ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

電弧

索引 電弧

電弧の例 電弧放電(でんこほうでん)、または、アーク放電(electric arc )は、電極に電位差が生じることにより、電極間にある気体に持続的に発生する絶縁破壊(放電)の一種。負極・正極間の気体分子が電離しイオン化が起こり、プラズマを生み出しその中を電流が流れる。結果的に、普段は伝導性のない気体中を電流が流れることになる。この途中の空間では気体が励起状態になり高温と閃光を伴う。.

47 関係: 励起状態導体不活性気体平方メートル交流ナトリウムランプロシアプラズマプラズマ切断アンペアアーク炉アーク溶接インピーダンスインダクタンスイオン化エレクトロニックフラッシュエジソン効果グロー放電スナバ回路スパーク回路磁場継電器真空絶縁破壊炭化カルシウム物理学者直流遮断器静電容量開閉器蒸発金属蛍光灯電力ヒューズ電圧電極電気推進電流接触器水銀灯映写放電放電加工放電灯1802年

励起状態

励起状態(れいきじょうたい、excited state)とは、量子力学において系のハミルトニアンの固有状態のうち、基底状態でない状態のこと。.

新しい!!: 電弧と励起状態 · 続きを見る »

導体

導体 (conductor).

新しい!!: 電弧と導体 · 続きを見る »

不活性気体

不活性気体または不活性ガス(inert gas)は、化学合成や化学分析や反応性の高い物質の保存に利用される反応性の低い気体である。不活性気体の利用に際しては、製造コストや精製コストを考慮しつつ、問題となる化学反応や物質に対して不活性なものを選択する。窒素やアルゴンが最も一般的である。 希ガスとは異なり、不活性気体は単一種類の元素のみからなるとは限らず、化合物の気体の場合も多い。希ガスと同様、原子価あるいは最外殻電子が閉殻となっているため不活性となる。これはそういう傾向があるというだけで、厳密な規則ではない。実際、希ガスと同様に不活性気体であっても化学反応を起こして化合物を形成することがある。 船舶関連では、防爆のためにタンク内の空間やタンク周辺に充填する酸素含有率の低いガスを不活性ガスと呼ぶ。この場合の不活性ガスは窒素ベースのものと煙道ガス(排ガス)ベースのものがある。.

新しい!!: 電弧と不活性気体 · 続きを見る »

平方メートル

平方メートル(へいほうメートル、square metre)は、計量法および国際単位系 (SI) における面積の単位である。1平方メートルは、「辺の長さが一メートルの正方形の面積」と定義される。 日本では、メートルを「米」と書くことから、「平方米」を略して平米(へいべい、へーべー)と略したり発音される場合もある。ただし計量法では、「平米」の表記も「へいべい」、「へーべー」の読みも認められていない。 平方メートルの単位記号は、mである。大文字によるMは用いることはできない。 1平方メートルは以下に等しい。.

新しい!!: 電弧と平方メートル · 続きを見る »

交流

三角波、鋸歯状波 交流(こうりゅう、)とは、時間とともに周期的に向きが変化する電流(交流電流)を示す言葉であり、「交番電流」の略。また、同様に時間とともに周期的に大きさとその正負が変化する電圧を交流電圧というが、電流・電圧の区別をせずに交流または交流信号と呼ぶこともある。 交流の代表的な波形は正弦波であり、狭義の交流は正弦波交流()を指すが、広義には周期的に大きさと向きが変化するものであれば正弦波に限らない波形のものも含む。正弦波以外の交流は非正弦波交流()といい、矩形波交流や三角波交流などがある。.

新しい!!: 電弧と交流 · 続きを見る »

ナトリウムランプ

ナトリウムランプ(オランダ語:、英語:)は、ナトリウム蒸気中のアーク放電による発光を利用したランプのことで、ナトリウム灯(ナトリウムとう)とも呼ばれる。1932年、オランダのギレス・ホルスト によって発明された(同じ年に高圧水銀灯もイギリスで発明されている)。 基本構造は水銀灯と同様で、放電を行う発光管とこれを覆う外管からなっていて、外管内部は真空となっている。これは原理上、高温でナトリウム蒸気を加熱する必要から断熱性を高め熱損失を少なくするためで、光の透過効率をあげ、電極や他の金属部の劣化を防ぐ効果も果たしている。電流-電圧特性も同じ負特性(電流が上昇すると管電圧が低下し、過電流で破損する)なので、リアクタンスとなる安定器を必要とする。 初期においては発光成分がナトリウム原子の輝線スペクトル(D線、D1: 589.6 nmとD2: 589.0 nm)のみで極端な単色光だったが、技術的な進展により現在では白熱電球に遜色ない光も得られる様になっている。.

新しい!!: 電弧とナトリウムランプ · 続きを見る »

ロシア

ア連邦(ロシアれんぽう、Российская Федерация)、またはロシア (Россия) は、ユーラシア大陸北部にある共和制及び連邦制国家。.

新しい!!: 電弧とロシア · 続きを見る »

プラズマ

プラズマ(英: plasma)は固体・液体・気体に続く物質の第4の状態R.

新しい!!: 電弧とプラズマ · 続きを見る »

プラズマ切断

プラズマ切断機 プラズマ切断(プラズマせつだん)とは、プラズマ化した酸素や空気を母材に直接吹き付けることにより、瞬時に母材を溶解させ切断する方法である。プラズマジェットと呼ばれることもある。 吹き付けられた場所の温度は数万℃にも達する。その構造上、水中でも充分な威力で使用できる。主に、ガス溶断を適用することができないステンレス鋼・アルミニウム合金の溶断の他、軟鋼の高速切断にも用いられている。.

新しい!!: 電弧とプラズマ切断 · 続きを見る »

アンペア

アンペア(ampere 、記号: A)、は電流(量の記号、直流:I, 交流:i )の単位であり、国際単位系(SI)の7つの基本単位の一つである。 アンペアという名称は、電流と磁界との関係を示した「アンペールの法則」に名を残すフランスの物理学者、アンドレ=マリ・アンペール(André-Marie Ampère)に因んでいる共立化学大辞典第 26 版 (1981)。。 SIで定められた単位記号は"A"であるが、英語圏ではampと略記されることがあるSI supports only the use of symbols and deprecates the use of abbreviations for units.

新しい!!: 電弧とアンペア · 続きを見る »

アーク炉

アーク炉(electric arc furnace)は炉の一種。弧光炉、電弧炉ともいう。.

新しい!!: 電弧とアーク炉 · 続きを見る »

アーク溶接

アーク溶接(アークようせつ、英語:arc welding)とは溶接方法の一つで、空気(気体)中の放電現象(アーク放電)を利用し、同じ金属同士をつなぎ合わせる溶接法。アーク溶接の用途は広く、自動車、列車、船舶、航空機、建築物、建設機械など、あらゆる金属構造物に一般的に使われている。母材は鉄鋼が多いが、アルミニウムやチタンなどほかの金属にも利用される。.

新しい!!: 電弧とアーク溶接 · 続きを見る »

インピーダンス

インピーダンス(impedance)は、圧と流の比を表す単語である。圧と流の積は仕事率である。.

新しい!!: 電弧とインピーダンス · 続きを見る »

インダクタンス

インダクタンス(inductance)は、コイルなどにおいて電流の変化が誘導起電力となって現れる性質である。誘導係数、誘導子とも言う。インダクタンスを目的とするコイルをインダクタといい、それに使用する導線を巻線という。.

新しい!!: 電弧とインダクタンス · 続きを見る »

イオン化

イオン化(イオンか、ionization)とは、電荷的に中性な分子を、正または負の電荷を持ったイオンとする操作または現象で、電離(でんり)とも呼ばれる。 主に物理学の分野では荷電ともいい、分子(原子あるいは原子団)が、エネルギー(電磁波や熱)を受けて電子を放出したり、逆に外から得ることを指す。(プラズマまたは電離層を参照) また、化学の分野では解離ともいい、電解質(塩)が溶液中や融解時に、陽イオンと陰イオンに分かれることを指す。.

新しい!!: 電弧とイオン化 · 続きを見る »

エレクトロニックフラッシュ

フラッシュの発光アニメーション エレクトロニックフラッシュ(Electronic Flash )は主に写真撮影の際に使われる発光装置。発明以前に広く使われていたフラッシュバルブ(閃光電球)との区別のためこの名称となったが、その後フラッシュバルブが使用されなくなったため単に「フラッシュ」と略称されている場合が多い。 日本ではストロボとも呼ばれる。英語では、"strobe"は、ストロボスコープを意味する"stroboscope"やそのための照明を意味する"strobe light"の短縮形で、普通名称である。アメリカ合衆国では、ストロボリサーチ社(Storobo Research Co. )によって1950年に"Strob"(語尾に"O"も"E"も付かない)が商標登録されているが、1991年に権利期間が終了している。なお、商標登録は国毎に行われるものであり、商標登録されていない国では商標の使用は制限されない。日本においては、2013年(平成25年)現在では、エレクトロニックフラッシュについて「ストロボ」、「Strob」、「Strobe」のいずれも商標登録されていない独立行政法人工業所有権情報・研修館の特許電子図書館(IPDL)での調査による。。 メーカーによっては「スピードライト」などと呼称している場合がある。 英語圏では"Flash light"、または単に"Flash"もしくは"Strobe light"または単に"Strobe"と呼ぶことが多い。単発を"Flash light"と呼び、点滅を繰り返す場合を"Strobe light"と呼んで使い分けることもある。ただしアメリカなどでの"Flashlight"は、一般に懐中電灯のことを指す。.

新しい!!: 電弧とエレクトロニックフラッシュ · 続きを見る »

エジソン効果

ン効果(エジソンこうか、Edison effect)とは、白熱電球の中へ正電位にある金属板(プレート)をおくと加熱されたフィラメントとプレートの間に真空を通して電流が流れる現象をいう。このエジソン効果が熱電子放出(Thermionic emission)の研究の始まりとなった。 1883年にトーマス・エジソンが白熱電球のフィラメントの劣化の研究中にフィラメントを金属箔で覆うと金属箔とフィラメントの間に電流が流れるのを観測した。金属内の電子の熱エネルギーが仕事関数よりも大きくなって、金属表面を飛び出すことにより電流が流れることが、オーエン・リチャードソンによって示された(1910年)。 エジソンは特許をとっているが、それ以上の研究を行わなかった。のちにジョン・フレミングによって研究が行われ、真空管(2極管)の発明(1904年)の元になった。 強い電界を掛けることで、電子を放出しやすくなる現象があり、ショットキー効果という。.

新しい!!: 電弧とエジソン効果 · 続きを見る »

グロー放電

ー放電(-ほうでん)とは、冷陰極管において電流密度とガス圧が低いときの発光(グロー、glow)を伴う定常的な放電のこと。 陰極管の内部では、いくつかの暗部とグロー(明るい部分)がある。.

新しい!!: 電弧とグロー放電 · 続きを見る »

スナバ回路

ナバ回路(スナバかいろ、Snubber circuit)とは、電気回路中にあってスイッチの遮断時に生じる過渡的な高電圧を吸収する保護回路のこと。 回路の電流を突然遮断すると自己インダクタンスによって電圧が急上昇するが、スナバ回路がこのスパイク状の高電圧を抑制することで、スイッチ自身や周囲の電子部品の損傷を防ぎ電磁ノイズを最小化する。 スナバ回路は機械的なスイッチだけでなく、スイッチング・トランジスタや高周波整流用ダイオードからの高電圧抑制でも使用される。コンデンサ(キャパシタ)と抵抗を直列に接続したものをスイッチに平行して取り付けるものが多く、これは「RCスナバ回路」と呼ばれる。同様な機能の実現に、ツェナーダイオードを使って過剰な電圧をショートすることで一定の電圧を維持するものがある。.

新しい!!: 電弧とスナバ回路 · 続きを見る »

スパーク

パーク (spark, sparke, sparc).

新しい!!: 電弧とスパーク · 続きを見る »

回路

回路(かいろ)は、エネルギー・物質などが出て、再び元の場所に戻るまでの道筋のこと。.

新しい!!: 電弧と回路 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 電弧と磁場 · 続きを見る »

継電器

継電器(けいでんき、英: relay リレー)は、動作スイッチ・物理量・電力機器等の状態に応じ、制御または電源用の電力の出力をする電力機器である。 もとは有線電信において、伝送路の電気抵抗によって弱くなった信号を「中継」(relay リレー)するために発明されたものである。図などではRyという記号が使われることが多い。発明者はジョセフ・ヘンリーである。小電力の入力によって大電力のオン・オフを制御することが当初の目的であったため、継電器を用いることを時として「アンプする」というが、対象とするものを直に制御するよりは、安全性(感電の防止など)や操作性(設置位置の自由度、遠隔操作)、操作の確実性等が増すことから、必ずしも電力的な増幅の目的にとどまらず、広範囲な目的で多用されている。.

新しい!!: 電弧と継電器 · 続きを見る »

真空

真空(しんくう、英語:vacuum)は、物理学の概念で、圧力が大気圧より低い空間状態のこと。意味的には、古典論と量子論で大きく異なる。.

新しい!!: 電弧と真空 · 続きを見る »

絶縁破壊

ーモーション, ユダヤ・サマリア大学 絶縁破壊(ぜつえんはかい)とは、電気・電力・電子回路やその部品において、導体間を隔離している絶縁体(非導電性物質や空気層など)が破壊され、絶縁状態が保てなくなることをさす。 電線路やモーターなどの電気機器においては、短絡(ショート)を防ぐために導体間に一定の空間を確保したり、絶縁被覆を行う。しかし、雷サージや配線ミスなどにより設計された耐電圧(絶縁耐力)を超える高い電圧が加わると、導体間に放電現象が起こって導通すると共に、絶縁体を破壊して永久に絶縁状態が得られなくなる場合がある。絶縁破壊という言葉は、「絶縁状態が破られたこと(可逆的な絶縁破壊)」の意味合いで用いられる。 MOS(金属-酸化物-半導体)半導体素子は非常に薄い酸化被膜を絶縁層とするが、これは人体に帯電する数百ボルトの静電気でも容易に破壊して機能しなくなるため、開発当初はその取り扱いに注意を要した。その後、半導体素子内部に保護ダイオードを形成することで加わった高電圧を逃がす構造へ改良が進み、今日では静電気が引き起こす物理的破壊による故障は低減している。.

新しい!!: 電弧と絶縁破壊 · 続きを見る »

炭化カルシウム

炭化カルシウム(たんかカルシウム)、別名カルシウムカーバイド (calcium carbide) は、化学式 CaC2 で表される化合物である。灰色がかった白色固体で、主にアセチレンガスの簡便な発生源として利用される。 燃料用に市販されているカルシウムカーバイドは灰白色の塊状固体である。これには不純物としてリン化カルシウムや硫黄などが含まれている。この不純物に由来するホスフィンや硫化水素のため、市販品によって発生したアセチレンはわずかな不快臭を呈する。純粋な炭化カルシウムは無色透明の結晶である。.

新しい!!: 電弧と炭化カルシウム · 続きを見る »

物理学者

物理学者(ぶつりがくしゃ)は、物理学に携わる研究者のことである。.

新しい!!: 電弧と物理学者 · 続きを見る »

直流

流の波形 直流(ちょくりゅう、Direct Current, DC)は、時間によって大きさが変化しても流れる方向(正負)が変化しない「直流電流」の事である。同様に、時間によって方向が変化しない電圧を直流電圧という。狭義には、方向だけでなく大きさも変化しない電流、電圧のことを指し、流れる方向が一定で、電流・電圧の大きさが変化するもの(右図の下2つ)は脈流(pulsating current)という。直流と異なり、周期的に方向が変化する電流を交流という。.

新しい!!: 電弧と直流 · 続きを見る »

遮断器

遮断器(しゃだんき、英表記:Circuit Breaker)は、電力回路・電力機器の正常動作時の負荷電流を開閉するとともに、保護継電器と連携して事故電流(特に短絡事故電流)などを遮断することにより負荷側の設備を保護し、上流側への事故波及を防止する開閉器である。.

新しい!!: 電弧と遮断器 · 続きを見る »

静電容量

静電容量(せいでんようりょう、)は、コンデンサなどの絶縁された導体において、どのくらい電荷が蓄えられるかを表す量である。電気容量(でんきようりょう、)、またはキャパシタンスとも呼ばれる。.

新しい!!: 電弧と静電容量 · 続きを見る »

開閉器

開閉器(かいへいき)は、電力回路・電力機器の正常動作時の電路を開閉(on/off)する電力機器である。スイッチ (switch) とも言う。.

新しい!!: 電弧と開閉器 · 続きを見る »

蒸発

蒸発(じょうはつ、英語:evaporation)とは、液体の表面から気化が起こる現象のことである。常温でも蒸発するガソリンなどの液体については、揮発(きはつ)と呼ばれることもある。.

新しい!!: 電弧と蒸発 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 電弧と金属 · 続きを見る »

蛍光灯

蛍光灯(けいこうとう)または蛍光ランプ(fluorescent lamp)、蛍光管(けいこうかん)は、放電で発生する紫外線を蛍光体に当てて可視光線に変換する光源である。方式は 熱陰極管 (HCFL; hot cathode fluorescent lamp) 方式と 冷陰極管 (CCFL; cold cathode fluorescent lamp) 方式とに大別され、通常「蛍光灯」と呼ぶ場合は、熱陰極管方式の蛍光管を用いた光源や照明器具を指すことが多い。 最も広く使われているのは、電極をガラス管内に置き(内部電極型)、低圧水銀蒸気中のアーク放電による253.7nm線を使うものである。水銀自体は環境負荷物質としてEU域内ではRoHS指令による規制の対象であるが、蛍光灯を代替できる他の技術が確立されていなかったことや、蛍光灯が広く普及していたこと、発光原理上水銀を使用せざるを得ないことを理由として蛍光灯への使用は許容されている。 水銀の使用と輸出入を2020年以降規制する水銀に関する水俣条約が2017年5月に発効要件である50か国の批准に至り、同年8月16日に発効、これを受け日本国内でも廃棄物処理法に新たに水銀含有廃棄物の区分が設けられ、廃棄蛍光ランプも有害廃棄物として管理を求められるなど、処分費用の負担が増加することから、これまで廃棄蛍光ランプを無料回収していた量販店も有料回収に切り替えている。 蛍光灯を代替する技術としてLED照明も既に実用化されていることから、日本国内においては新築のオフィスビルなどでは全館LED照明を採用する事例も増えている。家庭向けにも蛍光灯照明器具の製造・販売を終息するメーカーが相次いでおり,蛍光灯の使用は淘汰される方向へと情勢が大きく変化している。.

新しい!!: 電弧と蛍光灯 · 続きを見る »

電力ヒューズ

ヒューズ (fuse) は、定格以上の大電流から電気回路を保護、あるいは加熱や発火といった事故を防止する電子部品である。電気回路内に置かれ、普段は導体として振る舞う。しかし何らかの異常によって電気回路に定格以上の電流が流れると、ジュール熱により内蔵する合金部品が溶断(ようだん)し、回路を開くことにより回路を保護する。.

新しい!!: 電弧と電力ヒューズ · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 電弧と電圧 · 続きを見る »

電極

電極(でんきょく)とは、受動素子、真空管や半導体素子のような能動素子、電気分解の装置、電池などにおいて、その対象物を働かせる、あるいは電気信号を測定するなどの目的で、電気的に接続する部分のことである。 また、トランジスタのベース、FETのゲートなど、ある電極から別の電極への電荷の移動を制御するための電極もある。.

新しい!!: 電弧と電極 · 続きを見る »

電気推進

イオン推進の概念図 静電荷電粒子推進器の構造 電気推進(でんきすいしん、英語:electrically powered spacecraft propulsion)は宇宙空間で用いられるロケットエンジンシステムの一種。現在一般的な化学ロケットと違い、電気エネルギーを用いて推力を得る。 電気推進の推力は化学推進に比べて著しく小さいが、比推力が非常に高いのが特徴。 歴史は古く、1906年にロバート・ゴダードが実現性を検討したノートが残っている。またコンスタンチン・ツィオルコフスキーにより、1911年に概念が発表された。.

新しい!!: 電弧と電気推進 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: 電弧と電流 · 続きを見る »

接触器

電磁開閉器(上部が電磁接触器、下部がサーマルリレー) 接触器(せっしょくき)は、電動機などの電力機器の起動・停止のために、電力回路を開閉する電力機器である。.

新しい!!: 電弧と接触器 · 続きを見る »

水銀灯

圧水銀灯 水銀灯(すいぎんとう)は、照明の一種。ガラス管内の水銀蒸気中のアーク放電により発生する光放射を利用した光源である。高圧水銀灯と低圧水銀灯に分れ、通常水銀灯と呼ぶときは前者を指す。医療用で用いる場合は太陽灯とも呼ぶ。 高圧水銀灯については、発光管の素材に石英ガラスが用いられることが多いため石英灯 (quartz lamp) 、石英水銀灯 (mercury quartz lamp) などと呼ばれることもある。.

新しい!!: 電弧と水銀灯 · 続きを見る »

天然オリーブオイル 油(あぶら、ゆ、oil)とは動物や植物、鉱物などからとれる水と相分離する疎水性の物質。一般に可燃性であり、比重が小さく、水に浮く。常温で液体のものを油、固体のものを脂と使い分けることがある。高級一価アルコールと高級脂肪酸とのエステルを蝋という。精油(エッセンシャル・オイル)は、脂肪を含まず油脂とは区別される。 用途としては食用、燃料用、産業用などに大別される。.

新しい!!: 電弧と油 · 続きを見る »

映写

映写(えいしゃ、projection)とは、写真や映画をスクリーンに映すことである。特に、映画を映画館などで公に写すことを上映(じょうえい)という。ここでは、映写を行うのに必要な映写装置と、それを扱う映写技師についても述べる。 映写機はフィルムに現像された静止画に光を当て、その透過光をレンズを用いてスクリーンに映像として映し出す。映画の場合には、残像効果を利用して、動きおよびコンティニュイティ(連続性)の錯覚を引き起こす速さで断続的に映し出し、動画としてみせる。サイレント映画時代の映像は毎秒16フレーム(16コマ)で行われていたが、のちに、サウンドが加えられ、現在は動きが滑らかで音質も優れた毎秒24フレーム(24コマ)で行われている。.

新しい!!: 電弧と映写 · 続きを見る »

放電

放電(ほうでん)は電極間にかかる電位差によって、間に存在する気体に絶縁破壊が生じ電子が放出され、電流が流れる現象である。形態により、雷のような火花放電、コロナ放電、グロー放電、アーク放電に分類される。(電極を使用しない放電についてはその他の放電を参照) もしくは、コンデンサや電池において、蓄積された電荷を失う現象である。この現象の対義語は充電。 典型的な放電は電極間の気体で発生するもので、低圧の気体中ではより低い電位差で発生する。電流を伝えるものは、電極から供給される電子、宇宙線などにより電離された空気中のイオン、電界中で加速された電子が気体分子に衝突して新たに電離されてできた気体イオンである。.

新しい!!: 電弧と放電 · 続きを見る »

放電加工

放電加工(ほうでんかこう、electrical discharge machining、EDM)は、電極と被加工物との間に短い周期で繰り返されるアーク放電によって被加工物表面の一部を除去する機械加工の方法であり、主として、従来の機械加工技術では加工できなかった硬い金属に適用される。放電加工を使えば、極めて硬い鋼鉄やエキゾチックメタル(例えばチタン、炭化物)に複雑な輪郭を切り出すことができる。電極と被加工物間の放電による除去加工という特性上、被加工物が電気を通す材質(導体)でなければ加工できない。放電により溶融した一部の材料は除去されずに再凝固するため、放電加工面は一般に引張の残留応力が生じる。このため、加工面にはクラックと呼ばれる微小な割れが生じやすい。 放電加工では、電極と被加工物の間に電圧を印加して火花を発生させるが、このとき電極を-、工作物を+とする設定を「正極性」と呼び、電極を+、工作物を-とする設定を「逆極性」と呼ぶ。適正な極性は、電極や工作物の材質や加工内容により異なる。 放電加工の電極は、被加工物に触れないが非常に近い位置となるように被加工物の表面に沿って動かされる。スパークが被加工物の表面の一部を溶かして蒸発させることにより、被加工物の表面に無数の微小凹部を形成する。溶けたり蒸発したりして被加工物から除去された粒子は、電極と被加工物との間に満たされた誘電体の液体によって洗い流される。 放電加工は、金型を製作するために広く用いられる。しかしながら、しばしば不具合も生ずることもあり、切削加工ほどの一般性を勝ち得ていない。.

新しい!!: 電弧と放電加工 · 続きを見る »

放電灯

放電灯(ほうでんとう、discharge lamp)は、アーク放電またはグロー放電を利用した光源の総称。 主な発光体によりガス放電灯と炭素アーク灯に区分できる。.

新しい!!: 電弧と放電灯 · 続きを見る »

1802年

記載なし。

新しい!!: 電弧と1802年 · 続きを見る »

ここにリダイレクトされます:

アーク放電電孤電気アーク

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »