ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

非可算集合

索引 非可算集合

数学において、非可算集合(ひかさんしゅうごう)、あるいは非可算無限集合とは可算集合でない無限集合のことである。集合の非可算性は基数、濃度という概念と密接に関係している。集合は、その濃度が自然数全体の集合の濃度より大きいときに、非可算である。.

27 関係: 単射可算集合実数ハウスドルフ次元ポール・ハルモスヒルベルトの23の問題デデキント無限フラクタルダフィット・ヒルベルトベート数アレフ数カントールの対角線論法カントール集合ゲオルク・カントール全射公理的集合論選択公理順序数関数自然数連続体仮説連続体濃度ZFC濃度 (数学)最小の非可算順序数数学

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 非可算集合と単射 · 続きを見る »

可算集合

可算集合(かさんしゅうごう、countable set 又は denumerable set)もしくは可付番集合とは、おおまかには、自然数全体と同じ程度多くの元を持つ集合のことである。各々の元に 1, 2, 3, … と番号を付けることのできる、すなわち元を全て数え上げることのできる無限集合と表現してもよい。 有限集合も、数え上げることができる集合という意味で、可算集合の一種とみなすことがある。そのため、はっきりと区別を付ける必要がある場合には、冒頭の意味での集合を可算無限集合と呼び、可算無限集合と有限集合を合わせて高々可算の集合と呼ぶ。可算でない無限集合を非可算集合という。非可算集合は可算集合よりも「多く」の元を持ち、全ての元に番号を付けることができない。そのような集合の存在は、カントールによって初めて示された。.

新しい!!: 非可算集合と可算集合 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 非可算集合と実数 · 続きを見る »

ハウスドルフ次元

点のハウスドルフ次元は0であり、直線のハウスドルフ次元は1、正方形のハウスドルフ次元は2、そして立方体のハウスドルフ次元は3である。コッホ曲線のようなフラクタル図形のハウスドルフ次元は、非整数になりうる。 フラクタル幾何学におけるハウスドルフ次元(ハウスドルフじげん、Hausdroff dimension)は、1918年に数学者フェリックス・ハウスドルフが導入した、が有限な値をとり消えていないという条件に適合する次元の概念の非整数値をとる一般化である。すなわち、きちんとした数学的定式化のもと、点のハウスドルフ次元は 、線分のハウスドルフ次元は 、正方形のハウスドルフ次元は 、立方体のハウスドルフ次元は である。つまり、旧来の幾何学で扱われるような、滑らかあるいは有限個の頂点を持つ点集合として定義される図形のハウスドルフ次元は、その位相的な次元に一致する整数である。しかし同じ定式化のもとで、フラクタルを含めたやや単純さの少ない図形に対してもハウスドルフ次元を計算することが許されるが、その次元は非整数値を取りうる。大幅な技術的進展がによりもたらされて高度に不規則な集合に対する次元の計算が可能となったことから、この次元の概念はハウスドルフ–ベシコヴィッチ次元としても広く知られている。 初等幾何学で用いられる通常のジョルダン測度(あるいはルベーグ測度)に関して、例えば正方形が二次元であるということは、その三次元より高次のジョルダン測度(つまり、体積および高次元体積)が であり、二次元ジョルダン測度(面積)が正の値を持つ(さらに一次元および零次元のジョルダン測度は形式的に となる)ということを本質的に表している。-次元実内積空間 の -次元ジョルダン測度は、部分集合 に対して、 の球体による充填近似が定める内測度と、球体被覆による近似の定める外測度の一致するとき、その一致する値として定義されるのであった(あるいはルベーグ測度は外測度のみを利用して構成される)が、(定数因子の違いを除けば)-次元ジョルダン測度は一次元ジョルダン測度(長さ)の 個の直積と本質的に同じであり、-次元球(あるいは立方体)の -次元体積は本質的に半径の -乗である。ハウスドルフ次元は、これらの事実を抽象化して、台となる空間を一般の距離空間とし、部分集合の一次元ハウスドルフ測度を距離球体被覆による近似の下限として定まる外測度、また非整数値の に対する -次元距離球体のハウスドルフ測度を一次元測度の -乗(の適当な定数倍)となるように定める。ジョルダン測度の場合と同じく、部分集合 の -次元ハウスドルフ測度は次元 が大きければほとんどすべてに対して零であり、零でなくなるようなギリギリ小さい値として のハウスドルフ次元を定めるのである。 ハウスドルフ次元は、ボックスカウンティング次元()のより単純だがふつうは同値な後継である。.

新しい!!: 非可算集合とハウスドルフ次元 · 続きを見る »

ポール・ハルモス

ポール・リチャード・ハルモス (Paul Richard Halmos, Halmos Pál, 1916年3月3日 – 2006年10月2日) はユダヤ系ハンガリー人として生れたアメリカの数学者である。数理論理学、確率論、統計学、作用素論、エルゴード理論、関数解析学(特にヒルベルト空間論)に基礎的な貢献をした。 また数学を見事に伝えることのできる数学者(great mathematical expositor)として広く認められている。.

新しい!!: 非可算集合とポール・ハルモス · 続きを見る »

ヒルベルトの23の問題

ヒルベルトの23の問題(ヒルベルトの23のもんだい、)は、ドイツ人の数学者であるダフィット・ヒルベルトによりまとめられた、当時未解決だった23の数学問題である。ヒルベルト問題 とも呼ばれる。 1900年8月8日に、パリで開催されていた第2回国際数学者会議 (ICM) のヒルベルトの公演で、23題の内10題(問題1, 2, 6, 7, 8, 13, 16, 19, 21, 22)が公表され、残りは後に出版されたヒルベルトの著作で発表された。.

新しい!!: 非可算集合とヒルベルトの23の問題 · 続きを見る »

デデキント無限

数学において、集合A がデデキント無限(Dedekind-infinite、ドイツ人数学者リヒャルト・デデキントにちなんでつけられた)である、またはデデキント無限集合であるとは、A と同数(equinumerous)であるようなA の真部分集合B が存在することである。それはつまり、A とA の真部分集合B の間に全単射が存在するということである。集合 Aがデデキント有限であるとは、デデキント無限でないということである。 デデキント無限は、自然数を用いないような最初の無限の定義である。選択公理を除いたツェルメロ・フレンケルの公理系は、任意のデデキント有限集合は有限個の元を持つという意味での有限である、ということを証明するだけの強さを持たない。選択公理を用いないその他の有限集合や無限集合の定義が存在する。.

新しい!!: 非可算集合とデデキント無限 · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: 非可算集合とフラクタル · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: 非可算集合とダフィット・ヒルベルト · 続きを見る »

ベート数

数学において、無限基数はヘブライ文字 \aleph()の右下に順序数の添え字をつけて表される(アレフ数参照)。2番目のヘブライ文字 \beth()は関連した方法で使われるが、\aleph によって表されるすべての数を表しているとは限らない。.

新しい!!: 非可算集合とベート数 · 続きを見る »

列(れつ).

新しい!!: 非可算集合と列 · 続きを見る »

アレフ数

数学を基礎付ける集合論において、アレフ数(アレフすう、aleph number)は無限集合の濃度(あるいは大きさ)を表現するために使われる数の列である。それらはそれらを表記するのに使われる文字、ヘブライ文字のアレフ にちなんで名づけられている。 自然数全体の集合の濃度はアレフ・ノート (; アレフ・ヌル (aleph-null) あるいはアレフ・ゼロ (aleph-zero) とも)であり、次に大きい濃度がアレフ・ワン, 次はアレフ・ツー と以下同様に続く。このように続けて、すべての順序数 に対して以下に述べられるように一般のアレフ数となる濃度 を定義することができる。 概念はゲオルク・カントールまでさかのぼる。彼は濃度の概念を定義し無限集合には異なる濃度があることに気付いた。 アレフ数は代数学や微積分でよく見る無限大 (∞) とは異なる。アレフ数は集合の大きさを測るものだが、一方無限大は一般に(関数や数列が「無限大に発散する」とか「限りなく増大する」という形で現れる)実数直線上の非有限極限、あるいは拡張実数直線の極点として定義される。.

新しい!!: 非可算集合とアレフ数 · 続きを見る »

カントールの対角線論法

ントールの対角線論法(カントールのたいかくせんろんぽう)は、数学における証明テクニック(背理法)の一つ。1891年にゲオルク・カントールによって非可算濃度を持つ集合の存在を示した論文の中で用いられたのが最初だとされている。 その後対角線論法は、数学基礎論や計算機科学において写像やアルゴリズム等が存在しない事を示す為の代表的な手法の一つとなり、例えばゲーデルの不完全性定理、停止性問題の決定不能性、時間階層定理といった重要な定理の証明で使われている。.

新しい!!: 非可算集合とカントールの対角線論法 · 続きを見る »

カントール集合

ントール集合(カントールしゅうごう、Cantor set)は、フラクタルの1種で、閉区間 に属する実数のうち、その三進展開のどの桁にも 1 が含まれないような表示ができるもの全体からなる集合である。1874年にイギリスの数学者により発見され、1883年にゲオルク・カントールによって紹介された。 カントールの三進集合とも呼ばれ、カントル集合、カントルの三進集合とも表記される。フラクタル概念の生みの親であるブノワ・マンデルブロは、位相次元が 0 の図形をダスト(塵)と呼び、カントール集合のことはカントール・ダストやカントールのフラクタルダストと呼んでいた。.

新しい!!: 非可算集合とカントール集合 · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: 非可算集合とゲオルク・カントール · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: 非可算集合と全射 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: 非可算集合と公理的集合論 · 続きを見る »

選択公理

選択公理(せんたくこうり、、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた。.

新しい!!: 非可算集合と選択公理 · 続きを見る »

順序数

数学でいう順序数(じゅんじょすう、ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。.

新しい!!: 非可算集合と順序数 · 続きを見る »

関数

関数(かんすう)、函数.

新しい!!: 非可算集合と関数 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 非可算集合と自然数 · 続きを見る »

連続体仮説

連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。.

新しい!!: 非可算集合と連続体仮説 · 続きを見る »

連続体濃度

集合論における連続体濃度(れんぞくたいのうど、cardinality of the continuum)とは、実数全体の成す集合 R の濃度(あるいは基数、集合の「大きさ」の尺度)のことである。連続体濃度を持った集合を連続体 (continuum) と呼ぶこともある。これは無限濃度のひとつであり、|R|, 2ℵ0(ℵはヘブライ文字のアレフ), または \mathfrak c(ドイツ文字小文字の c)などの記号で表される。.

新しい!!: 非可算集合と連続体濃度 · 続きを見る »

ZFC

ZFC.

新しい!!: 非可算集合とZFC · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 非可算集合と濃度 (数学) · 続きを見る »

最小の非可算順序数

最小の非可算順序数()ω1の存在は、選択公理によらずに示すことができる(ハルトークス数を参照)。ω1は極限順序数で、すべての可算な順序数を含む非可算集合である。ときに Ω とも表記される。その濃度は最小の非可算基数 ℵ1 に等しい。.

新しい!!: 非可算集合と最小の非可算順序数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 非可算集合と数学 · 続きを見る »

ここにリダイレクトされます:

不可算不可算集合非可算非可算無限集合

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »