ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

電磁石

索引 電磁石

レノイドにより発生した磁界(断面図) 電磁石(でんじしゃく、electromagnet)は通常、磁性材料の芯のまわりに、コイルを巻き、通電することによって一時的に磁力を発生させる磁石である。機械要素として用いられる。電流を止めると磁力は失われる。 1825年にイギリス人の電気技術者である ウィリアム・スタージャンによって発明された。 最初の電磁石は蹄鉄形をしている鉄に数回ほど緩く巻いたコイルであった。 コイルに電流を流すと電磁石は磁化し、電流を止めるとコイルは反磁化した。 永久磁石と比較したときのメリットとして、通電を止めることでほぼ磁力を0にすることができること、同じサイズの永久磁石より強い磁力を発生することができること、電流の向きを変えることによって磁石の極を入れ替えられることなどが挙げられる。欠点は、通常、電気抵抗があるため電流を流し続けるには電力を供給し続けなければならないことである。この欠点は超伝導を使えば解決できるが、かなりの低温が必要なので日常で使うのは難しい。 おおざっぱにいえば、電磁石の発生する力は、コイルの巻き数とコイルに流す電流の大きさに比例する。ただしコイルの巻き数を増やすと電線が長くなるが、直流で駆動する場合、電気抵抗も同じように増加するため、電圧が同じであれば電流が減るという関係になっている。鉄芯についていえば、鉄芯の材質の透磁率、および断面積が大きいほど強い磁力を発生することができる。このため永久磁石に比べて安価である。.

31 関係: ムービング・コイルリニアモーターカービオ・サバールの法則アンペールの法則ウィリアム・スタージャンコイルコイルガンソレノイド磁力磁場閉じ込め方式磁化磁石磁気浮上式鉄道継電器界磁直流発電機ECVT超伝導超伝導電磁石電動機電磁開閉器電機子電気抵抗電流透磁率SUBARU核磁気共鳴画像法核融合炉永久磁石渦電流ブレーキ

ムービング・コイル

ムービング・コイル()とは、コイルを用いた機能部品の設計様式のひとつで、コイル側が可動のもののこと。指示電気計器、スピーカー、レコードプレイヤーのピックアップカートリッジ、マイクロホン、モーターなどで用いられる。 コイルを用いた機能部品の中には、「コイルと永久磁石」という組み合わせとなっているものがある。この場合、配線をしなければならないコイルを固定し、配線が不要な永久磁石を浮かせて振動子とするという設計とすることが多い。しかし、コイルの側のほうが軽くできる場合には、コイルを振動子とし永久磁石を固定子とすると、逆の場合と比べて振動子の質量を小さくすることができ、ばね下質量を減らす効果がある。 レコードプレイヤーのピックアップカートリッジでは、ムービング・コイル型は、高音域の再生での反応が良いとされ、ムービング・マグネット(MM)型に比べ、ムービング・コイル(MC)型は「高価ではあるが高性能」とされていた。なお、コイルがインダクタンス成分であることを嫌った圧電素子等を使用したピックアップもある。 また、永久磁石の周りを導線のみでできた電機子で覆い、整流子で順次切り替えた電流を流して回転力を生むモータはコアレスモータと呼ばれるが、この様式のモーターのことをムービングコイル型モータとも言う場合がある。回転子に鉄芯がないため、慣性質量が小さく、急速な加減速にも適しており、サーボモータ等の精密な制御を要する用途に供される。 Category:磁気 en:Moving coil.

新しい!!: 電磁石とムービング・コイル · 続きを見る »

リニアモーターカー

リニアモーターカー (和製英語:linear motor car、略語:リニア) とは、リニアモーターにより駆動する鉄道車両のこと。超電導リニアの最初の開発者であった京谷好泰が名付けた和製英語である。.

新しい!!: 電磁石とリニアモーターカー · 続きを見る »

ビオ・サバールの法則

ビオ・サバールの法則(ビオ・サバールのほうそく、Biot–Savart law)とは電流の存在によってその周りに生じる磁場を計算する為の電磁気学における法則である。この法則は静電場に対するクーロンの法則に対応する。 この法則によって磁場は距離、方向、およびその電流の大きさなどに依存することが論じられる。この法則は静的な近似の元ではアンペールの法則および磁場に対するガウスの法則と同等のものである。 1820年にフランスの物理学者ジャン=バティスト・ビオとフェリックス・サヴァールによって発見された。.

新しい!!: 電磁石とビオ・サバールの法則 · 続きを見る »

アンペールの法則

アンペールの法則(アンペールのほうそく; Ampère's circuital law)は電流とそのまわりにできる磁場との関係をあらわす法則である。1820年にフランスの物理学者アンドレ=マリ・アンペール(André-Marie Ampère)が発見した。.

新しい!!: 電磁石とアンペールの法則 · 続きを見る »

ウィリアム・スタージャン

ウィリアム・スタージャン(William Sturgeon、1783年5月22日 - 1850年12月4日)は、イギリスの物理学者で、最初の電磁石とイギリス初の実用的電動機を作った発明家である。.

新しい!!: 電磁石とウィリアム・スタージャン · 続きを見る »

コイル

レノイド コイル(coil)とは、針金などひも状のものを、螺旋状や渦巻状に巻いたもののことで、以下のようなものにその性質が利用され、それらを指して呼ばれることもある。明治末から昭和前期には線輪(せんりん)とも言われた。.

新しい!!: 電磁石とコイル · 続きを見る »

コイルガン

イルガン(Coilgun)は電磁石のコイルを使って弾丸となる物体を加速・発射する装置である。.

新しい!!: 電磁石とコイルガン · 続きを見る »

ソレノイド

レノイド ソレノイドにより発生した磁界(断面図) ソレノイド(フランス語の solénoïde または、ギリシャ語 solen 「管、導管」とギリシャ語 eidos 「形、形状」との合成語)は、3次元のコイルで、螺旋状、特に密巻きにした形状(層を重ねることもある)のもののことである(2次元の、平面上の渦巻状(スパイラル)のものはコイルだがソレノイドではない)。特に、ふつう絶縁電線でできていて、電流を流して磁場を発生する目的のものやそれを利用した装置を指すことが多い。コイルの場合,ソレノイドコイルは,空芯単巻コイルと意味によって表すときもある。コイルと同じく、電線自体を指して巻線と言う。 物理学では、ふつう磁場を発生する目的のものを指す。しばしば金属のコアの周りに巻く。制御可能な磁場の発生や、電磁石に利用する。特に、(実験を行うような)広い空間に一様な磁場を発生するように設計したものを指す。 ソレノイドと電磁石との相違は、前者が可動する鉄芯を持つのに対し、後者の鉄芯は固定され可動部がない点である。.

新しい!!: 電磁石とソレノイド · 続きを見る »

磁力

磁力(じりょく)とは、磁石や電流が発生させる磁場により、磁石や電流が流れている導体どうし、あるいはそれらと強磁性体の間に発生する力である。同種の磁極の間には退け合う力が、異種の磁極では引き合う力が働く。この力のことを磁力、または磁気力(じきりょく)という。.

新しい!!: 電磁石と磁力 · 続きを見る »

磁場閉じ込め方式

磁場閉じ込め方式とは、核融合においてプラズマを閉じ込めるために用いられる方法のひとつである。慣性閉じ込め方式に比べ要求されるプラズマ密度が低いという利点がある。.

新しい!!: 電磁石と磁場閉じ込め方式 · 続きを見る »

磁化

磁化(じか、magnetization)とは、磁性体に外部磁場をかけたときに、その磁性体が磁気的に分極して磁石となる現象のこと。また、磁性体の磁化の程度を表す物理量も磁化と呼ぶ。磁気分極(magnetic polarization)とも呼ばれる。 強磁性体は磁場をかけて磁化させた後に磁場を取り除いた後も分極が残り永久磁石となる残留磁化と呼ばれる現象があるが、これも磁化と呼ぶ場合がある。.

新しい!!: 電磁石と磁化 · 続きを見る »

磁石

磁石(じしゃく、、マグネット)は、二つの極(磁極)を持ち、双極性の磁場を発生させる源となる物体のこと。鉄などの強磁性体を引き寄せる性質を持つ。磁石同士を近づけると、異なる極は引き合い、同じ極は反発しあう。.

新しい!!: 電磁石と磁石 · 続きを見る »

磁気浮上式鉄道

超電導リニア L0系。2015年4月に山梨実験線にて世界最高速度603km/hを記録。 トランスラピッド(上海トランスラピッド) リニモ) 磁気浮上式鉄道(じきふじょうしきてつどう、Maglev)とは、磁力による反発力または吸引力を利用して車体を軌道から浮上させて推進する鉄道のこと。英語では"Maglev"(マグレブ) と呼称し、「磁気浮上」を表す"Magnetic levitation"が語源である。磁気浮上式鉄道はその近未来性からリニアモーターカーの代表格でもある。1971年、西ドイツで Prinzipfahrzeug が初めての有人走行に成功した。 世界で開発されている主な磁気浮上式鉄道には、常伝導電磁石を用いる方式(トランスラピッド、HSSTなど)、と超伝導電磁石を用いる方式(超電導リニアなど)があり、有人試験走行での世界最高速度は2015年4月21日に日本の超電導リニアL0系が記録した603km/hである。 現在、上海トランスラピッドとHSSTの愛知高速交通東部丘陵線(愛称:リニモ)および韓国の仁川空港磁気浮上鉄道、中国の長沙リニア快線が実用路線の営業運転を行っている。なお、超電導リニアによる中央新幹線は、東京 - 名古屋間で2027年の先行開業、さらに東京 - 大阪間で2045年の全線開業を目指して計画が進められている。.

新しい!!: 電磁石と磁気浮上式鉄道 · 続きを見る »

継電器

継電器(けいでんき、英: relay リレー)は、動作スイッチ・物理量・電力機器等の状態に応じ、制御または電源用の電力の出力をする電力機器である。 もとは有線電信において、伝送路の電気抵抗によって弱くなった信号を「中継」(relay リレー)するために発明されたものである。図などではRyという記号が使われることが多い。発明者はジョセフ・ヘンリーである。小電力の入力によって大電力のオン・オフを制御することが当初の目的であったため、継電器を用いることを時として「アンプする」というが、対象とするものを直に制御するよりは、安全性(感電の防止など)や操作性(設置位置の自由度、遠隔操作)、操作の確実性等が増すことから、必ずしも電力的な増幅の目的にとどまらず、広範囲な目的で多用されている。.

新しい!!: 電磁石と継電器 · 続きを見る »

界磁

磁(かいじ、field system)は、整流子機や同期機を電動機または発電機として使用するときに磁界を発生させる固定子または回転子である。 永久磁石や電磁石が使用される。.

新しい!!: 電磁石と界磁 · 続きを見る »

直流

流の波形 直流(ちょくりゅう、Direct Current, DC)は、時間によって大きさが変化しても流れる方向(正負)が変化しない「直流電流」の事である。同様に、時間によって方向が変化しない電圧を直流電圧という。狭義には、方向だけでなく大きさも変化しない電流、電圧のことを指し、流れる方向が一定で、電流・電圧の大きさが変化するもの(右図の下2つ)は脈流(pulsating current)という。直流と異なり、周期的に方向が変化する電流を交流という。.

新しい!!: 電磁石と直流 · 続きを見る »

発電機

電機(はつでんき、electrical generator)は、電磁誘導の法則を利用して、機械的エネルギー(仕事)から電気エネルギー(電力)を得る機械(電力機器)である。 自動車やオートバイなどのエンジンに付いている発電機、自転車の前照灯に直結されている発電機はオルタネーター、ダイナモとも呼ばれ、電気関係の一部ではジェネレータと呼ばれることがある。 構造が電動機と近い(原理は同一で、電動機から逆に電気を取り出す事が出来る。より具体的には、模型用モーターの電極に豆電球を繋ぎ、軸を高速で回転させると豆電球が発光する。実用的にはそれぞれに特化した異なる構造をしている)ことから、電動機で走行する鉄道車両やハイブリッドカーにおいては電動機を発電機として利用してブレーキ力を得ること(発電ブレーキ)や、さらに発生した電力を架線やバッテリーに戻すこと(回生ブレーキ)も可能である。 発電機の動力源が電動機のものについては電動発電機を参照。.

新しい!!: 電磁石と発電機 · 続きを見る »

ECVT

# Electro Continuously Variable Transmission。富士重工業とオランダのVDT社との共同開発による無段変速機システム。本項で説明する。.

新しい!!: 電磁石とECVT · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: 電磁石と超伝導 · 続きを見る »

超伝導電磁石

宮崎実験線で使用されていたMLU 001の超伝導電磁石,超伝導現象を作り出す為に上部に液体ヘリウムタンクが設置されている 超伝導電磁石(ちょうでんどうでんじしゃく、superconducting magnet、SC magnet)とは、超伝導体を用いた電磁石のことである。超伝導体は電気抵抗がなく発熱の問題もないので、通常の電磁石よりも強力な磁力を発生させることができる。核磁気共鳴分光法(NMR)、核磁気共鳴画像法 (MRI) ですでに実用化されており、もっとも超伝導現象を一般的に用いているものである。今後は磁気浮上式鉄道での実用が期待されている。超伝導磁石と書かれることもあり、工学分野では超電導電磁石(超電導磁石)とも書かれる。.

新しい!!: 電磁石と超伝導電磁石 · 続きを見る »

電動機

様々な電動機。006P型電池との比較。 電動機(でんどうき、Electric motor)とは、電気エネルギーを力学的エネルギーに変換する電力機器、原動機の総称。モーター、電気モーターとも呼ばれる「モーター」というカタカナ表記に関して、電気学会に於いては「モータ」という表記方を定めている他、電動機メーカーによっては「モーター」のドイツ語表記“Motor”の20世紀前半までドイツ語発音の模範とされた「舞台発音」に基づいた発音方に倣って「モートル」(或いは「モトール」)という表記方を用いているところが見られる《日本電産Webサイト内『』ページ後半に掲載されているコラム『モーターの語源』より;なお「モートル」という表記は、現在、少なくとも日立系列の日立産機システムと東芝系列の東芝産業機器システムに於いて、主にブランド名の中で用いられている》。 一般に、磁場(磁界)と電流の相互作用(ローレンツ力)による力を利用して回転運動を出力するものが多いが、直線運動を得るリニアモーターや磁場を用いず超音波振動を利用する超音波モータなども実用化されている。静電気力を利用した静電モーターも古くから知られている。 なお、本来、「モータ(ー)」("motor")という言葉は「動力」を意味し、特に電動機に限定した用語ではない。それゆえ、何らかの動力の役割を果たす装置は、モーターと形容されることもよくある(ロケットモーターなど)。 以下では、電磁力により回転力を生み出す一般的な電動機を中心に説明し、それ以外のリニアモーターや超音波モータは末尾で簡単に説明する。.

新しい!!: 電磁石と電動機 · 続きを見る »

電磁開閉器

電磁開閉器(上部が電磁接触器、下部がサーマルリレー) 電磁開閉器(でんじかいへいき、Electromagnetic Switch、日本国内での略称はMS)は、電磁石の動作によって電路を開閉する電磁接触器(Electromagnetic Contactor、日本国内での略称はMC)と、過負荷により回路を遮断するサーマルリレー(Thermal Relay)等を組み合わせた開閉器(スイッチ)である。マグネット・スイッチなどとも呼ばれる。 用途としては、電動機の自動運転用、遠隔操作用開閉器に使われる。.

新しい!!: 電磁石と電磁開閉器 · 続きを見る »

電機子

電機子(でんきし、)は、整流子機や同期機を発電機や電動機として使用するときに、界磁と相互作用させトルク(回転力)を得るための磁界を発生させる固定子または回転子である。 整流子や外部電源回路による交流電流で励磁した電磁石が使用される。.

新しい!!: 電磁石と電機子 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

新しい!!: 電磁石と電気抵抗 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: 電磁石と電流 · 続きを見る »

透磁率

透磁率(とうじりつ、magnetic permeability)または導磁率(どうじりつ)は、磁場(磁界)の強さ H と磁束密度 B との間の関係を B.

新しい!!: 電磁石と透磁率 · 続きを見る »

SUBARU

株式会社SUBARU(スバル、)は、日本の重工業メーカーである。 かつての商号は、「富士重工業株式会社」(ふじじゅうこうぎょう、略称:富士重(ふじじゅう)・富士重工(ふじじゅうこう)、、略称:FHI)であったが、2017年4月1日に自動車のブランド名として広く浸透していた「SUBARU」(スバル)に商号を変更した。.

新しい!!: 電磁石とSUBARU · 続きを見る »

核磁気共鳴画像法

頭部のMRI(T1)画像 頭の頂部から下へ向けて連続撮影し、動画化したもの 核磁気共鳴画像法(かくじききょうめいがぞうほう、, MRI)とは、核磁気共鳴(, NMR)現象を利用して生体内の内部の情報を画像にする方法である。磁気共鳴映像法とも。.

新しい!!: 電磁石と核磁気共鳴画像法 · 続きを見る »

核融合炉

QUEST(九州大学) QUESTへの電源供給施設 核融合炉(かくゆうごうろ)は、現在開発中の原子炉の一種で、原子核融合反応を利用したもの。21世紀後半における実用化が期待される未来技術の1つである。 重い原子たるウランやプルトニウムの原子核分裂反応を利用する核分裂炉に対して、軽い原子である水素やヘリウムによる核融合反応を利用してエネルギーを発生させる装置が核融合炉である。現在、日本を含む各国が協力して国際熱核融合実験炉ITERのフランスでの建設に向けて関連技術の開発が進められている。ITERのように、核融合技術研究の主流のトカマク型の反応炉が高温を利用したものであるので、特に熱核融合炉とも呼ばれることがある。太陽をはじめとする恒星が輝きを放っているのは、すべて核融合反応により発生する熱エネルギーによるものである。これは核融合炉が「地上の太陽」と呼ばれる由縁である。恒星の場合は自身の巨大な重力によって反応が維持されるが、地球上で核融合反応を発生させるためには、人工的に極めて高温か、あるいは極めて高圧の環境を作り出す必要がある。 核融合反応の過程で高速中性子をはじめ、さまざまな高エネルギー粒子の放射が発生するため、その影響を最小限に留める必要がある。そういった安全に反応を継続する技術、プラズマの安定的なコントロールの技術、超伝導電磁石の技術、遠隔操作保守技術、リチウムや重水素、三重水素を扱う技術、プラズマ加熱技術、これらを支えるコンピュータ・シミュレーション技術などが必要とされ開発が進められている。.

新しい!!: 電磁石と核融合炉 · 続きを見る »

永久磁石

永久磁石(えいきゅうじしゃく、permanent magnet)とは、外部から磁場や電流の供給を受けることなく磁石としての性質を比較的長期にわたって保持し続ける物体のことである。強磁性ないしはフェリ磁性を示す物体であってヒステリシスが大きく常温での減磁が少ないものを磁化して用いる。永久磁石材料に関するJIS規格としてJIS C2502、その試験法に関する規格としてJIS C2501が存在する。 実例としてはアルニコ磁石、フェライト磁石、ネオジム磁石などが永久磁石である。これに対して、電磁石や外部磁場による磁化を受けた時にしか磁石としての性質を持たない軟鉄などは一時磁石と呼ばれる。.

新しい!!: 電磁石と永久磁石 · 続きを見る »

渦電流ブレーキ

渦電流ブレーキ(うずでんりゅうブレーキ)は、電磁石により渦電流を発生させて、その作用によりブレーキ力を得る鉄道のブレーキの一種である。.

新しい!!: 電磁石と渦電流ブレーキ · 続きを見る »

ここにリダイレクトされます:

常伝導磁石

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »