ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

量子暗号

索引 量子暗号

量子暗号(りょうしあんごう、Quantum cryptography)とは、通常は量子鍵配送のことを指す。完全な秘密通信は、伝送する情報の量と同じ長さの秘密鍵を送信者と受信者が共有することで初めて可能になる(ワンタイムパッドと呼ばれる方式を用いる)。この秘密鍵の共有を量子状態の特性によって実現し、通信路上の盗聴が検出できる。計算量的安全性でなく情報理論的安全性であることと、その実装の基礎が量子力学という物理学の基本法則に基づいていることが特徴である。なお、商用に広く用いられる公開鍵暗号は解読に計算時間が膨大にかかるだけ(計算量的安全性)であり、情報理論的に安全な秘密通信ではない。量子暗号は量子情報理論の、現在のところほぼ唯一の現実的な応用である。 別の概念として、量子コンピュータを用いた公開鍵暗号方式を「量子公開鍵暗号」ということがある。例えば、OTU暗号 (岡本・田中・内山暗号) はナップサック問題といわれるNP完全問題に基づいており、鍵の生成時に離散対数問題を解くために量子コンピュータを用いる。.

23 関係: ナップサック問題チャールズ・ベネット (物理学者)バックドアワンタイムパッドアインシュタイン=ポドルスキー=ローゼンのパラドックスキロメートル公開鍵暗号BB84BPS研究開発計算量的安全性を持つ暗号量子力学量子ネットワーク量子ビット量子テレポーテーション量子コンピュータ量子もつれ量子状態量子鍵配送量子暗号プロトコル離散対数NP完全問題情報理論的安全性

ナップサック問題

ナップサック問題 ナップサック問題(ナップサックもんだい、Knapsack problem)は、計算複雑性理論における計算の難しさの議論の対象となる問題の一つで、「容量 C のナップサックが一つと、n 種類の品物(各々、価値 pi, 容積 ci)が与えられたとき、ナップサックの容量 C を超えない範囲でいくつかの品物をナップサックに詰め、ナップサックに入れた品物の価値の和を最大化するにはどの品物を選べばよいか」という整数計画問題である。同じ種類の品物を1つまでしか入れられない場合(xi ∈ )や、同じ品物をいくつでも入れてよい場合(xi ∈ 0以上の整数)など、いくつかのバリエーションが存在する。 決定問題としてのナップサック問題は、「C, pi, ci のほかに価値の合計の目標 V が与えられたとき、容量 C 以内でナップサック内の品物の価値の合計が V 以上になるような品物の選び方はあるか」を判定することである。 全ての品物について pi.

新しい!!: 量子暗号とナップサック問題 · 続きを見る »

チャールズ・ベネット (物理学者)

チャールズ・ヘンリー・ベネット(, 1943年 - )は、アメリカ合衆国の物理学者、計算機科学者。IBM ResearchのIBMフェロー。.

新しい!!: 量子暗号とチャールズ・ベネット (物理学者) · 続きを見る »

バックドア

バックドア(backdoor)とは、直訳すれば「裏口」または「勝手口」のこと。防犯・犯罪学などでは、「正規の手続きを踏まずに内部に入ることが可能な侵入口」を指している。この記事では、主にコンピュータセキュリティの用語としてのバックドアについて述べる。.

新しい!!: 量子暗号とバックドア · 続きを見る »

ワンタイムパッド

ワンタイムパッド (one time pad, OTP) とは、乱数列を高々1回だけ使う暗号の運用法である。1回限り暗号、めくり暗号などとも呼ばれる。発案は戦前であるが、戦後、クロード・シャノンにより情報理論的安全性としてその強度の概念が確立された。.

新しい!!: 量子暗号とワンタイムパッド · 続きを見る »

アインシュタイン=ポドルスキー=ローゼンのパラドックス

アインシュタイン=ポドルスキー=ローゼンのパラドックス(頭文字をとってEPRパラドックスとも呼ばれる)は、量子力学の量子もつれ状態が局所性を(ある意味で)破るので、相対性理論と両立しないのではないかというパラドックスである。アルベルト・アインシュタイン、ボリス・ポドルスキー、ネイサン・ローゼンらの思考実験にちなむ。 EPRパラドックスが発表された当時は、アインシュタインらは局所実在論の立場を取っていたため、量子論が実在論的に完全でない結果を与えることを「パラドックス」であるとした。しかし、ベルの不等式の検証(1982年)などにより、量子論では局所実在論が破綻することが明らかになっており、非局所的な量子もつれ状態はEPR相関と呼ばれている。.

新しい!!: 量子暗号とアインシュタイン=ポドルスキー=ローゼンのパラドックス · 続きを見る »

キロメートル

メートル(kilometre、米国のみ1977年以降 kilometer、記号:km)は、国際単位系 (SI) の長さの単位で、1000 メートルに等しい。 km の記号は、長さのSI基本単位であるメートル m に 103 倍を表すSI接頭辞であるキロ k を付けたものである。 ヘクトメートル ≪ キロメートル ≪ メガメートル.

新しい!!: 量子暗号とキロメートル · 続きを見る »

公開鍵暗号

公開鍵暗号(こうかいかぎあんごう、Public-key cryptography)とは、暗号化と復号に別個の鍵(手順)を用い、暗号化の鍵を公開すらできるようにした暗号方式である。 暗号は通信の秘匿性を高めるための手段だが、それに必須の鍵もまた情報なので、鍵を受け渡す過程で盗聴されてしまうというリスクがあった。共通鍵を秘匿して受け渡すには(特使が運搬するというような)コストもかかり、一般人が暗号を用いるための障害であった。この問題に対して、暗号化鍵の配送問題を解決したのが公開鍵暗号である。.

新しい!!: 量子暗号と公開鍵暗号 · 続きを見る »

BB84

BB84は、チャールズ・ベネット(Bennett)と(Brassard)によって1984年に提案された、暗号学的な、量子通信を利用する鍵配送プロトコルである。二人の頭文字と発表年からBB84と呼ばれ、初めて提案された具体的な量子暗号のプロトコルとして有名である。.

新しい!!: 量子暗号とBB84 · 続きを見る »

BPS

BPS(ビーピーエス).

新しい!!: 量子暗号とBPS · 続きを見る »

研究開発

開発(けんきゅうかいはつ、)とは、特定の対象を調査して、基礎学問の研究や、目的に応じた応用研究の模索、将来的に発展する技術等の試験を行い、技術的な優位を得るための活動である。 英語では20世紀の初頭以降に用いられるようになった言葉であり、R&Dの略称を用いた組織や部局、団体名が多数存在する。.

新しい!!: 量子暗号と研究開発 · 続きを見る »

計算量的安全性を持つ暗号

暗号理論において、計算量的安全性(けいさんりょうてきあんぜんせい)とは、暗号解読に必要なアルゴリズムの計算量に着目した暗号の安全性に関する概念の一つである。 具体的には、ある暗号を解読するための計算量が多項式時間に収まらない場合、その暗号は計算量的に安全という。実際に製品に組み込まれている暗号では鍵長などのパラメータが固定されていて解読計算量は定数時間になっているが、パラメータ選択時に現状及び今後の計算機能力の見積りを行い、安全性を保ちたい期間内には解読可能にならないような値を設定する。 このような計算量的安全性は、安全性の十分条件を与える情報理論的安全性よりは弱い安全性であるが、必要条件を与えるに過ぎない統計量的安全性よりは強い安全性であり、一般に広く利用されている暗号の多くはこの安全性に依拠している。.

新しい!!: 量子暗号と計算量的安全性を持つ暗号 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 量子暗号と量子力学 · 続きを見る »

量子ネットワーク

量子ネットワーク(りょうしネットワーク)は、量子暗号技術から発展してきた通信ネットワークである。 量子テレポーテーション実験における成功の後、量子通信を行うためのネットワークという概念が提唱された。さらに、2つの会社(スイスのidQuantique社、アメリカのMagiQTech社)が量子力学に基づいた実用的な通信デバイスを発売したとき、量子力学の原理を利用した量子暗号化による安全なネットワークの必要性が認識された。量子ネットワークでは、エンタングルメントの技術によって、データは量子状態として光ファイバーリンクまたは空気中を経由して通信が行われる。.

新しい!!: 量子暗号と量子ネットワーク · 続きを見る »

量子ビット

量子ビット(りょうしビット、quantum bit)とは、量子情報の最小単位のことである。キュービット、キュビット、クビット(qubit)、Qビット(Qbit)ともいう。それに対して、従来のコンピュータのビットの事を古典ビット(classical bit)やCビット(Cbit)という。 量子情報では、従来の情報の取扱量の最小単位であるビットの代わりに、情報を量子力学的2準位系の状態ベクトルで表現する。 古典ビットは0か1かのどちらかの状態しかとることができないが、量子ビットは、0と1だけでなく0と1の状態の量子力学的重ね合わせ状態もとることができる。ブラ-ケット記法では、1量子ビットは、\alpha |0\rangle + \beta |1\rangleと表現される。ここで、\alpha, \betaは|\alpha|^2 + |\beta|^2.

新しい!!: 量子暗号と量子ビット · 続きを見る »

量子テレポーテーション

量子テレポーテーション(りょうしテレポーテーション、英:Quantum teleportation)とは、古典的な情報伝達手段と量子もつれ (Quantum entanglement) の効果を利用して離れた場所に量子状態を転送することである。 テレポーテーションという名前であるものの、粒子が空間の別の場所に瞬間移動するわけではない。量子もつれの関係にある2つの粒子のうち一方の状態を観測すると瞬時にもう一方の状態が確定的に判明することからこのような名前がついた。また、この際に粒子間で情報の伝達や物理的作用は起こっていない。これは、観測により任意の量子状態を実現することは不可能であることからもわかる。したがって、量子テレポーテーションを用いれば超光速通信が実現できるなどということはない。 古典的な情報転送の経路を俗に古典チャンネルなどと言うことに対し、量子もつれによる転送をアインシュタイン=ポドルスキー=ローゼン (Einstein-Podolsky-Rosen; EPR) チャンネルと呼ぶ。EPR相関から来ている。古典チャンネルでは任意の量子状態を送ることはできず、量子状態を送るには系自体を送信するか、量子テレポーテーションを用いる必要がある。.

新しい!!: 量子暗号と量子テレポーテーション · 続きを見る »

量子コンピュータ

量子コンピュータ (りょうしコンピュータ、英語:quantum computer) は、量子力学的な重ね合わせを用いて並列性を実現するとされるコンピュータ。従来のコンピュータの論理ゲートに代えて、「量子ゲート」を用いて量子計算を行う原理のものについて研究がさかんであるが、他の方式についても研究・開発は行われている。 いわゆる電子式など従来の一般的なコンピュータ(以下「古典コンピュータ」)の素子は、情報について、「0か1」などなんらかの2値をあらわすいずれかの状態しか持ち得ない「ビット」で扱う。量子コンピュータは「量子ビット」 (qubit; quantum bit、キュービット) により、重ね合わせ状態によって情報を扱う。 n量子ビットがあれば、2^nの状態を同時に計算できる。もし、数千qubitのハードウェアが実現した場合、この量子ビットを複数利用して、量子コンピュータは古典コンピュータでは実現し得ない規模の並列コンピューティングが実現する。2^以下)で数千年かかっても解けないような計算でも、例えば数十秒といった短い時間でこなすことができる、とされている。--> 量子コンピュータの能力については、計算理論上の議論と、実際に実現されつつある現実の機械についての議論がある。#計算能力の節を参照。.

新しい!!: 量子暗号と量子コンピュータ · 続きを見る »

量子もつれ

量子もつれ(りょうしもつれ、quantum entanglement)とは、一般的に を漠然と指す用語として用いられる。しかし、量子情報理論においてはより限定的に、 を表す用語として用いられる。 (2)は(1)のある側面を緻密化したものであるが、捨象された部分も少なくない。例えば典型的な非局所効果であるベルの不等式の破れなどは(2)の枠組みにはなじまない。 どちらの意味においても、 複合系の状態がそれを構成する個々の部分系の量子状態の積として表せないときにのみ、量子もつれは存在する(逆は必ずしも真ではない)。このときの複合系の状態をエンタングル状態という。量子もつれは、量子絡み合い(りょうしからみあい)、量子エンタングルメントまたは単にエンタングルメントともよばれる。.

新しい!!: 量子暗号と量子もつれ · 続きを見る »

量子状態

量子状態(りょうしじょうたい、)とは、量子論で記述される系(量子系)がとる状態のことである。 これは系の物理量(可観測量、オブザーバブル)を測定したとき、その測定値のバラつき具合を表す確率分布によって定義される。 以下に述べるように、量子状態には、純粋状態と混合状態とがある。.

新しい!!: 量子暗号と量子状態 · 続きを見る »

量子鍵配送

量子鍵配送(Quantum Key Distribution, QKD)は、通信を行う二者間でのセキュア通信を保証するために、量子力学を用いてランダムな秘密鍵を共有し、それをもとに情報を暗号・復号する。量子鍵配送はしばしば量子暗号と混同されるが、量子鍵配送は量子暗号技術の一つの手法である。 量子配送を利用することによって得られる重要な性質は、通信を行う二者がその通信に用いられる鍵情報を取得しようとする盗聴者の存在を探知できるという点である。これは量子力学の基本的原理によるもので、量子系は観測することによってそれ自体が分散してしまう。鍵を傍受しようとする第三者は何らかの方法で鍵の情報を観測する必要があり、その観測行為が探知可能な片側性を引き起こすことを利用する。重ね合わせや量子もつれを用い、量子状態にある情報を転送することによって傍受を探知することが出来る通信システムを実装することが出来る。傍受性が一定のしきい値を下回ったとき、秘匿性が保証された暗号鍵を生成し、それ以外の場合は傍受が行われたとして鍵生成は行わずに通信を終了する。 QKDにおける秘匿性は量子力学の原理を根拠にしているのに対し、従来の暗号鍵配送プロトコルは逆関数の計算が非常に困難であることを安全の根拠としているため、傍受を探知することが出来ず、またそれ故に秘匿性を完全に保証することは出来ない。 量子鍵配送は鍵を生成・配送することにのみ使われ、実際のデータ転送には使われない。すなわちこの暗号鍵はどんな暗号化アルゴリズムにも用いることができ、暗号化されたデータは通常の伝送路によって送ることが出来る。 これに最も適した暗号化アルゴリズムとしてワンタイムパッドがあり、これは不規則な秘密鍵を用いた際に証明可能安全性を持つ暗号方式として知られている。.

新しい!!: 量子暗号と量子鍵配送 · 続きを見る »

量子暗号プロトコル

量子暗号プロトコル (quantum cryptography protocol) は量子暗号と総称される分野で研究されているものの一つで、その原理に量子の性質を利用する暗号プロトコルである。.

新しい!!: 量子暗号と量子暗号プロトコル · 続きを見る »

離散対数

代数学における離散対数(りさんたいすう、discrete logarithm)とは、通常の対数の群論的な類似物である。 離散対数を計算する問題は整数の因数分解(en:integer factorization)と以下の点が共通している:.

新しい!!: 量子暗号と離散対数 · 続きを見る »

NP完全問題

NP完全(な)問題(エヌピーかんぜん(な)もんだい、NP-complete problem)とは、(1) クラスNP(Non-deterministic Polynomial)に属する決定問題(言語)で、かつ (2) 任意のクラスNPに属する問題から多項式時間還元(帰着)可能なもののことである。条件 (2) を満たす場合は、問題の定義が条件 (1) を満たさない場合にも、NP困難な問題とよびその計算量的な困難性を特徴づけている。多項式時間還元の推移性から、クラスNPに属する問題で、ある一つのNP完全問題から多項式時間還元可能なものも、またNP完全である。現在発見されているNP完全問題の証明の多くはこの推移性によって充足可能性問題などから導かれている。充足可能性問題がNP完全であることは1971年、スティーブン・クック(Stephen Cook (1971).

新しい!!: 量子暗号とNP完全問題 · 続きを見る »

情報理論的安全性

暗号理論において、情報理論的安全性(じょうほうりろんてきあんぜんせい)とは、暗号に対する攻撃(暗号解読)に対する強度(安全性)に関する概念の一つであり、一般に計算量的安全性よりも強い。この安全性を満たす暗号では「どんな鍵によって得られるどんな復号結果も、同様に確からしい」ので、どれほどの計算力をもってしても、解読は不可能である。 暗号の強度についての本格的な情報理論的分析は、情報理論の祖として有名なシャノン(1949年)による「秘匿系での通信理論」が始まりとされる。ただし、それ以前から数理的に(主に確率論を応用して)検討されていた。シャノンは、暗号が情報理論的な意味で無条件に安全であるためには「平文サイズ≦鍵サイズ」を満たすことが必要十分条件であることを示した。一例としては、正しく(この条件を満たし、また、その他の点で運用ミスによる弱点をもたないように)運用されているワンタイムパッドは、この条件を満たす。しかし、前提として平文と同じサイズの秘密鍵を事前に安全に通信者間で共有する必要があるなど、きわめて運用コストが高いので、情報理論的に安全な暗号は特別な用途を除いてほとんど使用されていない。 以上の議論には、通信が「古典物理的」な方法によるという前提がある。すなわち、盗聴などによって情報が複製されてもそれを検知するすべはないので、暗号によって秘匿しなければならないという前提がある。量子物理的な現象を利用し、対象から情報を得ると対象の変化が不可避なので盗聴が検出できるという性質の利用は、量子暗号の研究目的の一つである。.

新しい!!: 量子暗号と情報理論的安全性 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »