ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

電圧の比較

索引 電圧の比較

電圧の比較(でんあつのひかく)では、電圧、電位差を比較できるよう、昇順に表にする。 電圧には正負があるが、ここではその絶対値を扱う。また、起電力、電圧降下も扱う。.

57 関係: 原子力発電所可視光線乾電池交流電化二次電池仕事ユニバーサル・シリアル・バスリチウムイオンポリマー二次電池ワットボルト (単位)ヒトテーブル (情報)デンキナマズデンキウナギファラドダイオードアレッサンドロ・ボルタアンペアオームクーロンケイ素ゲルマニウムコンデンサコイン形リチウム電池ショットキーバリアダイオードジュールスタンガンソート商用電源CMOS筋肉絶対値熱電対熱雑音直流電化発光ダイオード静電気超大質量ブラックホール起電力脳波自動体外式除細動器配電鉄道電力電位電圧電圧降下電線路電荷...電気抵抗電流PSR J0537-6910正の数と負の数放電感電数量の比較 インデックスを展開 (7 もっと) »

原子力発電所

原子力発電所(げんしりょくはつでんしょ、nuclear power plant)とは、原子力発電の方式による発電所。 原子炉の中でウランやプルトニウムが核分裂を持続的に、連鎖反応的に進行させ、その核分裂反応によって発生するエネルギーを熱エネルギーの形で取りだし(水を沸騰させて蒸気をつくり)それによって蒸気タービン(羽根車)を回転させて発電を行う発電所であるブリタニカ国際大百科事典「原子力発電所」。 核燃料を使用して電気を起こすことから、核発電所(かくはつでんしょ)ともいう。略称としては、日本語では原発(げんぱつ)と略される。.

新しい!!: 電圧の比較と原子力発電所 · 続きを見る »

可視光線

可視光線(かしこうせん 英:Visible light)とは、電磁波のうち、ヒトの目で見える波長のもの。いわゆる光のこと。JIS Z8120の定義によれば、可視光線に相当する電磁波の波長は下界はおおよそ360-400 nm、上界はおおよそ760-830 nmである。可視光線より波長が短くなっても長くなっても、ヒトの目には見ることができなくなる。可視光線より波長の短いものを紫外線、長いものを赤外線と呼ぶ。可視光線に対し、赤外線と紫外線を指して、不可視光線(ふかしこうせん)と呼ぶ場合もある。 可視光線は、太陽やそのほか様々な照明から発せられる。通常は、様々な波長の可視光線が混ざった状態であり、この場合、光は白に近い色に見える。プリズムなどを用いて、可視光線をその波長によって分離してみると、それぞれの波長の可視光線が、ヒトの目には異なった色を持った光として認識されることがわかる。各波長の可視光線の色は、日本語では波長の短い側から順に、紫、青紫、青、青緑、緑、黄緑、黄、黄赤(橙)、赤で、俗に七色といわれるが、これは連続的な移り変わりであり、文化によって分類の仕方は異なる(虹の色数を参照のこと)。波長ごとに色が順に移り変わること、あるいはその色の並ぶ様を、スペクトルと呼ぶ。 もちろん、可視光線という区分は、あくまでヒトの視覚を主体とした分類である。紫外線領域の視覚を持つ動物は多数ある(一部の昆虫類や鳥類など)。太陽光をスペクトル分解するとその多くは可視光線であるが、これは偶然ではない。太陽光の多くを占める波長域がこの領域だったからこそ、人間の目がこの領域の光を捉えるように進化したと解釈できる。 可視光線は、通常はヒトの体に害はないが、例えば核爆発などの強い可視光線が目に入ると網膜の火傷の危険性がある。.

新しい!!: 電圧の比較と可視光線 · 続きを見る »

乾電池

乾電池。左から、単2・単3・単4・単5・9V形 乾電池(かんでんち)は、電解液を固体に染み込ませて担持させ、扱いやすくした一次電池である。(一回限りの使用で使い捨てるものが一次電池、充電して繰り返し使うものが二次電池).

新しい!!: 電圧の比較と乾電池 · 続きを見る »

交流電化

交流電化(こうりゅうでんか)は、鉄道の電化方式の一つで交流電源を用いる方式。.

新しい!!: 電圧の比較と交流電化 · 続きを見る »

二次電池

二次電池(にじでんち)は蓄電池(ちくでんち)、充電式電池ともいい、一回限りではなく充電を行うことにより電気を蓄えて電池として使用できる様になり、繰り返し使用することが出来る電池(化学電池)のことである。.

新しい!!: 電圧の比較と二次電池 · 続きを見る »

仕事

仕事とは、.

新しい!!: 電圧の比較と仕事 · 続きを見る »

ユニバーサル・シリアル・バス

USBコネクタ(A端子) ユニバーサル・シリアル・バス(、略称:USB、ユーエスビー)は、コンピュータ等の情報機器に周辺機器を接続するためのシリアルバス規格の1つである。.

新しい!!: 電圧の比較とユニバーサル・シリアル・バス · 続きを見る »

リチウムイオンポリマー二次電池

リチウムイオンポリマー二次電池(リチウムイオンポリマーにじでんち)またはLiPo、Li-Po、リポ、リチウムポリマー、ポリマー電池は、リチウムイオン二次電池の一種である(以下ポリマー電池と記す)。.

新しい!!: 電圧の比較とリチウムイオンポリマー二次電池 · 続きを見る »

ワット

ワット(watt, 記号: W)とは仕事率や電力、工率、放射束、をあらわすSIの単位(SI組立単位)であるJIS Z 8203:2000 国際単位系 (SI) 及びその使い方。.

新しい!!: 電圧の比較とワット · 続きを見る »

ボルト (単位)

ボルト(volt、記号:V)は、電圧・電位差・起電力の単位である。名称は、ボルタ電池を発明した物理学者アレッサンドロ・ボルタに由来する。 1ボルトは、以下のように定義することができる。表現の仕方が違うだけで、いずれも値は同じである。.

新しい!!: 電圧の比較とボルト (単位) · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

新しい!!: 電圧の比較とヒト · 続きを見る »

テーブル (情報)

HTMLを使ってウェブブラウザで描画したテーブルの例 テーブル(table)または表は、ビジュアルコミュニケーションの一形態であり、データを並べる手段である。テーブルはコミュニケーション、研究、データ解析など様々な分野で使われている。 印刷物、手書きのノート、コンピュータソフトウェア、建築装飾、交通標識など様々なところでテーブルを見つけることができる。テーブルについての正確な規定や用語は文脈によって異なる。さらに、テーブルの構造、柔軟性、記法、表現、用途も非常に多彩である。書籍や技術文書ではよく表番号と表タイトル付きの回り込みブロックとしてレイアウトされる。 テーブルは、階層型マトリックスの中にデータの集合の論理的構造をマッピングする視覚的情報伝達法の一種でもある。テーブル内のデータは離散的データの場合もあるし変数の場合もある。例えば、数表、真理値表、周期表、HTMLの表(table)などがある。しばしば、グラフなどとまとめられて「統計図表」という言われ方をすることがある。.

新しい!!: 電圧の比較とテーブル (情報) · 続きを見る »

デンキナマズ

デンキナマズ(電気鯰、学名:)は、ナマズ目デンキナマズ科に属するナマズの一種。発電能力を持つ魚類として知られ、種小名(electricus)もこの特徴に由来する。.

新しい!!: 電圧の比較とデンキナマズ · 続きを見る »

デンキウナギ

デンキウナギ(電気鰻、学名:Electrophorus electricus、英語名:Electric eel)は、デンキウナギ目ギュムノートゥス科デンキウナギ属に分類される硬骨魚類の一種。南アメリカのアマゾン川・オリノコ川両水系に分布する大型魚で、強力な電気を起こす魚である。多くの人間にとって、この電気は危険である。デンキウナギ属 Electrophorus は1属1種のみが分類されている。.

新しい!!: 電圧の比較とデンキウナギ · 続きを見る »

ファラド

ファラド(farad、記号:F)は、コンデンサ(キャパシタ、蓄電器)などの静電容量の単位(SI組立単位)である。名称はマイケル・ファラデーに由来するもので、ファラッドともいわれる。なお、同じくマイケル・ファラデーに由来するファラデーという単位があるが、これは電荷の単位である。.

新しい!!: 電圧の比較とファラド · 続きを見る »

ダイオード

図1:ダイオードの拡大図正方形を形成しているのが半導体の結晶を示す 図2:様々な半導体ダイオード。下部:ブリッジダイオード 図3:真空管ダイオードの構造 図4 ダイオード(英: diode)は整流作用(電流を一定方向にしか流さない作用)を持つ電子素子である。最初のダイオードは2極真空管で、後に半導体素子である半導体ダイオードが開発された。今日では単にダイオードと言えば、通常、半導体ダイオードを指す。 1919年、イギリスの物理学者 William Henry Eccles がギリシア語の di.

新しい!!: 電圧の比較とダイオード · 続きを見る »

アレッサンドロ・ボルタ

アレッサンドロ・ジュゼッペ・アントニオ・アナスタージオ・ヴォルタ伯爵(Il Conte Alessandro Giuseppe Antonio Anastasio Volta、1745年2月18日 - 1827年3月5日)は、イタリアGiuliano Pancaldi, "Volta: Science and culture in the age of enlightenment", Princeton University Press, 2003.

新しい!!: 電圧の比較とアレッサンドロ・ボルタ · 続きを見る »

アンペア

アンペア(ampere 、記号: A)、は電流(量の記号、直流:I, 交流:i )の単位であり、国際単位系(SI)の7つの基本単位の一つである。 アンペアという名称は、電流と磁界との関係を示した「アンペールの法則」に名を残すフランスの物理学者、アンドレ=マリ・アンペール(André-Marie Ampère)に因んでいる共立化学大辞典第 26 版 (1981)。。 SIで定められた単位記号は"A"であるが、英語圏ではampと略記されることがあるSI supports only the use of symbols and deprecates the use of abbreviations for units.

新しい!!: 電圧の比較とアンペア · 続きを見る »

オーム

ーム()は、インピーダンスや電気抵抗(レジスタンス)、リアクタンスの単位である。国際単位系 における組立単位のひとつである。 名称は、電気抵抗に関するオームの法則を発見したドイツの物理学者、ゲオルク・ジーモン・オームにちなむ。記号はギリシャ文字のオメガ ('''Ω''') を用いる。これは、オームの頭文字であるアルファベットのO(オー)では、数字の0(ゼロ)と混同されやすいからである(なお、オームの名前をギリシャ文字で表記するとΓκέοργκ Ωμとなる)。 電気抵抗を表すための単位は、初期の電信業務に関連して経験的にいくつか作られてきた。1861年にが、質量・長さ・時間の単位から組み立てた実用上便利な大きさの単位としてオームを提唱した。オームの定義はその後何度か修正された。.

新しい!!: 電圧の比較とオーム · 続きを見る »

クーロン

ーロン(、記号C)は、電荷のSI単位である。クーロンという名称は、フランスの物理学者、シャルル・ド・クーロンの名にちなむ。.

新しい!!: 電圧の比較とクーロン · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: 電圧の比較とケイ素 · 続きを見る »

ゲルマニウム

ルマニウム(germanium )は原子番号32の元素。元素記号は Ge。炭素族の元素の一つ。ケイ素より狭いバンドギャップ(約0.7 eV)を持つ半導体で、結晶構造は金剛石構造である。.

新しい!!: 電圧の比較とゲルマニウム · 続きを見る »

コンデンサ

ンデンサの形状例。この写真の中での分類としては、足のあるものが「リード形」、長方体のものが「チップ形」である 典型的なリード形電解コンデンサ コンデンサ(Kondensator、capacitor)とは、電荷(静電エネルギー)を蓄えたり、放出したりする受動素子である。キャパシタとも呼ばれる。(日本の)漢語では蓄電器(ちくでんき)などとも。 この素子のスペックの値としては、基本的な値は静電容量である。その他の特性としては印加できる電圧(耐圧)、理想的な特性からどの程度外れているかを示す、等価回路における、直列の誘導性を示す値と直列並列それぞれの抵抗値などがある。一般に国際単位系(SI)における静電容量の単位であるファラド(記号: F)で表すが、一般的な程度の容量としてはそのままのファラドは過大であり、マイクロファラド(μF.

新しい!!: 電圧の比較とコンデンサ · 続きを見る »

コイン形リチウム電池

イン形リチウム電池 CR2032 コイン形リチウム電池(コインがたリチウムでんち)は、リチウム電池、ボタン型電池の一種で「二酸化マンガンリチウム一次電池」の日本における一般的呼称。コイン型の外形をしているため、コイン電池(Coin Cell)とも呼ばれる。 (電池メーカのソニーなどでは、リチウムコイン電池と呼称している。) コイン形リチウム電池の中ではCR20**タイプの電池がよく使われている。これらは直径が20mmである(1円玉と同じ)。直径が11.6mmのアルカリ電池などと総称してボタン電池と呼ばれる事も多い。 用途は多岐に渡り、時計、電卓、小型電子ゲーム、ICタグ、ICカード、各種メモリーバックアップ、電子体温計、キーレスエントリー(車載用機器)、電子手帳(PDA)、LEDライトなど、様々な小型機器に用いられている。 国際電気標準会議(IEC)によって定義された小型電池共通の英数字コードの最初の文字「C」は、以下の電気化学的系統を表す。 正極(陽極):二酸化マンガン 電解質:有機 負極(陰極):リチウム 公称電圧:3 終止電圧:2.0 円形を示す「R」の後に、3~4桁の数字でサイズを表す。最初の1~2桁は直径(mm単位)、最後の2桁は高さ(0.1mm単位)を表す。 (例).

新しい!!: 電圧の比較とコイン形リチウム電池 · 続きを見る »

ショットキーバリアダイオード

ョットキーバリアダイオード(en:Schottky diode:SBD)は金属と半導体との接合によって生じるショットキー障壁を利用したダイオードである。 多数キャリアによる動作のためPN接合ダイオードに比べると順方向の電圧降下が低く、スイッチング速度が速いという特長を持つ。しかし、逆方向漏れ電流が大きく(20V印加時、25で数MΩ、125で数KΩ)、逆方向耐電圧が低いという欠点もある。 このダイオードはスイッチング特性が優れているため、トランジスタによる論理回路の高速化、スイッチング電源などの電源回路でよく使われており、検波用などの型番もある。 論理回路の高速化では、ロジックを構成するトランジスタの過飽和を防ぐことで高速化をはかる(ショットキークランプ)。よく使われているものに汎用ロジックICの74LSシリーズなど。スイッチング電源では高周波を扱うため、整流用ダイオードのスイッチング特性の良さは電源回路の効率を上げるための重要な要素である。さらに電圧降下の低さは効率を上げるだけでなくダイオードの発熱を抑えることにもつながっている。.

新しい!!: 電圧の比較とショットキーバリアダイオード · 続きを見る »

ジュール

ュール(joule、記号:J)は、エネルギー、仕事、熱量、電力量の単位である。その名前はジェームズ・プレスコット・ジュールに因む。 1 ジュールは標準重力加速度の下でおよそ 102.0 グラム(小さなリンゴくらいの重さ)の物体を 1 メートル持ち上げる時の仕事に相当する。.

新しい!!: 電圧の比較とジュール · 続きを見る »

スタンガン

タンガン(stun gun)は、広義では、非殺傷性個人携行兵器の総称。非殺傷性のゴム弾などを発射する場合、通常の銃火器などでもスタンガンと呼称される場合もある。 狭義では、暴漢などの相手に電気ショックを与える器具(護身用具)。本項ではこれについて述べる。電撃銃ということもある。 スタン とは、英語で(打撃によって)気絶させる、呆然とさせるなどの意味で、これに銃を意味する を付けてスタンガン(呆然とさせる銃)と呼ばれる。アメリカで開発された。.

新しい!!: 電圧の比較とスタンガン · 続きを見る »

ソート

ート は、データの集合を一定の規則に従って並べること。日本語では整列(せいれつ)と訳される。(以前はその原義から分類という訳語が充てられていたが、もう使われていない) 主にコンピュータソフトにおけるリストに表示するデータに対し、全順序関係によって一列に並べることを指す。また、単に「ソート」といった場合、値の小さい方から大きい方へ順に並べる昇順(しょうじゅん、)を指すことが多い。その反対に値を大きい方から小さい方へ順に並べることを降順(こうじゅん、)という。 対象となるデータのデータ構造や必要な出力によって、使われるアルゴリズムは異なる。.

新しい!!: 電圧の比較とソート · 続きを見る »

商用電源

商用電源(しょうようでんげん)とは、電力の製造(発電)と販売(送電・配電)を業とする者、すなわち電力会社から電力消費者に届けられる電力および電力を電力消費者に届ける(供給する)ための設備一般の総称である。電力が商取引対象とされることからの名称であり、電力消費者の電力使途からの総称ではない。 一般には商用電源=AC電源(エーシーでんげん)と称されることも多い。これは今日、電力会社から一般的な電力消費者、すなわち一般家庭などに供給される電力が交流(Alternating Current)であることからきている。しかし電力会社から電力消費者への電力供給は直流(Direct Current)であってもよく、事実日本でも直流による供給がなされているところがあるため、本来、同義にはならない。.

新しい!!: 電圧の比較と商用電源 · 続きを見る »

CMOS

CMOS(シーモス、Complementary MOS; 相補型MOS)とは、P型とN型のMOSFETをディジタル回路(論理回路)の論理ゲート等で相補的に利用する回路方式(論理方式)、およびそのような電子回路やICのことである。また、そこから派生し多義的に多くの用例が観られる(『#その他の用例』参照)。.

新しい!!: 電圧の比較とCMOS · 続きを見る »

筋肉

'''骨格筋の構造''' 筋肉は複数の筋束からなる(中央上)。筋束は筋繊維(筋細胞)の集まりである(右上)。複数の筋原繊維が束ねられて筋繊維を形作る(右中央)。筋原繊維はアクチンタンパク質とミオシンタンパク質が入れ子状になった構造を取る(右下)。 Cardiac muscle) 筋肉(きんにく、羅: musculus; 独: Muskel; 仏, 英: muscle)は、動物の持つ組織のひとつで、収縮することにより力を発生させる、代表的な運動器官である生化学辞典第2版、p.357 【筋肉】。 動物の運動は、主として筋肉によってもたらされる。ただし、細部に於ける繊毛や鞭毛による運動等、若干の例外はある。 なお、筋肉が収縮することにより発生する力を筋力と呼び、これは収縮する筋肉の断面積に比例する。つまり筋力は、筋肉の太さに比例している。 また、食用に供する食肉は主に筋肉であり、脊髄動物の骨格筋は湿重量の約20%をタンパク質が占め、主にこれを栄養として摂取するために食される生化学辞典第2版、p.357 【筋(肉)タンパク質】。(ただし、食料品店で肉と表示されているものは筋肉だけでなく脂身(脂肪分の塊)も一緒になった状態で、タンパク質ばかりでなく、かなりの高脂肪の状態で販売されていることが多い。) 中医学では肌肉とも言われる。.

新しい!!: 電圧の比較と筋肉 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 電圧の比較と絶対値 · 続きを見る »

熱電対

熱電対(ねつでんつい、thermocouple)は、2種類の金属線の先端同士を接触させて回路を作り、接合点に発生する熱起電力を通じて温度差を測定する温度計。あるいは、その2種類の金属線のことを指す。 異なる2種の金属を接合すると、それぞれの熱電能の違いから、2つの接合点の間の異なる温度に応じた起電力が発生する原理(ゼーベック効果)を応用するものである。寿命の長さ・耐熱性・機械的強度などの利点があり、中高温領域の温度センサーとして工業的に最も広く用いられる。.

新しい!!: 電圧の比較と熱電対 · 続きを見る »

熱雑音

熱雑音(ねつざつおん、thermal noise)は、抵抗体内の自由電子の不規則な熱振動(ブラウン運動)によって生じる雑音のことをいう。1927年にこの現象を発見した二人のベル研究所の研究者ジョン・バートランド・ジョンソン及びハリー・ナイキストの名前からジョンソン・ノイズまたはジョンソン-ナイキスト・ノイズとも呼ばれる。 抵抗体内で発生する雑音の電圧Vn 、電流In は次式で与えられる。 ここでk B はボルツマン定数、T は導体の温度、Δf は帯域幅、R は抵抗値である。 従ってノイズの大きさPn は次式で与えられる。 また、雑音元(信号元)から回路に入力される雑音電力を入力雑音電力と言い、電気通信分野での増幅器雑音計算には専らこちらが使用される。入力雑音電力N i は次式で与えられる。 入力雑音電力がこの数式で与えられるのは、雑音元を、起電力が上記のV_、内部抵抗がRの電源と考え、負荷につないだときに負荷で消費される電力として計算するからである。入力された電力を、反射することなく負荷で完全に消費するには、負荷のインピーダンスがRである必要があり、その結果として上記の入力雑音電力N_\mathrmが導出される。 ノイズの大きさは温度で決まる。室温(300K)のノイズ(入力雑音電力)の大きさP をデシベル単位(dBm)で表すと である。 熱雑音が問題になるような領域は極めて小さい信号を扱う場合で、そのような場合は、増幅器を極低温まで冷却して極限まで雑音性能を高めることなどがされる。 熱雑音が有効活用される例として、コンピュータの乱数発生器に熱雑音を用いる物がある。.

新しい!!: 電圧の比較と熱雑音 · 続きを見る »

直流電化

流電化 (ちょくりゅうでんか) は、直流電源を用いる鉄道の電化方式。.

新しい!!: 電圧の比較と直流電化 · 続きを見る »

発光ダイオード

光ダイオード(はっこうダイオード、light emitting diode: LED)はダイオードの一種で、順方向に電圧を加えた際に発光する半導体素子である。 1962年、ニック・ホロニアックにより発明された。発明当時は赤色のみだった。1972年にによって黄緑色LEDが発明された。1990年代初め、赤崎勇、天野浩、中村修二らによって、窒化ガリウムによる青色LEDの半導体が発明された。 発光原理はエレクトロルミネセンス (EL) 効果を利用している。また、有機エレクトロルミネッセンス(OLEDs、有機EL)も分類上、LEDに含まれる。.

新しい!!: 電圧の比較と発光ダイオード · 続きを見る »

静電気

静電気(せいでんき、static electricity)とは、静止した電荷によって引き起こされる物理現象のこと。.

新しい!!: 電圧の比較と静電気 · 続きを見る »

超大質量ブラックホール

超大質量ブラックホール(ちょうだいしつりょうブラックホール、Supermassive black hole)は、太陽の105倍から1010倍程度の質量を持つブラックホールのことである。全てではないが、銀河系(天の川銀河)を含むほとんどの銀河の中心には、超大質量ブラックホールが存在すると考えられている。 超大質量ブラックホールには、比較的質量の小さいものと比べて際立った特徴がある。.

新しい!!: 電圧の比較と超大質量ブラックホール · 続きを見る »

起電力

起電力(きでんりょく、electromotive force, EMF)とは、電流の駆動力のこと。 または、電流を生じさせる電位の差(電圧)のこと。単位は電圧と同じボルト (Volt, V) を用いる。 起電力を生み出す原因には、電磁誘導によるもの(発電機)、熱電効果(ゼーベック効果)によるもの(熱電対)、 光電効果(光起電力効果)によるもの(太陽電池)、化学反応によるもの(化学電池)などがある。 これらのうち、本項では化学反応によるもの、すなわち化学電池の起電力について主に記述する。.

新しい!!: 電圧の比較と起電力 · 続きを見る »

脳波

ヒトの脳波 脳波(のうは、Electroencephalogram:EEG)は、ヒト・動物の脳から生じる電気活動を、頭皮上、蝶形骨底、鼓膜、脳表、脳深部などに置いた電極で記録したものである。英語の忠実な訳語として、脳電図という呼び方もあり、本来は、脳波図と呼ぶべきであるが、一般的には「脳波」と簡略化して呼ばれることが多い。脳波を測定、記録する装置を脳波計(Electroencephalograph:EEG)と呼び、それを用いた脳波検査(electroencephalography:EEG)は、医療での臨床検査として、また医学、生理学、心理学、工学領域での研究方法として用いられる。検査方法、検査機械、検査結果のどれも略語はEEGとなるので、使い分けに注意が必要である。 個々の神経細胞の発火を観察する単一細胞電極とは異なり、電極近傍あるいは遠隔部の神経細胞集団の電気活動の総和を観察する(少数の例外を除く)。 近縁のものに、神経細胞の電気活動に伴って生じる磁場を観察する脳磁図(のうじず、Magnetoencephalogram:MEG)がある。.

新しい!!: 電圧の比較と脳波 · 続きを見る »

自動体外式除細動器

自動体外式除細動器(じどうたいがいしきじょさいどうき、Automated External Defibrillator, AED)とは、心停止(必ずしも心静止ではない)の際に機器が自動的に心電図の解析を行い、心室細動を検出した際は除細動を行う医療機器。除細動器の一つだが、動作が自動化されているので、施術者が一般市民でも使用できるよう設計されている。.

新しい!!: 電圧の比較と自動体外式除細動器 · 続きを見る »

配電

配電(はいでん)とは、電気を配る(分配する)ことであるが、電気事業における配電とは、送電網から変電所を通して受電した電力(電気)を需要家に供給するため、配電網システムの構築とその運用を行うことである。電線路の一部を形成する。.

新しい!!: 電圧の比較と配電 · 続きを見る »

鉄道

鉄道(てつどう、railway railroad)とは、等間隔に設置された2本の鉄製の軌条(レール)またはそれに代わる物を案内路として車輪を有する車両が走行する交通機関である。線路・停車場などの施設、旅客や貨物を輸送する列車、運行管理や信号保安まで様々な要素で構成される一連の体系である。 広い意味では、レール、案内軌条などの案内路に誘導されて走行する車両を用いた交通機関を指し、懸垂式・跨座式のモノレール、案内軌条式のAGT(新交通システム)、鋼索鉄道(ケーブルカー)、浮上式鉄道を含む。日本では鉄道事業法の許可、または、軌道法の特許を得て敷設される。トロリーバス(無軌条電車)は、架線が張られたルートを集電装置(トロリー)により集電した電気を動力として走行するバスであるが、鉄道事業法に基づく鉄道、または、軌道法上の「軌道に準ずる」軌道として扱われる。ロープウェイも鉄道事業法、または、軌道法の対象であるが、索道という扱いとなる。 なお、本項では鉄製レールの案内路を有する鉄道について解説する。.

新しい!!: 電圧の比較と鉄道 · 続きを見る »

住宅近郊への落雷 稲妻 雷(かみなり、いかずち)とは、雲と雲との間、あるいは雲と地上との間の放電によって、光と音を発生する自然現象のこと。 なお、ここでは「気象現象あるいは神話としての雷」を中心に述べる。雷の被害とその対策・回避方法については「落雷」を参照のこと。.

新しい!!: 電圧の比較と雷 · 続きを見る »

電力

電力(でんりょく、electric power)とは、単位時間に電流がする仕事(量)のことである。なお、「電力系統における電力」とは、単位時間に電気器具によって消費される電気エネルギーを言う。国際単位系(SI)においてはワット が単位として用いられる。 なお、電力を時間ごとに積算したものは電力量(electric energy)と呼び、電力とは区別される。つまり、電力を時間積分したものが電力量である。.

新しい!!: 電圧の比較と電力 · 続きを見る »

電位

電位(でんい、electric potential)は電気的なポテンシャルエネルギーに係る概念であり、 電磁気学とその応用分野である電気工学で用いられる。 点P における電位と点Q における電位の差は、P とQ の電位差 と呼ばれる。 電気工学では電位差は電圧 とも呼ばれる。 電位の単位にはV (ボルト)が用いられる。.

新しい!!: 電圧の比較と電位 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 電圧の比較と電圧 · 続きを見る »

電圧降下

電圧降下(でんあつこうか)とは、電気回路に電流を流したとき、回路中に存在する電気抵抗の両端に電位差が生ずる現象のこと。または生じた電位差のこと。このとき電流I、電気抵抗Rと電位差Vとの関係は、V.

新しい!!: 電圧の比較と電圧降下 · 続きを見る »

電線路

鉄塔と送電線(1000kV設計南いわき幹線) 電線路(でんせんろ)は、電力を運ぶための電線およびその支持物・付帯設備を含む電力設備である。 また、電線路を形成する電線のうち、送電網におけるものは送電線(そうでんせん)、配電網におけるものは配電線(はいでんせん)と呼んで区別されている。 なお、類似の用語に電路があるが、これは通常の使用状態で電気が通じているところをいい、目的や使用場所に依存しない電気工学一般における概念である。.

新しい!!: 電圧の比較と電線路 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: 電圧の比較と電荷 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

新しい!!: 電圧の比較と電気抵抗 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: 電圧の比較と電流 · 続きを見る »

PSR J0537-6910

PSR J0537-6910は、NGC 2060の中心部に存在する中性子星である。これはNGC 2060に阻まれ直接見ることはできず、1998年にX線の測定によって発見された。NGC 2060はPSR J0537-6910を生ずる元となった超新星爆発で誕生したと考えられる。 周辺は超大質量ブラックホールを除いた、宇宙で最も強い電場があるブライアン・ゲンスラー『とてつもない宇宙 ---宇宙で最も大きい・熱い・重い天体とは何か?』松浦俊輔訳、河出書房新社、2012年。 PSR J0537-6910は自転周期が1秒以下のミリ秒パルサーである。正確な自転周期はあすかおよびRXTEの測定時期によって異なるが、おおむね0.0161秒である。これは1秒間に約62回転することを示している。この自転周期から、PSR J0537-6910およびNGC 2060は約5000年前に超新星爆発を起こしたと推定されている。 なお、強い磁場と速い自転速度を持つことから、PSR J0537-6910の周辺には強大な電場が形成されている。その強さは、電流にして1000兆A (1015A) 、電圧にして3京8000兆V (3.8×1016V) に達する。これは電力に換算すれば380穣W (3.8×1031W) にもなる。これは超大質量ブラックホールのような極端な質量を持つ天体を除けば、知られている中で最も強い電場を持つ天体である。.

新しい!!: 電圧の比較とPSR J0537-6910 · 続きを見る »

正の数と負の数

正の数(せいのすう、positive number)とは、0より大きい実数である。負の数(ふのすう、negative number)とは、0より小さい実数である。.

新しい!!: 電圧の比較と正の数と負の数 · 続きを見る »

放電

放電(ほうでん)は電極間にかかる電位差によって、間に存在する気体に絶縁破壊が生じ電子が放出され、電流が流れる現象である。形態により、雷のような火花放電、コロナ放電、グロー放電、アーク放電に分類される。(電極を使用しない放電についてはその他の放電を参照) もしくは、コンデンサや電池において、蓄積された電荷を失う現象である。この現象の対義語は充電。 典型的な放電は電極間の気体で発生するもので、低圧の気体中ではより低い電位差で発生する。電流を伝えるものは、電極から供給される電子、宇宙線などにより電離された空気中のイオン、電界中で加速された電子が気体分子に衝突して新たに電離されてできた気体イオンである。.

新しい!!: 電圧の比較と放電 · 続きを見る »

感電

感電危険注意を促す意匠。高圧又は特別高圧の電気施設などに表示される。 感電(かんでん)とは、電撃(でんげき)、電気ショックとも呼ばれ、電気設備や電気製品の不適切な使用、電気工事中の作業工程ミスや何らかの原因で人体または作業機械などが架線に引っかかる等の人的要因、或いは機器の故障などによる漏電や自然災害である落雷などの要因によって人体に電流が流れ、傷害を受けることである。人体は電気抵抗が低く、特に水に濡れている場合は電流が流れやすいため危険性が高い。軽度の場合は一時的な痛みやしびれなどの症状で済むこともあるが、重度の場合は死亡(感電死)に至ることも多い。高圧又は特別高圧の電気施設などには電気設備に関する技術基準を定める省令第23条に危険表示等の安全対策をすべきことなどが定められており、罰則はないが通常JIS規格に基づく標識が使用される。 感電は閉回路が形成された場合に起こる。1本の送電線だけに止まっている鳥は閉回路を作らないため感電しないが、例外として大型の鳥が複数の送電線に同時に接触すると感電が発生する。 落雷による外傷に関しては、「落雷」および雷撃傷を参照。.

新しい!!: 電圧の比較と感電 · 続きを見る »

数量の比較

広範囲にわたる数量の比較をする場合には、対数スケールがよく用いられる。対数スケール上で等間隔に区切ったそれぞれを、英語では“order of magnitude”と言い、日本語に訳せば「等級」「階級」「規模」あるいは「桁」などとなる。それぞれの区切りは、その前の区切りから見て一定の比率となっている。その比率は、10000、1000、10、2、1024 (.

新しい!!: 電圧の比較と数量の比較 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »