰に存在する関係を記述すること、あるいはいくつもの対象をひとまとまりのものとして扱うことなどがある。前者では関数の媒介変数表示とか陰関数などとよばれるもの、後者では集合族とか数列などが一つの例である。後者の意味を持つ媒介変数はしばしば文字の肩や斜め下に本文より少し小さな文字 (script style) で書かれ、添字 (index) と呼ばれる。.

新しい!!: 面積分と媒介変数 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: 面積分と密度 · 続きを見る »

平行

初等幾何学、特にユークリッド幾何学における平行性(へいこうせい、parallelism)は、ユークリッド平面上の直線が互いに交わらないという関係性を抽象化するものである。三次元空間において、直線と平面や平面同士についても共有点がないことを以って平行性を考えることができる。ただし、三次元空間内の直線同士の場合には、それらが互いに平行となるためにはそれらが同一平面上にあることを要請しなければならない(交わらない二直線は、それらが同一平面上にないならばねじれの位置にあるという)。 平行線はユークリッド原論における平行線公準の主対象である。 平行性は第一義にはの性質の一つであり、ユークリッド幾何学はその種の幾何学の特別な実例である。その他の幾何学においては、例えば双曲幾何学などでは、同様の(しかしまったく同じではない)特定の性質を満たすことを「平行」と言い表す。 以下、特に言及のない限り、主にユークリッド幾何学における平行性について述べる。.

新しい!!: 面積分と平行 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 面積分と微分幾何学 · 続きを見る »

微分形式

数学における微分形式(びぶんけいしき、differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。.

新しい!!: 面積分と微分形式 · 続きを見る »

地理座標系

緯線(水平)と経線(垂直)を表示した地球の地図https://www.cia.gov/library/publications/the-world-factbook/graphics/ref_maps/pdf/political_world.pdf large version (pdf, 3.12MB) 地理座標系(ちりざひょうけい、Geographic coordinate system)とは、地球および天体上の地点を表すための座標系である。 地理座標は、通常は地球を回転楕円体(地球楕円体)と見なし、その表面上における水平位置を表す経緯度と垂直位置を表す高度との組み合わせで表現される。 v1.7 Oct 2007 D00659 accessed 14.4.2008。-->.

新しい!!: 面積分と地理座標系 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 面積分とノルム · 続きを見る »

メビウスの帯

メビウスの帯 メビウスの帯(メビウスのおび、Möbius strip, Möbius band)、またはメビウスの輪(メビウスのわ、Möbius loop)は、帯状の長方形の片方の端を180°ひねり、他方の端に貼り合わせた形状の図形(曲面)である。メービウスの帯ともいう。 数学的には向き付け不可能性という特徴を持ち、その形状が化学や工学などに応用されているほか、芸術や文学において題材として取り上げられることもある。.

新しい!!: 面積分とメビウスの帯 · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: 面積分とドット積 · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: 面積分とベクトル場 · 続きを見る »

ベクトル解析

ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル解析を特によく用いられるが、ベクトル解析は一般のn次元多様体上で展開できる。.

新しい!!: 面積分とベクトル解析 · 続きを見る »

クロス積

ベクトル積()とは、ベクトル解析において、3次元の向き付けられた内積空間において定義される、2つのベクトルから新たなベクトルを与える二項演算である。2つのベクトル a、b のベクトル積は a×b や で表される。演算の記号からクロス積()と呼ばれることもある。2つのベクトルからスカラーを与える二項演算である内積に対して外積(がいせき)とも呼ばれるが、英語では直積を意味するので注意を要する。ベクトル積を拡張した外積代数があり、ベクトル積はその3次元における特殊な場合である。.

新しい!!: 面積分とクロス積 · 続きを見る »

ストークスの定理

トークスの定理(ストークスのていり、Stokes' theorem)は、ベクトル解析の定理のひとつである。3次元ベクトル場の回転を閉曲線を境界とする曲面上で面積分したものが、元のベクトル場を曲面の境界である閉曲線上で線積分したものと一致することを述べるGeorge B. Arfken and Hans J. Weber (2005), chapter.1。定理の名はイギリスの物理学者ジョージ・ガブリエル・ストークスに因むVictor J. Katz (1979)Victor J. Katz (2008), chapter.16。ベクトル解析におけるグリーン・ガウス・ストークスの定理を、より一般的な向きづけられた多様体上に拡張したものも、同様にストークスの定理と呼ばれる。微分積分学の基本定理の、多様体への拡張であるともいえる。.

新しい!!: 面積分とストークスの定理 · 続きを見る »

スカラー場

ラー場(スカラーば、scalar field)とは、数学および物理学において、空間の各点に数学的な数やなんらかの物理量のスカラー値を対応させた場である。スカラー場には「空間(あるいは時空)の同一点におけるスカラー場の値が、観測者が同じ単位を用いる限りにおいて必ず一致する」という意味で座標に依存しない (coordinate-independent) ことが要求される。物理学で用いられるスカラー場の例としては、空間全体にわたる温度分布や、液体の圧力分布、ヒッグス場のようなスピンを持たない量子場などが挙げられる。これらの場はスカラー場の理論における主題である。.

新しい!!: 面積分とスカラー場 · 続きを見る »

円柱 (数学)

数学において円柱(えんちゅう、cylinder)とは二次曲面(三次元空間内の曲面)の一種で、デカルト座標によって次の方程式で定義されるものである: この方程式は楕円柱を表し、a.

新しい!!: 面積分と円柱 (数学) · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 面積分と球面 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 面積分と積分法 · 続きを見る »

線積分

数学における線積分(せんせきぶん、line integral; 稀に, )は、曲線に沿って評価された函数の値についての積分の総称。ベクトル解析や複素解析において重要な役割を演じる。閉曲線に沿う線積分を特に閉路積分(へいろせきぶん)あるいは周回積分(しゅうかいせきぶん)と呼び、専用の積分記号 \oint が使われることもある。周回積分法は複素解析における重要な手法の一つである。 線積分の対象となる函数は、スカラー場やベクトル場などとして与える。線積分の値は場の考えている曲線上での値に曲線上のあるスカラー函数(弧長、あるいはベクトル場については曲線上の微分ベクトルとの点乗積)による重み付けをしたものを「足し合わせた」ものとなる。この重み付けが、区間上で定義する積分と線積分とを分ける点である。 物理学における多くの単純な公式が、線積分で書くことによって自然に、連続的に変化させた場合についても一般化することができるようになる。例えば、力学的な仕事を表す式 から曲線 に沿っての仕事を表す式 を得る。例えば電場や重力場において運動する物体の成す仕事が計算できる。.

新しい!!: 面積分と線積分 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 面積分と物理学 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

新しい!!: 面積分と直交座標系 · 続きを見る »

発散定理

散定理(はっさんていり、divergence theorem)は、ベクトル場の発散を、その場によって定義される流れの面積分に結び付けるものである。ガウスの定理(Gauss' theorem)とも呼ばれる。1762年にラグランジュによって発見され、その後ガウス(1813年)、グリーン(1825年)、オストログラツキー(1831年)によってそれぞれ独立に再発見された 。オストログラツキーはまたこの定理に最初の証明を与えた人物でもある。.

新しい!!: 面積分と発散定理 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 面積分と質量 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: 面積分と電磁気学 · 続きを見る »

法線ベクトル

法線ベクトル(ほうせんベクトル、normal vector)は、2次元ではある線に垂直なベクトル、3次元ではある面に垂直なベクトル。法線(ほうせん、normal)はある接線に垂直な線のことである。.

新しい!!: 面積分と法線ベクトル · 続きを見る »

流束

流束(りゅうそく、flux)とは、流れの場、あるいはベクトル場の強さを表す量である。 英語のままフラックスとも呼ばれる。 様々なベクトル場に対応した流束が用いられる。流束は流体の理論からの類推であるが、何らかの実体が流れているとは限らない。 なお、面積あたりの流束である流束密度()を指して単に流束と呼ばれることも多い。.

新しい!!: 面積分と流束 · 続きを見る »

曲面

数学、特に位相幾何学における曲面(きょくめん、surface)は二次元位相多様体である。最もよく知られた曲面の例は、古典的な三次元ユークリッド空間 R3 内の立体の境界として得られる曲面である。例えば、球体の境界としての球面はそのようなものの例になっている。他方でクラインの壷などの、特異点や自己交叉を持つことなしに三次元ユークリッド空間に埋め込み不可能な曲面というものも存在する。 曲面が「二次元」であるというのは、それが二次元の座標系を入れた「座標付きのきれはし」の貼り合せになっているということを指し示している。例えば、「地球の表面」は(理想的には)二次元球面であり、経線と緯線はその球面上の二次元座標系を与えている(ただし、両極を180度子午線で結んだ部分を除く)。.

新しい!!: 面積分と曲面 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »