ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

量子生物学

索引 量子生物学

量子生物学(りょうしせいぶつがく)とは、量子力学の言葉で生命現象を記述しようとする(量子力学の考え方で生物の活動を説明しようとする)科学の一分野である。.

23 関係: 原子微視的地磁気トンネル効果周波数コンピュータセント=ジェルジ・アルベルト光合成動物磁覚科学素粒子生化学生物学生物物理学運動エネルギー視覚量子力学量子論自由エネルギー酵素反応水素イオン放射

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 量子生物学と原子 · 続きを見る »

微視的

微視的(びしてき、)とは、肉眼で見えない微小な物や事ブリタニカ国際大百科事典-小項目電子辞書版。。ミクロスコピックまたはミクロともいい、通常は物の構成要素(分子、原子、原子核、素粒子)を意味する。顕微鏡で見られる大きさの物を対象とすることもある。広義には、一つの体系を構成する個々の要素またはその挙動も意味する。 これに対して、巨視的(きょしてき、、マクロ)は、本来は肉眼で見える大きさの物や事柄を意味するが、分子、原子などの多数の集合体の意味として用いられている。巨視的な対象が古典力学で記述されるのに対し、微視的な対象はしばしば現代物理学である量子力学での取り扱いを要する。.

新しい!!: 量子生物学と微視的 · 続きを見る »

地磁気

地磁気(ちじき、、)は、地球が持つ磁性(磁気)である。及び、地磁気は、地球により生じる磁場(磁界)である。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)である。地磁気の大きさの単位は、SI単位系の磁束密度の単位であるテスラ(T)である。通常、地球の磁場はとても弱いので、「nT(ナノテスラ)」が用いられる。地球物理学で地磁気の磁束密度を表すのに使用されたガンマ (γ) は、10テスラ.

新しい!!: 量子生物学と地磁気 · 続きを見る »

トンネル効果

トンネル効果 (トンネルこうか) 、量子トンネル(りょうしトンネル )、または単にトンネリングとは、古典力学的には乗り越えられないはずのを粒子があたかも障壁にあいたトンネルを抜けたかのように通過する量子力学的現象である。太陽のような主系列星で起こっている核融合など、いくつかの物理的現象において欠かせない役割を果たしている。トンネルダイオード、量子コンピュータ、走査型トンネル顕微鏡などの装置において応用されているという意味でも重要である。この効果は20世紀初頭に予言され、20世紀半ばには一般的な物理現象として受け入れられた。 トンネリングはハイゼンベルクの不確定性原理と物質における粒子と波動の二重性を用いて説明されることが多い。この現象の中心は純粋に量子力学的な概念であり、量子トンネルは量子力学によって得られた新たな知見である。.

新しい!!: 量子生物学とトンネル効果 · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: 量子生物学と周波数 · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 量子生物学とコンピュータ · 続きを見る »

セント=ジェルジ・アルベルト

ント=ジェルジ・アルベルト(Nagyrápolti Szent-Györgyi Albert 、1893年9月16日 - 1986年10月22日)は、ハンガリー出身のセーケイ人でアメリカ合衆国に移住した生理学者。ビタミンCの発見などにより、1937年度ノーベル生理学医学賞を受賞。筋肉の研究などでも知られる。ハンガリー語では、姓は発音上はtが脱落してセンジェルジのように発音される。英語やドイツ語などでは名-姓の順に、Albert Szent-Györgyi あるいは Albert von Szent-Györgyi Nagyrápolt とも表記される。.

新しい!!: 量子生物学とセント=ジェルジ・アルベルト · 続きを見る »

光合成

光合成では水を分解して酸素を放出し、二酸化炭素から糖を合成する。 光合成の主な舞台は植物の葉である。 光合成(こうごうせい、Photosynthese、photosynthèse、拉、英: photosynthesis)は、主に植物や植物プランクトン、藻類など光合成色素をもつ生物が行う、光エネルギーを化学エネルギーに変換する生化学反応のことである。光合成生物は光エネルギーを使って水と空気中の二酸化炭素から炭水化物(糖類:例えばショ糖やデンプン)を合成している。また、光合成は水を分解する過程で生じた酸素を大気中に供給している。年間に地球上で固定される二酸化炭素は約1014kg、貯蔵されるエネルギーは1018kJと見積もられている『ヴォート生化学 第3版』 DONALDO VOET・JUDITH G.VOET 田宮信雄他訳 東京化学同人 2005.2.28。 「光合成」という名称を初めて使ったのはアメリカの植物学者チャールズ・バーネス(1893年)である『Newton 2008年4月号』 水谷仁 ニュートンプレス 2008.4.7。 ひかりごうせいとも呼ばれることが多い。かつては炭酸同化作用(たんさんどうかさよう)とも言ったが現在はあまり使われない。.

新しい!!: 量子生物学と光合成 · 続きを見る »

動物

動物(どうぶつ、羅: Animalia、単数: Animal)とは、.

新しい!!: 量子生物学と動物 · 続きを見る »

磁覚

磁覚(じかく、Magnetoception)とは、磁場の方向、強さ、場所を、生物が知覚することを可能にする感覚である。磁気感覚(じきかんかく)とも言う。.

新しい!!: 量子生物学と磁覚 · 続きを見る »

科学

科学(かがく、scientia、 仏:英:science、Wissenschaft)という語は文脈に応じて多様な意味をもつが、おおむね以下のような意味で用いられている。.

新しい!!: 量子生物学と科学 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: 量子生物学と素粒子 · 続きを見る »

生化学

生化学(せいかがく、英語:biochemistry)は生命現象を化学的に研究する生化学辞典第2版、p.713 【生化学】生物学または化学の一分野である。生物化学(せいぶつかがく、biological chemistry)とも言う(若干生化学と生物化学で指す意味や範囲が違うことがある。生物化学は化学の一分野として生体物質を扱う学問を指すことが多い)。生物を成り立たせている物質と、それが合成や分解を起こすしくみ、そしてそれぞれが生体システムの中で持つ役割の究明を目的とする。.

新しい!!: 量子生物学と生化学 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

新しい!!: 量子生物学と生物学 · 続きを見る »

生物物理学

生物物理学(biophysics)は、生命システムを物理学と物理化学を用いて理解しようと試みる学際科学である。生物物理学は、分子スケールから一個体、果ては生態系まで、全階層の生物学的組織を研究対象とする。生化学、ナノテクノロジー、生物工学、農学物理学、システム生物学と密接に関係し、研究領域を共有することが多い。 分子生物物理学は、生化学や生物物理学が扱う生物学の問題に取り組むが、問題解決に対して定量的なアプローチを取ることが常である。一細胞内におけるさまざまなシステム(RNA生合成、RNA生合成、タンパク質生合成など)の間に起こる相互作用の理解、およびこれら相互作用の調節機構の理解に挑戦する。そしてこれらの問題を解くために、多種多様な実験手法が用いられる。 蛍光イメージング、電子顕微鏡法、X線結晶構造解析、核磁気共鳴分光法(NMR)、原子間力顕微鏡法(AFM)を用いて、生物学的に重要な構造体の可視化を行うことが多い。構造体のコンフォメーション変化の計測には、二重偏光干渉測定法(DPI)や円偏向二色性分析法(CD)などの技術を用いることが多い。光学ハサミや原子間力顕微鏡を用いて分子を直接操作する技術も、力や距離がナノスケールで問題となる生命現象をモニターする時に利用される。分子生物物理学者によく見られる特徴として、複雑な生命現象を数々の相互作用単位から成るシステムとして捉えることが多く、このシステムは統計力学、熱力学、化学反応速度論の立場から理解することが可能であると考えることが多い。多岐にわたる諸分野からの知識や実験手法などを用いることで、個々の分子や複合体間に起こる相互作用、または構造体そのものを直接的に観察、モデル化、操作などを行うことが出来るようになった。 生物物理学は、構造生物学や酵素反応速度論といった分子細胞生物学的なテーマを扱うことが伝統的に多かったが、今日では研究対象となる分野が飛躍的に拡大しつつある。生物物理学では物理学、数学、統計学などから派生したモデルや実験手法を、組織や臓器、生物集団や生態系などさらに大きなシステムに応用することが、近年ではますます多くなっている。.

新しい!!: 量子生物学と生物物理学 · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

新しい!!: 量子生物学と運動エネルギー · 続きを見る »

視覚

視覚(しかく、)とは、眼を受容器とする感覚のこと。.

新しい!!: 量子生物学と視覚 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 量子生物学と量子力学 · 続きを見る »

量子論

量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

新しい!!: 量子生物学と量子論 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: 量子生物学と自由エネルギー · 続きを見る »

酵素反応

酵素反応(こうそはんのう)とは、酵素が触媒する生化学反応である。.

新しい!!: 量子生物学と酵素反応 · 続きを見る »

水素イオン

水素イオン (hydrogen ion) という用語は、国際純正・応用化学連合によって、水素及びその同位体の全てのイオンを表す一般名として勧告されている。イオンの電荷に依って、陽イオンと陰イオンの2つの異なる分類に分けることができる。.

新しい!!: 量子生物学と水素イオン · 続きを見る »

放射

放射(ほうしゃ,radiation)は、粒子線(アルファ線、ベータ線など)や電磁波(光や熱なども含む)、重力波などが放出されること、または放出されたそのものをいう。かつての日本では、輻射(ふくしゃ)とされていたが、太平洋戦争後の当用漢字表に「輻」の字が含まれなかった。このため、当初はやむを得ず「ふく射」と表記されていたが、その後、「放射」と表現が変更された。なお、「輻」は現在の常用漢字にも含まれていない。.

新しい!!: 量子生物学と放射 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »