ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

酢酸

索引 酢酸

酢酸(さくさん、醋酸、acetic acid)は、化学式は示性式 CH3COOH、分子式 C2H4O2と表される簡単なカルボン酸の一種である。IUPAC命名法では酢酸は許容慣用名であり、系統名はエタン酸 (ethanoic acid) である。純粋なものは冬に凍結することから氷酢酸(ひょうさくさん)と呼ばれる。2分子の酢酸が脱水縮合すると別の化合物の無水酢酸となる。 食酢(ヴィネガー)に含まれる弱酸で、強い酸味と刺激臭を持つ。遊離酸・塩・エステルの形で植物界に広く分布する。酸敗したミルク・チーズのなかにも存在する。 試薬や工業品として重要であり、合成樹脂のアセチルセルロースや接着剤のポリ酢酸ビニルなどの製造に使われる。全世界での消費量は年間およそ6.5メガトンである。このうち1.5メガトンが再利用されており、残りは石油化学原料から製造される。生物資源からの製造も研究されているが、大規模なものには至っていない。.

275 関係: 単離古代ローマ可逆反応向山光昭吉草酸塩 (化学)塩化チオニル塩化アセチル塗料大分県外耳炎媒染宇田川榕菴上部消化管内視鏡常温三塩化リン一酸化炭素乾留二リン酸二硫化炭素二量体二酸化炭素付加反応付加脱離反応化学式ペルオキシドナフサマンガンマグネシウムチーズチッソチオエステルチタンハステロイポリエチレンテレフタラートポリ酢酸ビニルムストメチルエチルケトンメバロン酸経路メルク・アンド・カンパニーメタノールメタノサルキナ属メタノサエタ属メタンメタン菌モンサント (企業)モンサント法ヨーロッパヨードメタン...ヨウ素ラジカル (化学)リンリン酸リン酸エステルリスクフレーズルネサンスルートヴィヒ・ヴァン・ベートーヴェンルイ・パスツールロジウムワーグナー・メーヤワイン転位ワッカー酸化ワニスワイントリフルオロ酢酸トリクロロ酢酸ヘルマン・コルベヘル・ボルハルト・ゼリンスキー反応ヘロインヘック反応ヘテロポリ酸ブロモ酢酸ブタンプロトン性溶媒プロピオン酸パラジウムパラジウム炭素パスカルヒドロキシ基ビールビニル基ピルビン酸ピクリン酸テルペノイドテレフタル酸テトラクロロエチレンティシチェンコ反応テオプラストスフリーデル・クラフツ反応フリードリヒ・ヴェーラーフィッシャーエステル合成反応フィブリンフェノール類ドイツニトロセルロースホルマリンベンジル基ベンゼン分子モデル分析化学アミノ酸アメリカ合衆国アルミニウムアルブミンアルデヒドアルデヒドデヒドロゲナーゼアルカンアルケンアルコールアンモニアアンドレアス・リバヴィウスアデノシン三リン酸アデノシン二リン酸アデニル酸アニリンアクリル絵具アセナフテンアセチル基アセチルコリンアセチルセルロースアセチルサリチル酸アセチルCoAアセチレンアセトバクター属アセトンアセトフェノンアセトニトリルアセトアミドアセトアルデヒドイリジウムインディゴウィトルウィウスエナント酸エチレンエチレンオキシドエステルエタノールオクタンカルボン酸カルボン酸塩化物カプリル酸カプロン酸カティバ法ガイウス・プリニウス・セクンドゥスギ酸クラゲクロムクロロホルムクロロ酢酸クロストリジウム属クエン酸回路グリーンサスティナブルケミストリーグリセリンケテンコバルトコリン (栄養素)コルポスコピーコークスシードルジャービル・イブン=ハイヤーンジャガイモジルコニウムジエチルエーテルジクロロ酢酸ステロイドステンレス鋼セラニーズゼラチンサイレージサソリモドキ写真写真フィルム共沸固定 (組織学)四塩化炭素BASF石炭化学石油エーテル現像現像液硫黄硫酸硫酸水銀穀物第9族元素粘膜置換反応真正細菌炭化カルシウム炭酸炭酸カリウム生合成生気論無機酸無水酢酸熱分解牛乳発酵融雪剤過塩素酸顔料飲酒の化学補酵素A解糖系試薬調味料麦芽錬金術舎密開宗防腐剤薬局方脱離基脂肪酸脂肪酸の合成野依良治重合反応重合体臭素酢酸ナトリウム酢酸マグネシウム酢酸メチル酢酸ブチル酢酸プロピル酢酸ビニル酢酸ダーリア溶液酢酸アンモニウム酢酸イソブチル酢酸イソアミル酢酸エチル酢酸オルセイン溶液酢酸カリウム酢酸カルシウム酢酸カーミン溶液酢酸銅(II)酢酸菌酢酸鉄(II)酢酸鉛(II)酪酸酸と塩基酸化酸化プロピレン酸化カルシウム酸素酸無水物酵母鉛中毒鉛白電子回折電気炉製鋼法IUPAC命名法X線回折接着剤樟脳標準状態殺菌剤比誘電率比重水俣病水素水素結合水酸化カルシウム木酢液有機合成化学有機化学昭和電工3-メチル-1-ブタノール3-ヒドロキシ-2-ブタノン インデックスを展開 (225 もっと) »

化学において、基(き、group、radical)は、その指し示すものは原子の集合体であるが、具体的には複数の異なる概念に対応付けられているため、どの概念を指すものかは文脈に依存して判断される。 分子中に任意の境界を設定すると、原子が相互に共有結合で連結された部分構造を定義することができる。これは、基(または原子団)と呼ばれ、個々の原子団は「~基」(「メチル基」など)と命名される。 「基」という語は、上に述べた原子団を指す場合と、遊離基(またはラジカル)を意味する場合がある。後者の用語法は、日本語でかつて遊離基の個別名称を原子団同様に「~基」(「メチル基」など)としていたことに由来するが、現在ではほとんどの場合「ラジカル」、「遊離基」と呼ぶ。原語における経緯についてはラジカルの項に詳しい。以上、語義の変遷は、おおかた右図のようにまとめられる。 以下この記事では、原子団たる基(group)について述べる。.

新しい!!: 酢酸と基 · 続きを見る »

単離

単離(たんり)とは、様々なものが混合している状態にあるものから、その中の特定の要素のみを取り出すことである。 化学的には、混合物から純物質を物理化学的原理に基づいて分離する操作のことを指す。 代表的な操作方法として蒸留法、再結晶法、昇華法、ゾーン融解法、クロマトグラフィー法、光学分割法、限外濾過法、ガス拡散法がある。 実際には分離したい純物質間の物理化学的特性を考慮して、これらの方法を単独で用いたり、複数組み合わせて単離を行うことになる。 たとえば石油からヘキサンを単離する場合は、結晶化が困難なので蒸留を採用することになる。 または砂糖と食塩の混合物ならば、砂糖は熱分解して分離できないので再結晶法が選択される。 生物学でも同様な意味で使われることもある。しかし、細胞の中から細胞器官をより分ける場合、微生物群集から、特定の微生物を取り出す(分離・あるいは純粋培養)操作のことをこういう例もある。細胞小器官の単離には遠心分離など、化学とは異なる手法もある。.

新しい!!: 酢酸と単離 · 続きを見る »

古代ローマ

古代ローマ(こだいローマ、Roma antiqua)は、イタリア半島中部に位置した多部族からなる都市国家から始まり、領土を拡大して地中海世界の全域を支配する世界帝国までになった国家の総称である。当時の正式な国号は元老院ならびにローマ市民(Senatus Populusque Romanus)であり、共和政成立から使用されて以来滅亡まで体制が変わっても維持された。伝統的には476年のロムルス・アウグストゥルスの退位をもって古代ローマの終焉とするのが一般的であるが、ユスティニアヌス1世によってイタリア本土が再構成される554年までを古代ローマに含める場合もある。ローマ市は、帝国の滅亡後も一都市として存続し、世界帝国ローマの記憶は以後の思想や制度に様々な形で残り、今日まで影響を与えている。.

新しい!!: 酢酸と古代ローマ · 続きを見る »

可逆反応

可逆反応(かぎゃくはんのう 独: reversible Reaktion、英:reversible reaction)とは、化学反応のうち、始原系(原料)から生成系(生成物)への反応(正反応)と、反対に生成系から始原系に戻る反応(逆反応またはレトロ反応)がともに起こる反応のことである。ある系においてそれらの正、逆反応しか起こらなければ、その系は最終的に一定量の基質と生成物を含む平衡状態に落ち着く。その場合、正反応と逆反応の速度定数の比が平衡定数となる。 可逆反応とは反対に、正反応のみが起こり逆反応が起こらない反応を、不可逆反応と呼ぶ。 可逆反応は始原系と生成系のエネルギー差が小さく、活性化エネルギーが低い場合に起こる。可逆反応を化学反応式で表すときは、始原系と生成系の間に右向きの片矢印と左向きの片矢印を上下に重ねて書く。例として、アンモニアとアンモニウムイオンとの間の酸塩基反応を示す。 アンモニアの酸塩基反応: ある系が可逆反応により一定の平衡状態となってしまうと、基質がいつまでも残ってしまう状況に陥ることがある。それを解決して生成物を効率良く得るために、生成物を系外に除去する工夫をしたり、複数の基質のうちの一方を溶媒などとして大過剰量で用いたりすることで、平衡を生成物側に偏らせる手法がとられる。 ある反応で複数の生成物が得られる可能性があり、その生成比が、生成物、反応中間体、基質のいずれか、あるいはいくつかを含む可逆反応の平衡定数で決定される場合、そのような選択性を熱力学的支配による選択性、という。.

新しい!!: 酢酸と可逆反応 · 続きを見る »

向山光昭

向山 光昭(むかいやま てるあき、1927年1月5日 - )は日本の有機化学者。長野県伊那市出身。 東京大学名誉教授。東京工業大学名誉教授。東京理科大学名誉教授。前社団法人北里研究所基礎研究所有機合成化学研究室 名誉所員兼室長。現在、東京化成工業株式会社基礎研究所技術顧問。.

新しい!!: 酢酸と向山光昭 · 続きを見る »

吉草酸

吉草酸(きっそうさん、valeric acid)は示性式 CH3(CH2)3COOH、分子量 102.13 のカルボン酸。IUPAC系統名ではペンタン酸 (pentanoic acid) となる。CAS登録番号は109-52-4。足の裏の臭いはこの異性体であるイソ吉草酸が原因である。閾値が非常に低いことから、悪臭防止法の規制対象となっている。消防法による第4類危険物 第3石油類に該当する。.

新しい!!: 酢酸と吉草酸 · 続きを見る »

塩 (化学)

化学において塩(えん、Salt)とは、広義には酸由来の陰イオン(アニオン)と塩基由来の陽イオン(カチオン)とがイオン結合した化合物のことであり、狭義にはアレニウス酸とアレニウス塩基との等当量混合物のことである。酸・塩基成分の由来により、無機塩、有機塩とも呼ばれる。塩は必ずしも中和反応によって生じるとは限らない。.

新しい!!: 酢酸と塩 (化学) · 続きを見る »

塩化チオニル

塩化チオニル(えんかチオニル、thionyl chloride)とは、亜硫酸の酸塩化物に相当する無機化合物で、化学式SOCl2、分子量118.97、融点-104.5℃、沸点76℃、比重1.65g/cm3の液体であり、発煙性や刺激臭を有する。CAS登録番号は。塩化スルフィニル(sulfinyl chloride)とも呼ばれる。毒物及び劇物取締法により劇物に指定されている。また化学兵器の禁止及び特定物質の規制等に関する法律(平成七年四月五日法律第六十五号)により第二種指定物質として指定されている。.

新しい!!: 酢酸と塩化チオニル · 続きを見る »

塩化アセチル

塩化アセチル(えんかアセチル、acetyl chloride)とは、有機化合物の一種で、酢酸から誘導されるカルボン酸塩化物である。示性式は H3C-COCl と表される。常温常圧では無色の引火性、可燃性の液体である。水と容易に反応して加水分解を受け、酢酸と塩化水素に変わる。そのため塩化アセチルは湿った空気中では白煙を生じ、通常は自然界には存在しない。不快な刺激臭を持ち、目や皮膚を刺激する。ベンゼン、エーテル、クロロホルム、石油エーテルに容易に溶ける。 塩化アセチルは、市販され容易に入手できる試薬であるが、酢酸と塩化チオニルあるいは三塩化リンとの反応で合成することができる。 実験室的には、無水酢酸と塩化カルシウムとを反応させて蒸留精製する方法が簡便である。工業的には酢酸と塩化スルフリルSO2Cl2との反応で合成される。 塩化アセチルは、有機合成において、アセチル化反応に用いられる。エタノールのアセチル化による酢酸エチルの合成、ベンゼンのフリーデル・クラフツのアセチル化反応によるアセトフェノンの合成を例として示す。 アルコールやアミンのアセチル化反応の際には、トリエチルアミンや水酸化ナトリウム(ショッテン・バウマン反応)などを発生する塩化水素を捕捉する塩基として用いて反応させる。あるいはピリジンや4-ジメチルアミノピリジン (DMAP)は、反応系中でアセチルピリジニウム塩を生じ、これがアルコールやアミンをアセチル化し触媒的に作用することから実験室的にはピリジン類を少量あるいは過剰量を他の塩基と併用あるいは溶媒として用いることも多い。 無水酢酸も、同様のアセチル化を行う試薬として用いられる。.

新しい!!: 酢酸と塩化アセチル · 続きを見る »

塗料

塗料(とりょう)とは、対象物を保護・美装、または、独自な機能を付与するために、その表面に塗り付ける材料のこと。 日本には古くから漆塗りに代表される塗料の歴史はあったが、洋式塗料の歴史は明治初頭に始まる。日本では家庭用品品質表示法の適用対象とされており雑貨工業品品質表示規程に定めがある。.

新しい!!: 酢酸と塗料 · 続きを見る »

大分県

大分県(おおいたけん)は、日本の九州地方東部に位置する県。県庁所在地は大分市である。 全国的に知名度が高い別府温泉や、由布院温泉をはじめとする温泉は源泉数(4,538ヶ所)、湧出量(291,340L/分)ともに日本一で、また地熱発電の発電量でも日本一でありさらに栽培、養殖などの産業、食文化、美容やと医療に至るまで豊かな温泉の恵みが幅広く活かされている。「日本一のおんせん県おおいた」をキャッチフレーズに温泉をアピールしている。.

新しい!!: 酢酸と大分県 · 続きを見る »

外耳炎

外耳炎(がいじえん、)とは、何らかの原因で外耳部分に発生した炎症の総称である。.

新しい!!: 酢酸と外耳炎 · 続きを見る »

媒染

媒染(ばいせん、mordanting)は、染色の過程において、染料を繊維に定着させる工程のこと。染料に漬ける前に繊維を処理する先媒染と、染料に漬けてから処理する後媒染、染色と同時に媒染処理する同時媒染の方法がある。媒染を要する染料を媒染染料、媒染に使う薬品を媒染剤という。ウコンやキハダなど媒染を要しない例外もあるが、天然染料の多くは媒染を必要とする。.

新しい!!: 酢酸と媒染 · 続きを見る »

宇田川榕菴

宇田川 榕菴(うだがわ ようあん、1798年4月24日(寛政10年3月9日) - 1846年8月13日(弘化3年6月22日))は、江戸時代後期の津山藩(岡山県津山市)の藩医で蘭学者。名は榕、緑舫とも号した。宇田川榕庵とも表記される。それまで日本になかった植物学、化学等を初めて書物にして紹介した人物である。元服前の14歳の時、江戸詰めの大垣藩医の家から師匠筋である津山藩の宇田川家へ養子に出され津山藩医となる。 宇田川家は蘭学の名門として知られ、養父である宇田川玄真、また玄真の養父である宇田川玄随、榕菴の養子である宇田川興斎も蘭学者、洋学者として知られる。.

新しい!!: 酢酸と宇田川榕菴 · 続きを見る »

上部消化管内視鏡

上部消化管内視鏡(じょうぶしょうかかんないしきょう)とは、一般に消化器科にて用いられる内視鏡もしくは検査・治療手技のこと。食道、胃、十二指腸までの上部消化管を観察する。英語では機器は Esophagogastroduodenoscope、手技はEsophagogastroduodenoscopyと異なるが、日本語では同じ語句を用いることが一般的である。胃カメラ(Gastoroscopy)とも呼ばれている。日本での略称は現在はEGD(Esophagogastroduodenoscopy)である。かつてはGIF(Gastrointestinalfiberscopy)であった。.

新しい!!: 酢酸と上部消化管内視鏡 · 続きを見る »

常温

常温(じょうおん)とは、常に一定した温度、温度が一定であること(恒温)、特に冷やしたり熱したりしない温度、平常の温度、一年中の平常の温度などを表す。これらは常の字と温度の温の字の組合せからの一般的な解釈としての意味であり、人間の感覚的な捉え方において、標準的な温度と思えるものを指す。室温が同様な意味で使われる場合もある。なお、日本薬局方は、常温とは別に標準温度を20℃と定めている。.

新しい!!: 酢酸と常温 · 続きを見る »

三塩化リン

三塩化リン(さんえんかリン)はリンの塩化物のひとつの無機化合物である。毒性、腐食性を持ち、常温・常圧において液体である。水と激しく反応する。工業的に重要な化合物であり、除草剤、殺虫剤、可塑剤、油への添加剤、難燃剤の製造に使われている。還元剤であり、五塩化リンや塩化ホスホリルへと酸化される。毒物及び劇物取締法で毒物に指定されている。.

新しい!!: 酢酸と三塩化リン · 続きを見る »

一酸化炭素

一酸化炭素(いっさんかたんそ、carbon monoxide)は、炭素の酸化物の1種であり、常温・常圧で無色・無臭・可燃性の気体である。一酸化炭素中毒の原因となる。化学式は CO と表される。.

新しい!!: 酢酸と一酸化炭素 · 続きを見る »

乾留

乾留・乾溜(かんりゅう)とは、不揮発性の固体有機物を空気を断ったまま強熱して熱分解すると同時に、その分解生成物を揮発性有機化合物と不揮発性物質に分けることである。.

新しい!!: 酢酸と乾留 · 続きを見る »

二リン酸

二リン酸(にリンさん、diphosphoric acid)は、化学式 H4P2O7 で表される無機化合物である。ピロリン酸(ピロリンさん、pyrophosphoric acid)とも呼ばれる。 リン酸を高温で脱水縮合することで生成する(接頭辞の pyro- は「熱・炎・高温」を意味する)。また、日本語において名称の類似するピロリンはアミンおよびイミンの一種であり、直接の関係はない。.

新しい!!: 酢酸と二リン酸 · 続きを見る »

二硫化炭素

二硫化炭素(にりゅうかたんそ、carbon disulfide)は代表的な炭素の硫化物で、化学式は CS2。無色で揮発性の液体であり、主にセロハンやレーヨンの製造過程で溶剤として利用されているほか、ゴムの加硫促進剤、有機化学原料や浮遊選鉱剤などに用いられている。二硫炭、硫化炭素、硫炭などと略される。劇物。.

新しい!!: 酢酸と二硫化炭素 · 続きを見る »

二量体

二量体(にりょうたい)またはダイマー(dimer)は、2つの同種の分子やサブユニット(単量体)が物理的・化学的な力によってまとまった分子または超分子を言う。二量体を形成することを、おもに化学では二量化、生化学では二量体化という。 さらに、3つ・4つのサブユニットがまとまったものは三量体・四量体と言う。少数のものがまとまったものを総称してオリゴマー、多数の場合は高分子と呼ぶ。.

新しい!!: 酢酸と二量体 · 続きを見る »

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」と呼ばれる事もある。 地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸・炭酸水と呼ばれる。 多方面の産業で幅広く使われる(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。.

新しい!!: 酢酸と二酸化炭素 · 続きを見る »

付加反応

チレンへの塩素の付加 付加反応(ふかはんのう)とは多重結合が解裂し、それぞれの端が別の原子団と新たな単結合を生成する反応である。 大きく分けて、アルケンのブロモ化を代表とする求電子付加反応(AdE)と、カルボニルとグリニャール試薬との反応を代表とする求核付加反応(AdN)に区分されるが、この他に非極性付加反応のラジカル付加がある。 炭素化合物では三重結合で最も起きやすく、二重結合がそれに次ぐ。これは三重結合の結合エンタルピーが小さいためである。 付加反応の生成物は 付加体 と呼ばれる。.

新しい!!: 酢酸と付加反応 · 続きを見る »

付加脱離反応

付加脱離反応(ふかだつりはんのう、elimination-addition reaction)とは付加反応と脱離反応とが連続して進行する化学反応であり、縮合反応(しゅくごうはんのう、condensation reaction)とも呼ばれる。カルボン酸あるいはカルボン酸誘導体からエステル、アミドなどが生成する反応が代表的な付加脱離反応である。 縮合反応の内、水分子が脱離する場合を、脱水縮合(だっすいしゅくごう)と呼ぶ。 付加脱離反応という場合脱離する原子団(脱離基と呼称される)は付加する原子団と異なる場合を指すので、付加とその逆反応である脱離との平衡反応は付加脱離反応には含めない。また反応の前後だけを見ると置換と付加脱離は同じ様に見えるが、両者の違いは反応機構の違いであり、反応中間体として付加体を経由するか否かで識別される。.

新しい!!: 酢酸と付加脱離反応 · 続きを見る »

化学式

化学式(かがくしき、chemical formula)とは、化学物質を元素の構成で表現する表記法である。分子からなる物質を表す化学式を分子式(ぶんししき、molecular formula)、イオン物質を表す化学式をイオン式(イオンしき、ionic formula)と呼ぶことがある。化学式と呼ぶべき場面においても、分子式と言い回される場合は多い。 化学式が利用される場面としては、物質の属性情報としてそれに関連付けて利用される場合と、化学反応式の一部として物質を表すために利用される場合とがある。.

新しい!!: 酢酸と化学式 · 続きを見る »

ペルオキシド

ペルオキシドの一般構造式 ヒドロペルオキシドの一般構造式 ペルオキシド (peroxide) とは、広義では過酸化物の総称。狭義ではペルオキシ基 (peroxy group、-O-O-) を有し、一般構造式が R-O-O-R と表される有機過酸化物のこと。エーテルを母体とする過酸化物と考えることができる。また、対応するエーテルの自動酸化によってペルオキシドが生成する。英語の peroxide は過酸化物イオン(ペルオキシドイオン)O2− を持つ塩(無機過酸化物など)も含めるが、日本語では過酸化ナトリウムなどのように、「過酸化~」と呼ばれることが多い。酸素上に水素が置換した R-O-O-H の形の化合物はヒドロペルオキシド (hydroperoxide) と呼ばれる。.

新しい!!: 酢酸とペルオキシド · 続きを見る »

ナフサ

ナフサ(英語:naphtha)とは、原油を常圧蒸留装置によって蒸留分離して得られる製品のうち沸点範囲がおおむね30 - 180℃程度のものである(2012年3月19日時点のアーカイブ)。粗製ガソリン、直留ガソリンなどとも呼ばれる。 ナフサのうち沸点範囲が35 - 80℃程度のものを軽質ナフサといい、日本では石油化学工業でのエチレンプラント原料として多く使用される。輸入原油を国内で精製して製造するものと、ナフサとして輸入するものが相半ばする。 沸点範囲が80 - 180℃程度のものを重質ナフサといい、接触改質装置におけるガソリンおよび芳香族炭化水素製造の原料としての使用が中心である。これは重質ナフサが炭素原子を6個以上持つ炭化水素を主成分としているため、接触改質における脱水素環化反応によって芳香族炭化水素を多く生成するからである。オイルライターやキャンプ用ポータブルストーブの燃料(ホワイトガソリン)に用いられる。.

新しい!!: 酢酸とナフサ · 続きを見る »

マンガン

マンガン(manganese 、manganum)は原子番号25の元素。元素記号は Mn。日本語カタカナ表記での名称のマンガンは Mangan をカタカナに変換したもので、日本における漢字表記の当て字は満俺である。.

新しい!!: 酢酸とマンガン · 続きを見る »

マグネシウム

マグネシウム(magnesium )は原子番号 12、原子量 24.305 の金属元素である。元素記号は Mg。マグネシュームと転訛することがある。中国語は金へんに美と記する。 周期表第2族元素の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)であり、とりわけ植物の光合成に必要なクロロフィルで配位結合の中心として不可欠である。また、有機化学においてはグリニャール試薬の構成元素として重要である。 酸化マグネシウムおよびオキソ酸塩の成分としての酸化マグネシウムを、苦い味に由来して苦土(くど、bitter salts)とも呼称する。.

新しい!!: 酢酸とマグネシウム · 続きを見る »

チーズ

チーズ()とは、牛・水牛・羊・山羊・ヤクなど鯨偶蹄目の反芻をする家畜から得られる乳を原料とし、乳酸発酵や柑橘果汁の添加で酸乳化した後に加熱や酵素(レンネット)添加によりカゼインを主成分とする固形成分(カード)と液体成分(ホエー)に分離して脱水した食品(乳製品)の一種。伝統的に乳脂肪を分離したバターと並んで家畜の乳の保存食として牧畜文化圏で重要な位置を占めてきた。日本語や中国語での漢語表記は、北魏時代に編纂された斉民要術に記されているモンゴル高原型の乳製品加工の記述を出典とする乾酪(かんらく)である。.

新しい!!: 酢酸とチーズ · 続きを見る »

チッソ

チッソ株式会社(CHISSO CORPORATION)は、戦後の高度成長期に発生した水俣病の補償業務を専業とする日本の企業である。元来は化学工業メーカーであったが、2011年3月31日をもって事業部門を中核子会社のJNC株式会社に移管し、持株会社となった。 登記上の本店を大阪市北区中之島に、本社を東京都千代田区大手町に置く。 旭化成、積水化学工業、積水ハウス、信越化学工業、センコーグループホールディングス、日本ガスなどの母体企業でもある。 主な子会社・関連会社として、JNC、JNC石油化学(旧:チッソ石油化学)(事業所:千葉県市原市)、九州化学工業(工場:福岡県北九州市)、JNCファイバーズ(旧:チッソポリプロ繊維・事業所:滋賀県守山市)や、ポリプロピレン事業合弁会社の日本ポリプロなどがある。また、日本国内の合弁相手に吉野石膏や同社と同根である旭化成がある。.

新しい!!: 酢酸とチッソ · 続きを見る »

チオエステル

チオエステル (thioester) とはカルボン酸とチオールが脱水縮合した構造 (R−CO−S−R') を持つ化合物である。チオエステルの特性基 (R−CO−S−R') をチオエステル結合と呼ぶ。また、C.

新しい!!: 酢酸とチオエステル · 続きを見る »

チタン

二酸化チタン粉末(最も広く使用されているチタン化合物) チタン製指輪 (酸化皮膜技術で色彩を制御) チタン(Titan 、titanium 、titanium)は、原子番号22の元素。元素記号は Ti。第4族元素(チタン族元素)の一つで、金属光沢を持つ遷移元素である。 地球を構成する地殻の成分として9番目に多い元素(金属としてはアルミニウム、鉄、マグネシウムに次ぐ4番目)で、遷移元素としては鉄に次ぐ。普通に見られる造岩鉱物であるルチルやチタン鉄鉱といった鉱物の主成分である。自然界の存在は豊富であるが、さほど高くない集積度や製錬の難しさから、金属として広く用いられる様になったのは比較的最近(1950年代)である。 チタンの性質は化学的・物理的にジルコニウムに近い。酸化物である酸化チタン(IV)は非常に安定な化合物で、白色顔料として利用され、また光触媒としての性質を持つ。この性質が金属チタンの貴金属に匹敵する耐食性や安定性をもたらしている。(水溶液中の実際的安定順位は、ロジウム、ニオブ、タンタル、金、イリジウム、白金に次ぐ7番目。銀、銅より優れる) 貴金属が元素番号第5周期以降に所属する重金属である一方でチタンのみが第4周期に属する軽い金属である(鋼鉄の半分)。.

新しい!!: 酢酸とチタン · 続きを見る »

ハステロイ

ハステロイ(HASTELLOY)はおもにニッケル基にモリブデンやクロムを多く加えることで耐食性や耐熱性を高めた合金であり、米ヘインズ社(Haynes International, Inc)の商標である。 広く使用されている合金群であるため日本でも一般名化している。 ニッケルを主成分とする合金でモリブデンやクロム、鉄などの成分量の違いで、ハステロイB、ハステロイCなどがある。析出硬化型のニッケル基合金に属し、耐酸化性の高いものや耐熱性が高い金属であるため、腐食性環境や高温環境での使用に向くが、物理的強度やクリープ強度、疲労強さは特段の強さを持たないため、構造材には向かない。 一般に、圧力計のダイヤフラムなどの耐食性が求められる場合やジェットエンジンの燃焼室などの耐熱性が求められるもの日本航空技術協会編、『航空機材料』、社団法人日本航空技術協会、2008年3月31日第1版第5刷発行、ISBN 9784902151244に使用される。国内では(旧三菱マテリアル桶川製作所)、大同特殊鋼株式会社などで相当材の製造が行われている。.

新しい!!: 酢酸とハステロイ · 続きを見る »

ポリエチレンテレフタラート

PETの樹脂識別コード ポリエチレンテレフタラート(polyethylene terephthalate)は、ポリエステルの一種である。ポリエチレンテレフタレートとも呼ばれる。 略称は頭字語でPETと綴り、日本語では「ペット」、英語では「ピーイーティー」と読む。ペットボトルの名称はこれに由来する。 アメリカ合衆国では「ダクロン」(デュポンの商標)、日本では「テトロン」(帝人と東レの共同商標)、イギリスでは「テリレン」とも言う。.

新しい!!: 酢酸とポリエチレンテレフタラート · 続きを見る »

ポリ酢酸ビニル

ポリ酢酸ビニル(ぽりさくさんびにる、polyvinyl acetate)は酢酸ビニルをラジカル重合することで得られる無色透明の熱可塑性樹脂である。略号としてPVAcが用いられる。.

新しい!!: 酢酸とポリ酢酸ビニル · 続きを見る »

ムスト

ムスト(ラテン語のvinum mustum、"若いワイン")は、新鮮な圧搾した果物ジュース(通常はブドウジュース)で果物の皮、種、果梗が含まれている。ムストの固形部分はポマース(ポミス)と呼ばれ、通常はムストの総重量の7% - 23%分ができる。ムストの製造はワイン作りの第一歩である。ムストはさまざまな料理に甘味料として使われることもある。.

新しい!!: 酢酸とムスト · 続きを見る »

メチルエチルケトン

メチルエチルケトン(ethyl methyl ketone、MEK)は、ケトンに分類される有機溶媒の一種。示性式は CH3COC2H5、IUPAC命名法では 2-ブタノン (2-butanone)、もしくはエチルメチルケトン (ethyl methyl ketone) と表される。消防法による危険物(第四類 引火性液体、第一石油類(非水溶性液体)(指定数量:200L) 丸善石油化学)に指定されている有機化学物質。引火点 −9 ℃、沸点 79.5 ℃、発火点 404 ℃。無色の液体で、特異な匂いがある。水にかなり溶けるが、水との混合物は均一な外観を維持しない。塗料溶剤や合成樹脂の原料となる。毒物及び劇物取締法により劇物に指定されている。.

新しい!!: 酢酸とメチルエチルケトン · 続きを見る »

メバロン酸経路

メバロン酸経路(メバロンさんけいろ)はテルペノイドやステロイド合成の出発物質であるイソペンテニル二リン酸およびジメチルアリル二リン酸をアセチルCoAから合成する生合成経路である。イソペンテニル二リン酸を合成する生合成経路は他に非メバロン酸経路がある。律速段階はヒドロキシメチルグルタリルCoA (HMG-CoA) がメバロン酸に還元される反応であり、これが名称の由来である。.

新しい!!: 酢酸とメバロン酸経路 · 続きを見る »

メルク・アンド・カンパニー

メルク・アンド・カンパニー()は、アメリカ合衆国ニュージャージー州に本社を置く、世界的な製薬会社である。 ドイツの化学・医薬メーカー、メルク(Merck KGaA)のアメリカ事業、及び資産が第一次世界大戦中に接収され、同国において独立したのが始まりである。そのため、このドイツのメルクと区別して、米国メルクと呼ばれることもある。 また、メルク・アンド・カンパニーは北米においてのみメルク (Merck)を名乗り、日本を含むその他の地域ではMSD (Merck Sharp and Dohme) の名でビジネスを行っている。一方、世界的に「メルク」の名称を用いているドイツのメルク(Merck KGaA)は、北米においてのみEMD (Emanuel Merck, Darmstadt)の名でビジネスを行う。 本項ではその日本法人、MSD株式会社 (MSD K.K.) についても併せて記述する。.

新しい!!: 酢酸とメルク・アンド・カンパニー · 続きを見る »

メタノール

メタノール (methanol) は有機溶媒などとして用いられるアルコールの一種である。別名として、メチルアルコール (methyl alcohol)、木精 (wood spirit)、カルビノール (carbinol)、メチールとも呼ばれる。示性式は CH3OH で、一連のアルコールの中で最も単純な分子構造を持つ。ホルマリンの原料、アルコールランプなどの燃料として広く使われる。燃料電池の水素の供給源としても注目されている。.

新しい!!: 酢酸とメタノール · 続きを見る »

メタノサルキナ属

メタノサルキナ属(Methanosarcina、メタノサルシナ)は、多様な淡水域・哺乳類の消化器官に分布するメタン生成古細菌である。水素のほか有機酸やアルコールなどもメタン生成の基質として用いることができる。メタノサルキナの発見は1930年代にまで遡り、メタン菌の中でも最も古い部類に入る。 形態は球菌が基本で、それらが多数集まったサルキナ様の群体を形成する種も多い。個々の細胞を包むS層の外側に、動物組織に存在するコンドロイチンに似たメタノコンドロイチンを持ち群体を形成する。属名はこの形態に由来しており、ラテン語でメタン+Sarcina(サルキナ、包み)を意味している。 栄養的には通性独立栄養または従属栄養的に増殖する。メタノサルキナはメタン菌の中でも特に多様な物質をメタン生成の基質に利用することが可能であり、水素-二酸化炭素系のほかに、ギ酸、酢酸、メタノール、メチルチオール、メチルアミン、一酸化炭素などを利用することができる。酢酸を基質に反芻動物の胃やメタン発酵装置でしばしば優占する。人間の大腸からも分離されている。 ゲノムサイズは記載されている古細菌の中では最大である。Methanosarcina acetivorans C2Aのゲノムサイズは575万1492bp、ORFは4540箇所であり、解析時は全原核生物の中でも4番目に大きいものであった。他にM.

新しい!!: 酢酸とメタノサルキナ属 · 続きを見る »

メタノサエタ属

Methanosaeta(メタノサエタ)は、メタン醗酵槽などから見つかる酢酸資化性のメタン菌(メタン生成古細菌)である。この属のみでメタノサエタ科を構成する。学名は、メタン菌であることと形状から、メタン+ ラテン語のsaeta(剛毛)より。 他のメタン菌と異なり、メタン生成の基質として水素やギ酸などを利用できず、酢酸のみを使用するという特徴がある。現在までにM.

新しい!!: 酢酸とメタノサエタ属 · 続きを見る »

メタン

メタン(Methan (メターン)、methaneアメリカ英語発音: (メセイン)、イギリス英語発音: (ミーセイン)。)は最も単純な構造の炭化水素で、1個の炭素原子に4個の水素原子が結合した分子である。分子式は CH4。和名は沼気(しょうき)。CAS登録番号は 。カルバン (carbane) という組織名が提唱されたことがあるが、IUPAC命名法では非推奨である。.

新しい!!: 酢酸とメタン · 続きを見る »

メタン菌

''Methanosarcina barkeri'' メタン菌(メタンきん、Methanogen)とは嫌気条件でメタンを合成する古細菌の総称である。動物の消化器官や沼地、海底堆積物、地殻内に広く存在し、地球上で放出されるメタンの大半を合成している。分類上は全ての種が古細菌ユリアーキオータ門に属しているが、ユリアーキオータ門の中では様々な位置にメタン菌が現れており、起源は古いと推測される。35億年前の地層(石英中)から、生物由来と思われるメタンが発見されている。 メタン菌の特徴は嫌気環境における有機物分解の最終段階を担っており、偏性嫌気性菌とはいえ、他の古細菌(高度好塩菌や好熱菌など)とは異なり、他の菌と共生あるいは基質の競合の中に生育している。ウシの腸内(ルーメン)や、数は少ないものの人の結腸などにも存在し、比較的身近な場所に生息する生物として認知されている。また、汚泥や水質浄化における応用等も試みられている。 別名、メタン生成菌、メタン生成古細菌など。かつてはメタン生成細菌と呼ばれていたこともあったが、古細菌に分類されるに伴い現在はあまり使われない。.

新しい!!: 酢酸とメタン菌 · 続きを見る »

モンサント (企業)

モンサント社 (英:Monsanto Company) は、かつて存在した、アメリカのミズーリ州 クレーブクールに本社のあった多国籍バイオ化学メーカー。 2005年の売上高は62億ドル、2008年の売上高は110億ドル、遺伝子組み換え作物の種の世界シェアは90%であった。研究費などでロックフェラー財団の援助を受けていた。 著名な除草剤であるラウンドアップを開発した企業であり、この除草剤に耐性をもつ種苗(遺伝子組み換え作物)を開発し、除草剤とセットで販売していた。バイオ化学メーカーとしては世界屈指の規模と成長性を誇り、ビジネスウィーク誌が選ぶ2008年の世界で最も影響力がある10社にも選ばれた。 一方、民間療法と有機栽培を強力に推奨し、遺伝子組換え作物を拒否している団体であったは、モンサント社の遺伝子組換え作物やラウンドアップなどが人間の健康と環境の両方を脅かすとし、モンサント社を2011年最悪の企業に認定した。 2018年6月、バイエルによる買収が完了し、モンサントの企業名は消滅の予定となっている。.

新しい!!: 酢酸とモンサント (企業) · 続きを見る »

モンサント法

モンサント法 (Monsanto process) とは、メタノールを触媒によってカルボニル化させることで酢酸を製造する化学プロセスである。1960年にドイツの化学メーカーであるBASFによって開発されたが、開発当初は700 atm、300という過酷な反応条件が必要であった。1966年にアメリカのバイオ化学メーカーであるモンサントによって改善され、30から60 atm、150から200という穏やかな条件で反応を進行させることができるようになった。後に、モンサント法よりも経済的で環境に配慮されたカティバ法がBPケミカルズによって開発され、モンサント法は主要な酢酸製造法の地位をカティバ法に取って代わられた。.

新しい!!: 酢酸とモンサント法 · 続きを見る »

ヨーロッパ

ヨーロッパ日本語の「ヨーロッパ」の直接の原語は、『広辞苑』第5版「ヨーロッパ」によるとポルトガル語・オランダ語、『デジタル大辞泉』goo辞書版「」によるとポルトガル語。(、)又は欧州は、地球上の七つの大州の一つ。漢字表記は欧羅巴。 地理的には、ユーラシア大陸北西の半島部を包括し、ウラル山脈およびコーカサス山脈の分水嶺とウラル川・カスピ海・黒海、そして黒海とエーゲ海を繋ぐボスポラス海峡-マルマラ海-ダーダネルス海峡が、アジアと区分される東の境界となる増田 (1967)、pp.38–39、Ⅲ.地理的にみたヨーロッパの構造 ヨーロッパの地理的範囲 "Europe" (pp. 68-9); "Asia" (pp. 90-1): "A commonly accepted division between Asia and Europe...

新しい!!: 酢酸とヨーロッパ · 続きを見る »

ヨードメタン

ヨードメタン(iodomethane)は、分子式 で表される有機化合物である。メタンの一ヨウ化物であり、別名はヨウ化メチル(Methyl Iodide)である。常温で無色透明の液体で、エタノール、ジエチルエーテルに任意の割合で溶ける。空気中で一部が光により分解し薄い紫色を帯びることがあるため、褐色ビンを用いて暗所保存する。その際には銅を安定化剤として用いる場合がある。有機合成化学においてはメチル化剤として良く用いられ、2反応によりメチル基を付加することが多い。毒性が高い。.

新しい!!: 酢酸とヨードメタン · 続きを見る »

ヨウ素

ヨウ素(ヨウそ、沃素、iodine)は、原子番号 53、原子量 126.9 の元素である。元素記号は I。あるいは分子式が I2 と表される二原子分子であるヨウ素の単体の呼称。 ハロゲン元素の一つ。ヨード(沃度)ともいう。分子量は253.8。融点は113.6 ℃で、常温、常圧では固体であるが、昇華性がある。固体の結晶系は紫黒色の斜方晶系で、反応性は塩素、臭素より小さい。水にはあまり溶けないが、ヨウ化カリウム水溶液にはよく溶ける。これは下式のように、ヨウ化物イオンとの反応が起こることによる。 単体のヨウ素は、毒物及び劇物取締法により医薬用外劇物に指定されている。.

新しい!!: 酢酸とヨウ素 · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: 酢酸とラジカル (化学) · 続きを見る »

リン

リン(燐、、)は原子番号 15、原子量 30.97 の元素である。元素記号は P。窒素族元素の一つ。白リン(黄リン)・赤リン・紫リン・黒リンなどの同素体が存在する。+III(例:六酸化四リン PO)、+IV(例:八酸化四リン PO)、+V(例:五酸化二リン PO)などの酸化数をとる。.

新しい!!: 酢酸とリン · 続きを見る »

リン酸

リン酸(リンさん、燐酸、phosphoric acid)は、リンのオキソ酸の一種で、化学式 H3PO4 の無機酸である。オルトリン酸(おるとりんさん、orthophosphoric acid)とも呼ばれる。リン酸骨格をもつ他の類似化合物群(ピロリン酸など)はリン酸類(リンさんるい、phosphoric acids)と呼ばれている。リン酸類に属する化合物を「リン酸」と略することがある。リン酸化物に水を反応させることで生成する。生化学の領域では、リン酸イオン溶液は無機リン酸 (Pi) と呼ばれ、ATP や DNA あるいは RNA の官能基として結合しているものを指す。.

新しい!!: 酢酸とリン酸 · 続きを見る »

リン酸エステル

リン酸エステル(リンさんエステル、Organophosphate)は有機リン化合物のうち、リン酸とアルコールが脱水縮合したエステルを指す。リン酸 (O.

新しい!!: 酢酸とリン酸エステル · 続きを見る »

リスクフレーズ

リスクフレーズ(、略:R-phrases)とは、欧州連合で制定された有害性化学物質のリスクの内容を表す一種の分類番号である。正式には「Directive 67/548/EEC Annex III」「67/548/EEC: 危険な物質の分類、包装、表示に関する法律、規則、行政規定の近似化に係わる1967 年6 月27 日付理事会指令」のAnnexIII "Nature of special risks attributed to dangerous substances and preparations"の危険警告句のことである。 欧州連合加盟国との間で輸出入される化学製品には以下の項目を付ける義務がある。.

新しい!!: 酢酸とリスクフレーズ · 続きを見る »

ルネサンス

レオナルド・ダ・ヴィンチによるウィトルウィウス的人体図、科学と芸術の統合 ルネサンス(Renaissance ルネサーンスイギリス英語発音: リネイスンス、アメリカ英語発音: レナサーンス)は「再生」「復活」を意味するフランス語であり、一義的には、古典古代(ギリシア、ローマ)の文化を復興しようとする文化運動であり、14世紀にイタリアで始まり、やがて西欧各国に広まった(文化運動としてのルネサンス)。また、これらの時代(14世紀 - 16世紀)を指すこともある(時代区分としてのルネサンス)。 日本では長らく文芸復興と訳されており、ルネサンスの時代を「復興期」と呼ぶこともあったが、文芸のみでなく広義に使われるため現在では余り使われない。ルネッサンスとも表記されるが、現在の歴史学、美術史等ではルネサンスという表記が一般的である。.

新しい!!: 酢酸とルネサンス · 続きを見る »

ルートヴィヒ・ヴァン・ベートーヴェン

ルートヴィヒ・ヴァン・ベートーヴェン(Ludwig van Beethoven、標準ドイツ語ではルートヴィヒ・ファン・ベートホーフェンに近い、1770年12月16日頃 - 1827年3月26日)は、ドイツの作曲家。J.S.バッハ等と並んで音楽史上極めて重要な作曲家であり、日本では「楽聖」とも呼ばれる。その作品は古典派音楽の集大成かつロマン派音楽の先駆けとされている。.

新しい!!: 酢酸とルートヴィヒ・ヴァン・ベートーヴェン · 続きを見る »

ルイ・パスツール

ルイ・パスツール(Louis Pasteur, 1822年12月27日 - 1895年9月28日、パストゥールとも)は、フランスの生化学者、細菌学者。「科学には国境はないが、科学者には祖国がある」という言葉でも知られる。王立協会外国人会員。 ロベルト・コッホとともに、「近代細菌学の開祖」とされる。 分子の光学異性体を発見。牛乳、ワイン、ビールの腐敗を防ぐ低温での殺菌法(パスチャライゼーション・低温殺菌法とも)を開発。またワクチンの予防接種という方法を開発し、狂犬病ワクチン、ニワトリコレラワクチンを発明している。.

新しい!!: 酢酸とルイ・パスツール · 続きを見る »

ロジウム

ウム(rhodium)は原子番号45の元素。元素記号は Rh。白金族元素の1つ。貴金属にも分類される。銀白色の金属(遷移金属)で、比重は12.5 (12.4)、融点は1966 、沸点は3960 (融点、沸点とも異なる実験値あり)。常温、常圧で安定な結晶構造は面心立方構造。加熱下において酸化力のある酸に溶ける。王水には難溶。高温でハロゲン元素と反応。高温で酸化されるが、更に高温になると再び単体へ分離する。酸化数は-1価から+6価までをとり得る。レアメタルである。.

新しい!!: 酢酸とロジウム · 続きを見る »

ワーグナー・メーヤワイン転位

ワーグナー・メーヤワイン転位(-てんい、Wagner-Meerwein rearrangement)とは、有機化学の反応のうち、カルボカチオンでの水素原子や炭化水素基の1,2-転位反応のことである。 カルボカチオン転位(carbocation rearrangement)とも呼ばれる。 ワーグナー・メーヤワイン転位は、カチオン中心の炭素にその隣接する炭素原子上の炭化水素基が1,2-転位して、隣接する炭素にカチオン中心が移動する反応である。 この転位は可逆反応であるため、転位の方向はカルボカチオンが安定となる方へ転位反応が進行していくことになる。 カルボカチオンの安定性は第1級、第2級、第3級の順に高くなるため、第1級→第2級→第3級というように転位反応が進行していく。 また転位する炭化水素基は電子供与性が高いものほど転位しやすい。 π電子系であるフェニル基やビニル基がもっとも転位しやすく、第3級アルキル基、第2級アルキル基、第1級アルキル基、水素の順に転位しにくくなる。 この転位の例は、SN1反応により炭素鎖から脱離基が脱離してカルボカチオンが生成したときに見られる。 例えば、3-メチル-2-ブタノールに対して塩化水素を反応させてSN1反応を行なった場合、生成物は本来ならもともとヒドロキシル基があった2位の炭素がクロロ化された 2-クロロ-3-メチルブタンとなるはずが、実際は3位の炭素がクロロ化された 2-クロロ-2-メチルブタンとなる。(注:IUPAC命名法では塩素原子の位置が変わることによって位置番号の付け方が変わるため、もともと3位であった炭素が2位に変わっている。) この反応機構は以下のようになっている。 まず、プロトンがヒドロキシル基に付加した後水分子が脱離して、まず初めに2位の炭素がカチオン中心となる。 これは第二級カルボカチオンである。 このカチオンにおいて、3位の炭素上の水素が2位へと転位して3位の炭素がカチオン中心となれば、これは第三級カルボカチオンとなり、より安定なカルボカチオンとなることができる。 そのため、この方向にワーグナー・メーヤワイン転位が進行する。 そして転位が起こった結果、生成するカルボカチオンに塩化物イオンが付加することで3位がクロロ化された生成物が得られる。 1899年にゲオルク・ワーグナー(Georg Egorovich Wagner)が、カンフェンヒドロクロリド(2-Chloro-2,3,3-trimethylbicycloheptane)からイソボルニルクロリド(2-Chloro-1,7,7-trimethylbicycloheptane)への転位反応としてこの反応を発見した。その後、1914年にが他の化合物でも同様の反応が広く起こることを示し、カルボカチオンを経由する機構を提示したのでこの2人の名が付けられている。.

新しい!!: 酢酸とワーグナー・メーヤワイン転位 · 続きを見る »

ワッカー酸化

触媒サイクル ワッカー酸化(ワッカーさんか、Wacker oxidation)は、塩化パラジウムと塩化銅を触媒としてアルケンを酸素によってカルボニル化合物へ酸化する化学反応である。ワッカー反応、ワッカー法、ヘキスト・ワッカー法とも呼ばれる。 塩化パラジウムの塩酸水溶液にエチレンガスを吹き込むと、塩化パラジウムが金属パラジウムに還元され、アセトアルデヒドが生成することは1894年にすでに報告されていた。 ドイツの化学会社ヘキスト社の子会社であるワッカー・ケミー社のシュミットらは1959年に塩化銅(II)を大過剰使用すると生成した金属パラジウムが塩化パラジウムに再酸化されることを発見し、この反応を触媒化することに成功した。 塩化銅(II)はパラジウムの再酸化によって還元されて塩化銅(I)となるが、これは酸素によって再び塩化銅(II)へと再酸化される。 全体の反応式は以下のようになり、アルケンを酸素によってカルボニル化合物へと酸化したことになる。 この方法はそれまで行なわれていた水銀触媒によるアセチレンの水和によるアセトアルデヒド製造プロセスにとって代わるものとなった。 エチレン以外の末端ビニルアルケンを酸化した場合、生成物はメチルケトンとなる。反応を水中ではなくアルコール溶媒中で行なうと、生成物はエノールエーテルとなる。またカルボン酸と反応させれば、エノールエステルを得ることができる。エチレンと酢酸のこの反応は工業的な酢酸ビニルの製造方法となっている。 重水中で反応を行なっても生成するアセトアルデヒドには重水素が含まれていないことから、アルケンのパラジウム錯体に水酸化物イオンが求核付加してPd-CH2-CH2-OHが生成した後、一旦β脱離によってH-Pdが生成した後に、配向が逆向きの挿入反応が起きてCH2-CH(Pd)-OHとなった後にヒドロキシ基の水素とともにβ脱離してアセトアルデヒドが生成する反応機構が考えられている。 Category:無機反応 Category:有機金属化学 Category:有機酸化還元反応 Category:触媒反応.

新しい!!: 酢酸とワッカー酸化 · 続きを見る »

ワニス

ワニス(熟字訓で仮漆)、ニスまたはバニッシュ、バーニッシュ()は、木材などの材料の表面を保護するために用いられる塗料の一種で、透明で硬い上塗り剤である。英語の「Varnish」が日本語に移入される際に「ワニス」と訛り、さらにその語を短縮して「ニス」と呼ばれるようになった。 乾性油と樹脂に鉱物由来の有機溶剤、あるいはテレピン油などの溶剤を混合したものが一般的であるが樹脂や溶剤の進歩に伴い様々なものが開発されている。ワニスで被覆された表面は保護力があるだけでなく光沢を持ち透明性が高く、透明性の低い塗料と併用しその効果を利用されることが多い。 塗布したあと溶剤は蒸発し、溶剤以外は化学重合反応等によってワニスは硬化する。油を使ったワニスが乾く速さは油の種類や量などに依存する。また、化学反応を伴う場合は一液性熱・光硬化樹脂を用いることがある。溶剤を蒸発させるタイプと、化学反応を伴うタイプの差は、硬化時の重量変化にも現れる。.

新しい!!: 酢酸とワニス · 続きを見る »

ワイン

ワイン(vin、wine、vino、Wein)とは、主としてブドウの果汁を発酵させたアルコール飲料である。葡萄酒、ぶどう酒(ぶどうしゅ)とも。通常、単に「ワイン」と呼ばれる場合には他の果汁を主原料とするものは含まない。日本の酒税法では「果実酒」に分類されている。.

新しい!!: 酢酸とワイン · 続きを見る »

トリフルオロ酢酸

トリフルオロ酢酸(トリフルオロさくさん、trifluoroacetic acid)は化学式が C2HF3O2、またはCF3COOH と表されるカルボン酸である。しばしば TFA と略される。吸湿性があり、酸化力の無い有機強酸である。 分子構造は酢酸と似ているが、メチル基の水素が3個のフッ素原子に置換している。フッ素の電子求引性によりプロトン解離時のアニオン(共役塩基)は負電荷が非局在化し安定化されるため、酢酸よりも強い酸性を示す。トリフルオロ酢酸は有機溶媒に可溶な強酸であるという特徴から、しばしば有機合成化学において用いられる。酢酸と似た刺激臭を持つ無色の液体で、水にも混和性があり、酸解離定数 は -0.3 である。 国際化学物質安全性カード (ICSC) ではヒトの身体への暴露について、「あらゆる接触を避ける」と記している。特に水中生物への有害性が高いため、漏洩物処理については「環境中に放出してはならない」とする。.

新しい!!: 酢酸とトリフルオロ酢酸 · 続きを見る »

トリクロロ酢酸

トリクロロ酢酸(トリクロロさくさん、trichloroacetic acid, TCA)は、酢酸のメチル基の3つの水素原子を塩素原子に置換したカルボン酸である。示性式はCCl3COOHである。.

新しい!!: 酢酸とトリクロロ酢酸 · 続きを見る »

ヘルマン・コルベ

ヘルマン・コルベ アドルフ・ヴィルヘルム・ヘルマン・コルベ (Adolph Wilhelm Hermann Kolbe, 1818年9月27日 – 1884年11月25日)はドイツの化学者である。エリーハウゼン (Elliehausen、現在は合併によりゲッティンゲンの一部) に生まれた。 フリードリヒ・ヴェーラーのもとで化学を学び、1842年にマールブルク大学でロベルト・ブンゼンの助手となった。のちにロンドン大学でライアン・プレイフェアを助け、1847年から1851年までユストゥス・フォン・リービッヒとヴェーラーによって著された Handwörterbuch der reinen und angewandten Chemie (化学・応用化学辞典)の編集に携わった。その後マールブルク大学でブンゼンのあとを継ぎ、1865年にライプツィヒ大学に移った。 当時、有機化合物と無機化合物は全く別なものであり、有機物は生物からのみ作り出せると考えられていた。しかし、コルベは無機物から直接、あるいは間接的に有機化合物を合成することも、反応を繰り返し行えば可能であると考えた。彼はいくつかの段階を経て二硫化炭素を酢酸に変換することにより、この理論を証明した(1843から45年)。基(ラジカル)に関する新たな考え方を導入し、構造化学の確立に貢献した。また、二級・三級アルコールの存在を予見した。 脂肪酸などの酸の塩の電気分解を研究し、コルベ電解を開発した。また、コルベ合成またはコルベ・シュミット反応と呼ばれる手法によって、アスピリンの主成分となるサリチル酸を合成した。 エドワード・フランクランドと共に、ニトリルを加水分解するとカルボン酸が得られることを見出した。Journal für praktische Chemie 誌(実用化学雑誌)の編集委員として、時に他の研究に対する厳しい批判者となった。特にアウグスト・ケクレ、ヤコブス・ヘンリクス・ファント・ホッフ、アドルフ・フォン・バイヤーなどには過激な言葉で批判を浴びせたため、彼らの説が立証された後、コルベ自身の死後の評価を落とす結果となってしまった。 1884年、ライプツィヒで心臓発作のため死去した。.

新しい!!: 酢酸とヘルマン・コルベ · 続きを見る »

ヘル・ボルハルト・ゼリンスキー反応

ヘル・ボルハルト・ゼリンスキー反応(ヘル・ボルハルト・ゼリンスキーはんのう、Hell-Volhard-Zelinsky reaction)とは、有機合成化学におけるハロゲン化反応の一種。カルボン酸の α位の水素をハロゲン原子(主に臭素)に置き換える。呼称は Carl M. von Hell、Jacob Volhard、ニコライ・D・ゼリンスキーにちなむ。 反応ではカルボン酸に対し、臭素と触媒量の三臭化リンを加える。まずカルボン酸が酸臭化物に変えられ、そこから互変異性化したエノールの2位が臭素の攻撃を受け α-ブロモカルボン酸臭化物となる。反応終了後の加水分解により α-ブロモカルボン酸を得る。三臭化リンはリンと臭素の反応で容易に生成するので、この反応はカルボン酸にリンと臭素の混合物を加熱するだけでも反応する。 また、この反応で得たα-ブロモカルボン酸を塩基性条件下で処理する事によって、α-ヒドロキシ酸を得る事ができる。 α-ブロモカルボン酸は各種求核剤との反応による官能基化、エステルとした後のリフォマトスキー反応など、合成上の用途は広い。.

新しい!!: 酢酸とヘル・ボルハルト・ゼリンスキー反応 · 続きを見る »

ヘロイン

ヘロイン(Heroin)はかつての商品名であり、アヘンに含まれるモルヒネから作られる麻薬のひとつを指す。一般名はジアモルヒネあるいは3,6-ジアセチルモルヒネ。 1889年にドイツで(バイエル社より)商品名ヘロインで発売され、モルヒネに代わる依存のない万能薬のように国際的に宣伝され、アメリカでは1924年に常用者推定20万人とされた。1912年の万国阿片条約で規制され第一次世界大戦後に各国が条約に批准。ドイツで1921年、アメリカで1924年に医薬品の指定がなくなると、のちに非合法に流通するようになった。ベトナム戦争ではメオ族を支援するためにアメリカ中央情報局 (CIA) が市場へのアヘン運搬を支援したが、これが高純度のヘロインとなって駐留兵の手に渡った。アメリカで1971年麻薬患者が推定56万人となりニクソン大統領が、薬物に対する戦いを宣戦布告する。2000年代のアメリカでは処方薬の過剰摂取死が問題となっていたが、2012年には急増したヘロインによる死亡がトップとなった。 日本国内では麻薬及び向精神薬取締法によって、その製造・所持・使用は制限されている。専門家によって薬物の評価では、ヘロインは快感3点、精神的依存3点、身体依存3点といずれも最高の3点となっている唯一の薬物である。.

新しい!!: 酢酸とヘロイン · 続きを見る »

ヘック反応

ヘック反応(ヘックはんのう、Heck reaction)あるいは溝呂木・ヘック反応(みぞろきヘックはんのう、Mizoroki-Heck reaction)は、パラジウム錯体を触媒として塩基存在下、ハロゲン化アリールまたはハロゲン化アルケニルでアルケンの水素を置換する反応である。反応名は、本反応の発見者である溝呂木勉およびリチャード・ヘックに因む。2010年、ヘックはこの反応の発見および開発の功績により、ノーベル化学賞を授与された。 ヘック反応はパラジウム触媒存在下で行われる。ハロゲン化物 (I, Br, Cl) あるいはトリフラートは、アリル、ベンジル、ビニル化合物が用いられる。アルケンは、少なくとも一つの水素原子を有し、電子不足であるアクリラート、エステル、アクリロニトリル等のオレフィンが用いられる。触媒としては、テトラキス(トリフェニルホスフィン)パラジウム(0)、塩化パラジウム(II)、酢酸パラジウム(II)、配位子としてはトリフェニルホスフィンやBINAP、塩基としてはトリエチルアミン、炭酸カリウム、酢酸ナトリウム等が使用される。 例:ヨードベンゼンを酢酸パラジウムを触媒としてアクリル酸メチルと反応させると、アクリル酸メチルのβ位の水素がフェニル基で置換されてケイ皮酸メチルが生成する。 詳細は総説を参照されたい。.

新しい!!: 酢酸とヘック反応 · 続きを見る »

ヘテロポリ酸

ヘテロポリ酸(ヘテロポリさん、heteropoly acid)は、イソポリ酸(MO)にたいして,ヘテロ原子が金属酸素酸骨格に挿入された(XMO)型のポリ酸である。例えば、タングステンのオキソ酸とリンのオキソ酸が縮合したホスホタングステン酸 H(PWO)·nHO などのことを指す。 ヘテロポリ酸は、.

新しい!!: 酢酸とヘテロポリ酸 · 続きを見る »

ブロモ酢酸

ブロモ酢酸(ブロモさくさん)、もしくは モノブロモ酢酸 は、示性式が BrCH2CO2H と表される有機臭素化合物。そのエステルと同様、アルキル化剤として有機合成に広く用いられる。 刺激臭を有する無色または淡黄色の固体で、水、エタノール及びアセトンに溶けやすい。酢酸より強い酸性を示すため、腐食性が強い。.

新しい!!: 酢酸とブロモ酢酸 · 続きを見る »

ブタン

ブタン (butane) は、分子式 C4H10、示性式 CH3(CH2)2CH3 の炭化水素の一種で、炭素4個が直鎖状に連なったアルカンである。n-ブタンとも呼ばれる。無色不快臭であり、常温・常圧で気体である。構造異性体としてイソブタン(2-メチルプロパン、iso-ブタン)があり、これらは異性体を持つアルカンでは最も小さい。可燃性物質であり、圧縮して液化した状態で運搬、利用される。天然には、石油や天然ガスの中に存在する。 n-ブタンの爆発限界は 1.9~8.5vol%(空気中)。.

新しい!!: 酢酸とブタン · 続きを見る »

プロトン性溶媒

プロトン性溶媒(Protic solvent)は、酸素(ヒドロキシ基)や窒素(アミン)等に結合した水素原子を含む溶媒である。一般に、不安定性を持つヒドロン(H+)を含む溶媒はプロトン性溶媒と呼ばれる。そのような溶媒の分子は、プロトン(H+)を容易に供与する。逆に、非プロトン性溶媒(aprotic solvent)はプロトンを供与することができない。.

新しい!!: 酢酸とプロトン性溶媒 · 続きを見る »

プロピオン酸

プロピオン酸(プロピオンさん、propionic acid)は分子式 、示性式 、分子量 74.08のカルボン酸。IUPAC系統名ではプロパン酸 propanoic acid となる。CAS登録番号は79-09-4。消防法による第4類危険物 第2石油類に該当する。 単体は融点 -21 、沸点 141 の無色の液体で、不快な臭気を有する。水、エタノール、クロロホルム、エーテルなどに溶けやすい。1-プロパノール、プロピオンアルデヒドの酸化によって得られる。 語源は「最初の脂肪酸」という意味で、油脂の加水分解により得られる脂肪酸のうち、最も炭素数の少ないものであったことによる。.

新しい!!: 酢酸とプロピオン酸 · 続きを見る »

パラジウム

パラジウム(palladium)は原子番号46の元素。元素記号は Pd。白金族元素の1つ。貴金属にも分類される。 常温、常圧で安定な結晶構造は、面心立方構造 (FCC)。銀白色の金属(遷移金属)で、比重は12.0、融点は1555 (実験条件等により若干値が異なることあり)。酸化力のある酸(硝酸など)には溶ける。希少金属の1つ。.

新しい!!: 酢酸とパラジウム · 続きを見る »

パラジウム炭素

パラジウム炭素(パラジウムたんそ、palladium on carbon)とは、パラジウム触媒を有機合成で用いる際の一形態で、活性炭を担体としてその上にパラジウム(0)を分散、担持させたもののこと。水素化還元反応などに用いられる。反応式では Pd/C, Pd-C などと表される。パラジウムカーボン、パラジウム炭(パラジウムたん)とも呼ばれる。.

新しい!!: 酢酸とパラジウム炭素 · 続きを見る »

パスカル

パスカル (pascal、記号: Pa) は、圧力・応力の単位で、国際単位系 (SI) における、固有の名称を持つSI組立単位である。「ニュートン毎平方メートル」とも呼ばれる。 1パスカルは、1平方メートル (m2) の面積につき1ニュートン (N) の力が作用する圧力または応力と定義されている。その名前は、圧力に関する「パスカルの原理」に名を残すブレーズ・パスカルに因む。.

新しい!!: 酢酸とパスカル · 続きを見る »

ヒドロキシ基

ヒドロキシ基(ヒドロキシき、hydroxy group)は、有機化学において構造式が −OH と表される1価の官能基。旧IUPAC命名則ではヒドロキシル基 (hydroxyl group) と呼称していた。 無機化合物における陰イオン OH− は「水酸化物イオン」を参照のこと。.

新しい!!: 酢酸とヒドロキシ基 · 続きを見る »

ビール

ップに注がれたビール 日本の缶ビール ドイツの瓶ビール ビール(bier)は、アルコール飲料の一種。様々な作り方があるが、主に大麦を発芽させた麦芽(デンプンが酵素(アミラーゼ)で糖化している)を、ビール酵母でアルコール発酵させて作る製法が一般的である。 現在は炭酸の清涼感とホップの苦みを特徴とするラガー、特にピルスナーが主流となっているが、ラガーはビールの歴史の中では比較的新参であり、ラガー以外にもエールなどのさまざまな種類のビールが世界で飲まれている。 日本語の漢字では麦酒(ばくしゅ)と表記される。.

新しい!!: 酢酸とビール · 続きを見る »

ビニル基

ビニル基(ビニルき、vinyl group)とは、有機化学における基のひとつで、エチレンから水素を1個取り去った H2C.

新しい!!: 酢酸とビニル基 · 続きを見る »

ピルビン酸

ピルビン酸(ピルビンさん、Pyruvic acid)は有機化合物の一種で、示性式が CH3COCOOH と表されるカルボン酸である。IUPAC命名法では 2-オキソプロパン酸 (2-oxopropanoic acid) と表される。α-ケトプロピオン酸 (α-ketopropionic acid) あるいは焦性ブドウ酸 (pyroracemic acid) とも呼ばれる。水、エタノール、エーテルなど、さまざまな極性溶媒や無極性溶媒と任意な比率で混和する。酢酸に似た酸味臭を示す。2位のカルボニル基を還元すると乳酸となる。 生体内では解糖系による糖の酸化で生成する。 ピルビン酸デヒドロゲナーゼ複合体の作用により補酵素Aと結合するとアセチルCoAとなり、クエン酸回路や脂肪酸合成系に組み込まれる。 また、グルタミン酸からアミノ基を転移されるとアラニンになる。.

新しい!!: 酢酸とピルビン酸 · 続きを見る »

ピクリン酸

ピクリン酸(ピクリンさん、Picric acid)とは、分子式 C6H3N3O7、示性式 C6H2(OH)(NO2)3 で表される、芳香族のフェノール誘導体のニトロ化合物である。いくつかの異性体を持つトリニトロフェノールのうち 2,4,6-トリニトロフェノールのことを指す。水溶液は強力な酸性を示す。不安定で爆発性の可燃物であることから、かつては火薬としても用いられた。.

新しい!!: 酢酸とピクリン酸 · 続きを見る »

テルペノイド

テルペノイド(Terpenoid)とは五炭素化合物であるイソプレンユニットを構成単位とする一群の天然物化合物の総称である。狭義にはテルペノイドはテルペン炭化水素の含酸素誘導体(アルデヒド・カルボン酸誘導体)を指すのでテルペン炭化水素を含んでテルペン類とも称される。テルペノイドの生化学的(代謝的)起源は生物種に普遍的に見られるメバロン酸代謝経路から続くイソプレノイド生合成経路であるため、テルペノイドは広義にはイソプレノイドでもある。そしてテルペノイドやテルペンの多くは環構造を持ち複環構造も珍しくない。あるいはその基本構造であるテルペン炭化水素はイソプレノイドが環化しただけではなく、メチル基が転移した物や場合によってはメチル基が欠落したものも含まれる。そのような多様なテルペン炭化水素がさらに異なる官能基に誘導体化されたテルペノイドの多様性は非常に大きい。 一方、代表的なイソプレノイドは鎖状構造や連続する炭素二重結合に特徴がある。前述のテルペノイドと同様にイソプレノイドと生化学的起源を同一にする環式天然物の一群として、カロテノイドや動物のステロイドとステロールが知られている。そしてこれらのイソプレノイドに起源を持つ天然物は広義のイソプレノイドとされこれらの脂質・天然樹脂はすべての生物種に存在する最も大きな天然産物のグループでもある。 イソプレノイドの分子生物学的な機能として疎水性分子を細胞膜へ接着させるなどのためにタンパク質に付加して機能を現わす。これはイソプレニル化として知られる。 植物性テルペノイドはその特徴的な芳香のために広く用いられている。植物性テルペノイドには抗菌性や抗腫瘍性があり薬草治療によく用いられ、他の薬理作用の研究もなされている。テルペノイドはユーカリの芳香、シナモンやクローブ、ショウガの風味、また花の黄色の発色に寄与している。よく知られているものにシトラール、メントール、ショウノウ、サルビア・ディビノラムに含まれるサルビノリンA、アサに見られるカンナビノイドがある。 テルペノイド生合成系の酸化酵素の多くはシトクロムP450であり、テルペノイド自身は同酵素の基質でもある。.

新しい!!: 酢酸とテルペノイド · 続きを見る »

テレフタル酸

テレフタル酸(テレフタルさん、terephthalic acid)は示性式 C6H4(COOH)2、分子量 166.14 の芳香族ジカルボン酸。TPAと略される。また、高純度のものを PTA (purified terephthalic acid) と略することがある。 ベンゼン環のパラ位に2個のカルボキシル基が結合した形を持つ。酸性や中性の水、アルコールやジエチルエーテル等にはほとんど溶けないが、アルカリ性の水や熱濃硫酸、DMFには可溶である。異性体にフタル酸、イソフタル酸があり、これらの異性化あるいは p-キシレンの酸化によって作ることが可能。下式のようにエチレングリコールと作るポリエステルはポリエチレンテレフタラート (PET) と呼ばれ、ペットボトルや衣料の原料として工業的に重要である。 350px テレフタル酸の2008年度日本国内生産量は 1,015,009t、消費量は 160,184t である。 p-キシレンをコバルト、マンガン、臭素の触媒下に250℃で酸素酸化して製造される。この系中ではテレフタル酸に至る前にp-トルイル酸を経由している。.

新しい!!: 酢酸とテレフタル酸 · 続きを見る »

テトラクロロエチレン

テトラクロロエチレン (tetrachloroethylene) はドライクリーニングや化学繊維、金属の洗浄などの目的で工業的に生産されている化合物である。他の化合物の原料としても用いられ、一般商品にも使われている。 別名としてパークロロエチレン、パーク (perc)、PCE、テトラクロロエテンがある。室温で不燃性の液体である。空気中に蒸発しやすく、鋭く甘い悪臭を持つ。ほとんどの人は空気中に 1 ppm 存在するだけで臭いを感じ、さらに低い濃度であっても感じる人もいる。 マイケル・ファラデーが1821年に、ヘキサクロロエタンを加熱してテトラクロロエチレンと塩素に分解する方法で、最初に合成した。.

新しい!!: 酢酸とテトラクロロエチレン · 続きを見る »

ティシチェンコ反応

ティシチェンコ反応 (Tishchenko reaction) は、有機化学における合成反応のひとつ。アルコキシドの触媒作用により、2分子のアルデヒドが不均化して1分子のエステルを与える反応。1906年、V.

新しい!!: 酢酸とティシチェンコ反応 · 続きを見る »

テオプラストス

テオプラストス(Θεόφραστος, Theophrastos, 英: Theophrastus、紀元前371年 – 紀元前287年)は古代ギリシアのレスボス島生まれの哲学者、博物学者、植物学者である。植物研究における先駆的な功績から「植物学の祖」と呼ばれる。アリストテレスの同僚、友人で、逍遙学派の主要人物の一人であった。アリストテレスの次に、リュケイオンの学頭を務めた。 透徹した批評眼と流麗な語り口、心優しい人柄で、学者や学生たち、アテナイ市民だけでなく、マケドニアのピリッポス2世やカッサンドロス王、エジプトのプトレマイオス1世らの尊敬を集めたロバート・ハクスリー 著 『西洋博物学者列伝 アリストテレスからダーウィンまで』 植松靖夫 訳、悠書館、2009年。.

新しい!!: 酢酸とテオプラストス · 続きを見る »

フリーデル・クラフツ反応

フリーデル・クラフツ反応(—はんのう、Friedel–Crafts reaction)は芳香環に対してアルキル基またはアシル基が求電子置換する反応のこと。1877年にシャルル・フリーデルとジェームス・クラフツが発見したのでこのように呼ばれる。ハロゲン化アルキル又はハロゲン化アシルが触媒(金属ハロゲン化物、塩化アルミニウム等)存在下でカルボカチオンあるいはアシルカチオンとなり、芳香環上の水素に求電子置換する。 求電子置換反応であるが故に芳香環が電子求引性基を有していると反応が起きなくなる。また触媒と反応しうる物質、即ち塩基性物質を含んでいると反応が起きなくなる。.

新しい!!: 酢酸とフリーデル・クラフツ反応 · 続きを見る »

フリードリヒ・ヴェーラー

フリードリヒ・ヴェーラー(Friedrich Wöhler, 1800年7月31日 - 1882年9月23日)はドイツの化学者。 シアン酸アンモニウムを加熱中に尿素が結晶化しているのを1828年に発見し、無機化合物から初めて有機化合物の尿素を合成(ヴェーラー合成)したことにより「有機化学の父」と呼ばれる。また、ユストゥス・フォン・リービッヒと独立に行なわれた異性体の発見、ベリリウムの発見などの業績がある。 弟子に酢酸をはじめて合成したヘルマン・コルベ、コカイン及びマスタードガスの発見者などがいる。.

新しい!!: 酢酸とフリードリヒ・ヴェーラー · 続きを見る »

フィッシャーエステル合成反応

フィッシャーエステル合成反応(フィッシャーエステルごうせいはんのう、Fischer esterification)あるいはフィシャー・スペイアエステル合成反応(Fischer–Speier esterification)とは有機化学における化学反応のひとつで、酸触媒を用いたカルボン酸エステルの合成法である。1895年にエミール・フィッシャーとアルトゥル・スペイアによって報告されたFischer (1895).

新しい!!: 酢酸とフィッシャーエステル合成反応 · 続きを見る »

フィブリン

フィブリン(fibrin)は、血液の凝固(血液凝固)に関わるタンパク質である。繊維状タンパク質で、傷などが原因となって血小板とともに重合し、血球をくるみこんで血餅を形成する。止血や血栓形成の中心的な役割を担っている。.

新しい!!: 酢酸とフィブリン · 続きを見る »

フェノール類

有機化学において、フェノール類(フェノールるい、phenols)は芳香族置換基上にヒドロキシ基を持つ有機化合物を指す。フェノール類のうち最も単純なものはフェノール C6H5OH である。複数のヒドロキシ基を有するものはポリフェノールと呼ばれる。 構造上ヒドロキシ基を有するという点でアルコールと類似するが、置換している基が飽和炭化水素でなく芳香族であることに由来する特徴的な性質を持つため、フェノール類は普通アルコールには分類されない。すなわち、フェノール類のヒドロキシ基はアルコールのそれよりも水素イオン H+ を解離させ、−O− イオンになりやすい傾向を持つ。これは酸素原子上の負電荷が共鳴によって芳香環上に分散され、安定化されるためである。 フェノール類のヒドロキシ基の酸性度はアルコールとカルボン酸の中間程度で、pKaはおよそ10から12である。プロトンを失ったアニオンはフェノラートと呼ばれる。 フェノール類のうちある種のものは殺菌効果を持ち、消毒薬に配合される。女性ホルモン様の作用を持つものや内分泌攪乱化学物質であるものも存在する。.

新しい!!: 酢酸とフェノール類 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: 酢酸とドイツ · 続きを見る »

ニトロセルロース

ニトロセルロース (nitrocellulose) は、硝酸繊維素、硝化綿ともいい、セルロースを硝酸と硫酸との混酸で処理して得られるセルロースの硝酸エステルである。白色または淡黄色の綿状物質で、着火すると激しく燃焼する。.

新しい!!: 酢酸とニトロセルロース · 続きを見る »

ホルマリン

ホルマリン (formalin) は、ホルムアルデヒドの水溶液のこと。無色透明で、刺激臭があり、生体に有害。生物の組織標本作製のための固定・防腐処理に広く用いられる。また、ホルマリンによって死滅する菌類、細菌類が多いことから、希釈した溶液を消毒用にも用いる。 この項では主に製品としてのホルマリンについての事柄を扱う。人体への作用や化学物質としての事柄はホルムアルデヒドの項を参照。 日本薬局方で定められた局方ホルマリンとして市販されているのは、35〜38%ホルムアルデヒド水溶液で、安定化剤(にごり防止)として10%以下程度のメタノールが加えられている。一般にはこれを5〜10倍程度に希釈して用いる。例えば、これを10倍希釈したものを、10%ホルマリンと呼ぶが、この溶液中のホルムアルデヒドの含有量は3.5〜3.8%に相当する。 原液、比較的濃度の高い希釈液からは、ホルムアルデヒドを含有した蒸気が発生するため、人体に有害であり、毒劇法で医薬用外劇物に指定されている。取扱いには、強制排気装置を備えた作業空間が必要である。また、溶液の廃棄時にも無毒化処理が必要である。作業者の健康や環境への配慮から、より無害な代替品へ置き換える試みがなされているが、進んでいない。.

新しい!!: 酢酸とホルマリン · 続きを見る »

ベンジル基

ベンジル基 ベンジル基 (benzyl group) は有機化学における原子団のひとつで、芳香族アルキル基の一種。トルエン上のメチル基から水素1個が失われた構造にあたる1価の置換基である。構造式は C6H5CH2− と表される。しばしば Bn または Bzl と略記される。 C6H5CH.

新しい!!: 酢酸とベンジル基 · 続きを見る »

ベンゼン

ベンゼン (benzene) は分子式 C6H6、分子量 78.11 の最も単純な芳香族炭化水素である。原油に含まれており、石油化学における基礎的化合物の一つである。分野によっては慣用としてドイツ語 (Benzol:ベンツォール) 風にベンゾールと呼ぶことがある。ベンジン(benzine)とはまったく別の物質であるが、英語では同音異綴語である。.

新しい!!: 酢酸とベンゼン · 続きを見る »

分子モデル

分子モデル(ぶんしモデル)とは、化学において分子の構造や立体化学を視覚化して理解する助けのために用いられるモデル、模型のこと。分子模型(ぶんしもけい)とも呼ばれる。.

新しい!!: 酢酸と分子モデル · 続きを見る »

分析化学

分析化学(ぶんせきかがく、analytical chemistry)とは、試料中の化学成分の種類や存在量を解析したり、解析のための目的物質の分離方法を研究したりする化学の分野である。得られた知見は社会的に医療・食品・環境など、広い分野で利用されている。 試料中の成分判定を主眼とする分析を定性分析といい、その行為を同定すると言い表す。また、試料中の特定成分の量あるいは比率の決定を主眼とする分析を定量分析といい、その行為を定量すると言い表す。ただし、近年の分析装置においては、どちらの特性も兼ね備えたものが多い。 分析手法により、分離分析(クロマトグラフィー、電気泳動など)、分光分析(UV、IRなど)、電気分析(ボルタンメトリーなど)などの区分がある。 あるいは検出手段の違いにより、滴定分析、重量分析、機器分析と区分する場合もある。ここでいう機器分析とは、分光器など人間の五感では観測できない物理的測定が必要な分析グループに由来する呼称である。現在では重量分析も自動化されて、専ら機器をもちいて分析されているが機器分析とはしない。 分析化学は大学の化学教育において基礎科目の一つであり、環境化学への展開や高度な分析技術の開発などが研究のテーマとなっている。.

新しい!!: 酢酸と分析化学 · 続きを見る »

アミノ酸

リシンの構造式。最も構造が単純なアミノ酸 トリプトファンの構造式。最も構造が複雑なアミノ酸の1つ。 アミノ酸(アミノさん、amino acid)とは、広義には(特に化学の分野では)、アミノ基とカルボキシル基の両方の官能基を持つ有機化合物の総称である。一方、狭義には(特に生化学の分野やその他より一般的な場合には)、生体のタンパク質の構成ユニットとなる「α-アミノ酸」を指す。分子生物学など、生体分子をあつかう生命科学分野においては、遺伝暗号表に含まれるプロリン(イミノ酸に分類される)を、便宜上アミノ酸に含めることが多い。 タンパク質を構成するアミノ酸のうち、動物が体内で合成できないアミノ酸を、その種にとっての必須アミノ酸と呼ぶ。必須アミノ酸は動物種によって異なる。.

新しい!!: 酢酸とアミノ酸 · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: 酢酸とアメリカ合衆国 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: 酢酸とアルミニウム · 続きを見る »

アルブミン

アルブミンは一群のタンパク質に名づけられた総称で、卵白(albumen)を語源とし、卵白の構成タンパク質のうちの約65%を占める主成分タンパク質に対して命名され、さらにこれとよく似た生化学的性質を有するタンパク質の総称として採用されている。 代表的なものに卵白を構成する卵アルブミン、脊椎動物の血液の血漿に含まれる血清アルブミン、乳汁に含まれる乳アルブミンがある。 アルブミンは一般的に肝臓で生成される。アルブミン濃度が低下している場合は、肝疾患、ネフローゼや栄養失調が疑われる。.

新しい!!: 酢酸とアルブミン · 続きを見る »

アルデヒド

最も単純なアルデヒド:ホルムアルデヒド アルデヒド (aldehyde) とは、分子内に、カルボニル炭素に水素原子が一つ置換した構造を有する有機化合物の総称である。カルボニル基とその炭素原子に結合した水素原子および任意の基(-R)から構成されるため、一般式は R-CHO で表される。任意の基(-R)を取り除いた部分をホルミル基(formyl group)、またはアルデヒド基という。アルデヒドとケトンとでは、前者は炭素骨格の終端となるが、ケトンは炭素骨格の中間点となる点で異なる。多くのアルデヒドは特有の臭気を持つ。.

新しい!!: 酢酸とアルデヒド · 続きを見る »

アルデヒドデヒドロゲナーゼ

アルデヒドデヒドロゲナーゼ (aldehyde dehydrogenase、ALDH) はアルデヒドを酸化してカルボン酸にする反応を触媒する酵素である。 生物に普遍的に存在し、ヒトには17種類のALDHファミリータンパク質が存在する。.

新しい!!: 酢酸とアルデヒドデヒドロゲナーゼ · 続きを見る »

アルカン

アルカン(、)とは、一般式 で表される鎖式飽和炭化水素である。メタン系炭化水素、パラフィン系炭化水素や脂肪族化合物McMurry(2004)、p.39。とも呼ばれる。炭素数が大きいものはパラフィンとも呼ばれる。アルカンが置換基となった場合、一価の置換基をアルキル基、二価の置換基をアルキレン基と呼ぶ。環状の飽和炭化水素はシクロアルカンと呼ばれる。 IUPACの定義によれば、正式には、環状のもの(シクロアルカン)はアルカンに含まれない。しかし両者の性質がよく似ていることや言葉の逐語訳から、シクロアルカンを「環状アルカン」と称し、本来の意味でのアルカンを「非環状アルカン」と呼ぶことがある。結果的に、あたかも飽和炭化水素全体の別称であるかのように「アルカン」の語が用いられることもあるが、不適切である。 主に石油に含まれ、分留によって取り出される。個別の物理的性質などについてはデータページを参照。生物由来の脂肪油に対して、石油由来のアルカン類を鉱油(mineral oil)と呼ぶ。.

新しい!!: 酢酸とアルカン · 続きを見る »

アルケン

アルケン(、)は化学式 CnH2n (n≧2) で表される有機化合物で、C-C間の二重結合を1つ持つ。すなわち、不飽和炭化水素の一種。エチレン系炭化水素、オレフィン (olefin)、オレフィン系炭化水素とも呼ばれる。C-C二重結合を構成している2つπ結合1つとσ結合1つから成り立っており、このうちπ結合の結合エネルギーはC-H結合のものよりも小さく、付加反応が起こりやすい。例えばエテン(エチレン)と塩素の混合物に熱を与えると 1,2-ジクロロエタンが生成する。.

新しい!!: 酢酸とアルケン · 続きを見る »

アルコール

アルコールの構造。炭素原子は他の炭素原子、または水素原子に結合する。 化学においてのアルコール(alcohol)とは、炭化水素の水素原子をヒドロキシ基 (-OH) で置き換えた物質の総称である。芳香環の水素原子を置換したものはフェノール類と呼ばれ、アルコールと区別される。 最初に「アルコール」として認識された物質はエタノール(酒精)である。この歴史的経緯により、一般的には単に「アルコール」と言えば、エタノールを指す。.

新しい!!: 酢酸とアルコール · 続きを見る »

アンモニア

アンモニア (ammonia) は分子式が NH_3 で表される無機化合物。常温常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミンと呼ばれる。 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sol ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH4+) はアンモニウムイオン、共役塩基 (NH2-) はアミドイオンである。.

新しい!!: 酢酸とアンモニア · 続きを見る »

アンドレアス・リバヴィウス

アンドレアス・リバヴィウス ローテンブルク・オプ・デア・タウバーの歴史館のリバヴィウスの実験室の再現展示 『錬金術論』(''Alchemia'') 1597年 アンドレアス・リバヴィウス(Andreas Libavius, 1555年 - 1616年7月25日)は16世紀ドイツの学者、医師である。1597年に執筆した『錬金術論』(Alchemia) は史上初の体系的な化学教科書とされる。本名であるドイツ語名はアンドレアス・リバウ (Andreas Libau) であり、またバシリウス・デ・ヴァルナ (Basilius de Varna) とも名乗った。 ハレ・アン・デア・ザーレに生まれ、1576年からヴィッテンベルク大学、イェーナ大学で哲学と歴史を学んだ。イェーナでは医学も学んだ。1581年から教師を務めた後、1588年にバーゼル大学で医学を学び、医師の資格を得た。イェーナ大学で歴史と詩学の教授となり、医療紛争の判事も務めた。 1591年にローテンブルク・オプ・デア・タウバー市の医師になり、学校監査院も務めた。1606年にザクセン=コーブルク公ヨハン・カジミールの招きを受け、コーブルクに新設されたギムナジウム、カジミリアヌム (Casimirianum) の校長となり、没するまでその職にあった。 神学の分野での著書はバシリウス・デ・ヴァルナ名義で発表し、イエズス会のヤーコプ・グレツァー (Jacob Gretser) に反対する立場を取った。 1597年の『錬金術論』は、最終章を「賢者の石」でしめくくるなど錬金術を信じながらも、実際的な化学の研究の道具や方法を解説したもので、アンモニアと銅イオンの反応による呈色反応なども記述されている。パラケルススの記述への批判も見られた。その他の著書に医学的な記述と考察を行った singularia(1599年)、Tractatus Medicus Physicus und Historia des fürtrefflichen Casimirianischen SawerBrunnen/ unter Libenstein/ nicht fern von Schmalkalden gelegen(1610年)や、1605年に発見し Spiritus fumans Libavii と名づけられた塩化スズ(II)について記した Syntagmatis alchamiae arcanorum(1615年)がある。.

新しい!!: 酢酸とアンドレアス・リバヴィウス · 続きを見る »

アデノシン三リン酸

アデノシン三リン酸(アデノシンさんリンさん、adenosine triphosphate)とは、アデノシンのリボース(=糖)に3分子のリン酸が付き、2個の高エネルギーリン酸結合を持つヌクレオチドのこと。IUPAC名としては「アデノシン 5'-三リン酸」。一般的には、「adenosine triphosphate」の下線部のアルファベットをとり、短縮形で「ATP(エー・ティー・ピー)」と呼ばれている。.

新しい!!: 酢酸とアデノシン三リン酸 · 続きを見る »

アデノシン二リン酸

アデノシン二リン酸(アデノシンにリンさん、Adenosine diphosphate, ADP と略)は、アデニン、リボース、および二つのリン酸分子からなる化学物質。リン酸は高エネルギーリン酸結合をとっており、ATP から ADP とリン酸基に分かれる際に放出されるエネルギーは生体内での主要なエネルギー源となっている。詳細は ATP の項目を参照のこと。 アデニル酸(AMP)とATPからアデニル酸キナーゼによって生成される。 ATPアーゼ(ATPase)によりATPが加水分解される場合にも生成される。 ADPは上記の化学反応のようにATPの分解やAMPのリン酸化によって生ずる。.

新しい!!: 酢酸とアデノシン二リン酸 · 続きを見る »

アデニル酸

アデニル酸(アデニルさん、adenylic acid)は別称をアデノシン一リン酸(Adenosine monophosphate)ともいう有機化合物で、RNA中に見られるヌクレオチドの一種である。AMPと略される。AMPは核酸塩基のアデニン、五炭糖のリボース、1つのリン酸より構成されており、リン酸とアデノシン(ヌクレオシド)の間でリン酸エステルを形成している。リン酸部位の結合位置により 2'-体、3'-体、5'-体の構造異性体があるが、RNA中に部品として見られるのは 5'-アデニル酸 である。.

新しい!!: 酢酸とアデニル酸 · 続きを見る »

アニリン

アニリン (aniline) はベンゼンの水素原子の一つをアミノ基で置換した構造を持つ、芳香族化合物のひとつ。示性式 C6H5NH2 で表される。分子量は 93.13、融点は −6 ℃、沸点は 184 ℃。アニリンはIUPAC命名法の許容慣用名であるが、系統名ではフェニルアミン (phenylamine) またはベンゼンアミン (benzenamine) となる。ほかに慣用名としてアミノベンゼン (aminobenzene) がある。.

新しい!!: 酢酸とアニリン · 続きを見る »

アクリル絵具

アクリル絵具(アクリルえのぐ、アクリリックペイント、Acrylic paint)は、アクリル樹脂を固着材に用いた絵具。.

新しい!!: 酢酸とアクリル絵具 · 続きを見る »

アセナフテン

アセナフテン()は、多環芳香族炭化水素の一種。 IUPAC名の1,2-ジヒドロアセナフチレンが示す通り、アセナフチレンを水素化したものであり、1.2%ほど含有するコールタールをはじめ多くの化石燃料に含まれる。石炭やディーゼル燃料の燃焼、火山活動などの自然火災によっても排出される。 アセナフテンは、フランスの化学者マルセラン・ベルテロによりコールタールから製造され、後にベルテロはα-エチルナフタレンから合成する手法を発見した。 染料、農薬、医薬品の製造に使用される。.

新しい!!: 酢酸とアセナフテン · 続きを見る »

アセチル基

アセチル基(アセチルき、acetyl group)はアシル基の一種で、酢酸からヒドロキシ基を取り除いたものにあたる1価の官能基。構造式は CH3CO− と表され、しばしば Ac と略記される。生体内ではエステルやアミドとして盛んに現れる。 炭素数2。.

新しい!!: 酢酸とアセチル基 · 続きを見る »

アセチルコリン

アセチルコリン(Acetylcholine, ACh)は、副交感神経や運動神経の末端から放出され、神経刺激を伝える神経伝達物質である。コリンの酢酸エステル化合物。示性式は CH3COO(CH2)2N+(CH3)3。.

新しい!!: 酢酸とアセチルコリン · 続きを見る »

アセチルセルロース

アセチルセルロース (acetylcellulose) はセルロースから製造される合成樹脂で、繊維や映画フィルム、録音テープのベース材として利用される。酢酸セルロース(さくさんセルロース)ともいう。.

新しい!!: 酢酸とアセチルセルロース · 続きを見る »

アセチルサリチル酸

アセチルサリチル酸(アセチルサリチルさん、acetylsalicylic acid)は、代表的な消炎鎮痛剤のひとつで非ステロイド性抗炎症薬の代名詞とも言うべき医薬品。ドイツのバイエル社が名付けた商標名のアスピリン()がよく知られ、日本薬局方ではアスピリンが正式名称になっている。 消炎・解熱・鎮痛作用や抗血小板作用を持つ。サリチル酸を無水酢酸によりアセチル化して得られる。示性式 C6H4(COOH)OCOCH3。.

新しい!!: 酢酸とアセチルサリチル酸 · 続きを見る »

アセチルCoA

アセチルCoA (アセチルコエンザイムエー、アセチルコエー、Acetyl-CoA)は、アセチル補酵素Aの略で、化学式がC23H38P3N7O17Sで表される分子量が809.572 g/mol の有機化合物である。補酵素Aの末端のチオール基が酢酸とチオエステル結合したもので、主としてβ酸化やクエン酸回路、メバロン酸経路でみられる。テルペノイドはアセチルCoA二分子の反応によって生じるアセトアセチルCoAを原料とする。消費されない過剰のアセチルCoAは、脂肪酸生合成の原料となり、中性脂肪を生成する(脂肪酸#脂肪酸生合成系参照)。そのため、アセチルCoAの代謝を抑制することで動脈硬化、高脂血症を防ぐ研究が進行中である。.

新しい!!: 酢酸とアセチルCoA · 続きを見る »

アセチレン

アセチレン (acetylene) は炭素数が2のアルキンである。IUPAC系統名はエチン ethyne、分子式は C2H2である。1836年にイギリスのエドモンド・デービーによって発見され、水素と炭素の化合物であるとされた。1860年になってマルセラン・ベルテロが再発見し、「アセチレン」と命名した。アルキンのうち工業的に最も重要なものである。 酸素と混合し、完全燃焼させた場合の炎の温度は3,330 ℃にも及ぶため、その燃焼熱を目的として金属加工工場などで多く使われる。高圧ガス保安法により、常用の温度で圧力が0.2 MPa以上になるもので、現に0.2 MPa以上のもの、または、15 ℃で0.2 MPa以上となるものである場合、褐色のボンベに保管することが定められている。.

新しい!!: 酢酸とアセチレン · 続きを見る »

アセトバクター属

アセトバクター属(-ぞく、Acetobacter)とは、プロテオバクテリア門αプロテオバクテリア綱ロドスピリルム目酢酸菌科の真性細菌の属である。酢酸菌属とも呼ばれる。名称は酢(aceto)と桿菌(bacter)に因む。 アセトバクター属はグラム陰性の非芽胞形成偏性好気性桿菌である。周毛性鞭毛をもち運動性を示すものと、そうでないものがある。比較的酸に強く、pH5.0以下でも生育することが出来る。 現在、34の種 (分類学)と11の亜種が知られている。GC比は52から60。植物から発見されることが多い。かつてはグルコナセトバクター属(Gluconacetobacter属)やグルコノバクター属(Gluconobacter属)の一部を含んでいたが16SrRNAの分析や代謝特性の違いから分けられた。 アルコールを酸化してカルボン酸を生産し、特にエタノールを酸化して酢酸を生産する性質が知られている。この性質を用いた食酢の製造など、工業的に利用されている。他の代謝特性としてはクエン酸回路を有するため、酢酸や乳酸を二酸化炭素まで酸化することができる。酢を作るにあたってはこの能力は不利になるのでこの性質を持たない菌株が利用される。.

新しい!!: 酢酸とアセトバクター属 · 続きを見る »

アセトン

142px アセトン (acetone) は有機溶媒として広く用いられる有機化合物で、もっとも単純な構造のケトンである。分子式 C3H6O、示性式 CH3COCH3、または、(CH3)2CO、IUPAC命名法では プロパン-2-オン (propan-2-one) と表される。両親媒性の無色の液体で、水、アルコール類、クロロホルム、エーテル類、ほとんどの油脂をよく溶かす。蒸気圧が20 ℃において24.7 kPaと高いことから、常温で高い揮発性を有し、強い引火性がある。ジメチルケトンとも表記される。.

新しい!!: 酢酸とアセトン · 続きを見る »

アセトフェノン

アセトフェノン(acetophenone)は、示性式 C6H5COCH3、分子量120.15の芳香族ケトンに分類される有機化合物の一種である。この名称は慣用名であり、IUPAC命名法では、その構造を 1-フェニルエタノン(1-phenylethanone)と表す。常温では無色の液体または固体で、ベンズアルデヒドに似た芳香を呈する。.

新しい!!: 酢酸とアセトフェノン · 続きを見る »

アセトニトリル

アセトニトリル (acetonitrile) は有機溶媒の一種で、分子式 C2H3N、示性式 CH3CN と表される最も単純なニトリルである。IUPAC系統名としてエタンニトリル (ethanenitrile)、シアン化メチル (methyl cyanide) シアノメタン (cyanomethane) と表記できる。消防法に定める第4類危険物 第1石油類に該当する。.

新しい!!: 酢酸とアセトニトリル · 続きを見る »

アセトアミド

アセトアミド (acetamide) とは有機化合物の一種で、酢酸とアンモニアが脱水縮合した構造を持つアミドである。分子式は C2H5NO、示性式は CH3CONH2 である。.

新しい!!: 酢酸とアセトアミド · 続きを見る »

アセトアルデヒド

アセトアルデヒド (acetaldehyde) は、アルデヒドの一種。IUPAC命名法では エタナール (ethanal) ともいい、他に酢酸アルデヒド、エチルアルデヒドなどの別名がある。自然界では植物の正常な代謝過程で産生され、特に果実などに多く含まれている。また人体ではエタノールの酸化によって生成されて発がん性を持ち、一般に二日酔いの原因と見なされている。またたばこの依存性を高めている。産業的にも大規模に製造され、その多くが酢酸エチルの製造原料として使われている。示性式は CH3CHO。独特の臭気と刺激性を持ち、自動車の排気やたばこの煙、合板の接着剤などに由来する大気汚染物質でもある。.

新しい!!: 酢酸とアセトアルデヒド · 続きを見る »

イリジウム

イリジウム(iridium )は原子番号77の元素。元素記号は Ir。 白金族元素の一つで、単体では白金に似た白い光沢(銀白色)を持つ金属(遷移金属)として存在する。.

新しい!!: 酢酸とイリジウム · 続きを見る »

インディゴ

インディゴ、インジゴ()は、鮮やかな藍色(青藍)を呈する染料である。.

新しい!!: 酢酸とインディゴ · 続きを見る »

ウィトルウィウス

マルクス・ウィトルウィウス・ポッリオ(Marcus Vitruvius Pollio, 紀元前80年/70年頃 - 紀元前15年以降)は、共和政ローマ期に活動した建築家・建築理論家である。『建築について』(De Architectura、建築十書)を著した。この書物は現存する最古の建築理論書であり、おそらくはヨーロッパにおける最初の建築理論書でもある。 ウィトルウィウスについては、『建築について』の著者であること以外には知られず、その出生年、没年、家系は不詳である。ただし著作からは彼が建築家であることは明らかであり、またアフリカ戦争時にガイウス・ユリウス・カエサルの下で勤務し、アウグストゥスに仕えたことが確認できる。著作によって名声を得ようとしたようであるが、彼の『建築について』がローマ建築にどのような影響を与えたかは定かではない。 『建築について』はおそらく紀元前30年から紀元前23年の間に書かれたと推測される。この書において最も知られた理論は、ある建築が成功するかどうかは、職人の技や形式ではなく、建築家の仕事が社会ともつ相関性に依存するというものである。また、「よい建築は、堅固さ、快適さ、快という3つの条件によって成り立つ」とする定式は多くウィトルウィウスに帰せられるが、これが直接彼の理論であるか、それとも翻訳者による敷衍であるかどうかについては議論がある。 現在にまで『建築について』が伝わっているのは、カール大帝によるカロリング朝ルネサンスの賜物である。他のラテン語著作と同様、このときに多くの筆耕本が制作された。現在残る写本のほとんどは、このときに製作された写本のひとつ(大英博物館図書室所蔵・ハーレイ写本2767番)を定本としている。ウィトルウィウスの理論は中世においても知られていたが、ルネサンス期の建築家に特に注目され、新古典主義建築に到るまで古典的建築の基準として影響を与えた。 ウィトルウィウスは『建築について』の中で水車について論じている。古代ギリシアにおいて、水車とは水平に流れる小川の流れを利用して作動させる横向きの車輪を意味し、滝のように落下する水の力を利用して作動させる現代的な水車は知られていなかった。ウィトルウィウスは『建築について』において後者の水車を紹介し、こちらを用いることでより強力な水力を活用できることを、ヨーロッパで初めて提唱した。そして、西洋では現代に至るまでこちらの水車が一般的なものとして受け継がれている。このことから、水を縦に落として作動させる形式の水車は、横向きのギリシア型・ノルウェー型と対比して、ウィトルウィウス型と呼ばれている。.

新しい!!: 酢酸とウィトルウィウス · 続きを見る »

エナント酸

ナント酸(エナントさん、enanthic acid)は炭素数7のカルボン酸で、末端にカルボキシル基を持つ。IUPAC名はヘプタン酸 (heptanoic acid) である。腐敗物のような悪臭を持つ油状液体で、腐った油のにおいの成分の一部である。水には溶けにくいが、エタノールやエーテルには良く溶ける。消防法による第4類危険物 第3石油類に該当する。 香料として使われるヘプタン酸エチルなどのエステルの合成に用いられる。銀杏では酪酸と並ぶ腐臭の主成分である。 タバコの添加物のひとつでもある。.

新しい!!: 酢酸とエナント酸 · 続きを見る »

エチレン

チレン(ethylene、IUPAC命名法では エテン (ethene) )は、分子式 C2H4、構造式 CH2.

新しい!!: 酢酸とエチレン · 続きを見る »

エチレンオキシド

専用コンテナによるエチレンオキシド(液化酸化エチレン)の輸送 エチレンオキシド (ethylene oxide) は、有機化合物の一種で、三員環の構造を持つ環状エーテルである。.

新しい!!: 酢酸とエチレンオキシド · 続きを見る »

エステル

ルボン酸エステルの基本構造。RおよびR'は任意のアルキル基またはアリール基。 エステル (ester) は、有機酸または無機酸のオキソ酸とアルコールまたはフェノールのようなヒドロキシ基を含む化合物との縮合反応で得られる化合物である。単にエステルと呼ぶときはカルボン酸とアルコールから成るカルボン酸エステル (carboxylate ester) を指すことが多く、カルボン酸エステルの特性基 (R−COO−R') をエステル結合 (ester bond) と呼ぶ事が多い。エステル結合による重合体はポリエステル (polyester) と呼ばれる。また、低分子量のカルボン酸エステルは果実臭をもち、バナナやマンゴーなどに含まれている。 エステルとして、カルボン酸エステルのほかに以下のような種の例が挙げられる。.

新しい!!: 酢酸とエステル · 続きを見る »

エタノール

タノール(ethanol)は、示性式 CHOH、又は、CHCHOH で表される、第一級アルコールに分類されるアルコール類の1種である。別名としてエチルアルコール(ethyl alcohol)やエチルハイドレート、また酒類の主成分であるため「酒精」とも呼ばれる。アルコール類の中で、最も身近に使われる物質の1つである。殺菌・消毒のほか、食品添加物、また揮発性が強く燃料としても用いられる。.

新しい!!: 酢酸とエタノール · 続きを見る »

オクタン

タン (octane) は炭素を8個持つ飽和炭化水素の呼称である。石油(あるいはそれを分留したガソリン)中に含まれる。分子式は C8H18、示性式 CH3(CH2)6CH3、分子量は 114.23 で、18種類の構造異性体が存在し、立体異性体までを考慮すると24種類になる。 IUPAC命名法によるオクタンは直鎖状 (CH3(CH2)6CH3) のn-オクタン(ノルマルオクタン、n-octane)であり、その融点は −60 ℃、沸点は 125 ℃、CAS登録番号は 。広義のオクタンは、C8H18 の分子式で表せるアルカンの各構造異性体をさす。 構造異性体のうち、3,4-ジメチルヘキサンはメソ体を持つ最小のアルカンである。2,2,4-トリメチルペンタン(イソオクタン)はガソリンのオクタン価の測定基準として使用される。.

新しい!!: 酢酸とオクタン · 続きを見る »

カルボン酸

ルボン酸(カルボンさん、carboxylic acid)とは、少なくとも一つのカルボキシ基(−COOH)を有する有機酸である。カルボン酸の一般式はR−COOHと表すことができ、Rは一価の官能基である。カルボキシ基(carboxy group)は、カルボニル基(RR'C.

新しい!!: 酢酸とカルボン酸 · 続きを見る »

カルボン酸塩化物

ルボン酸塩化物(カルボンさんえんかぶつ、carboxylic acid chloride)は、R-C(.

新しい!!: 酢酸とカルボン酸塩化物 · 続きを見る »

カプリル酸

プリル酸(カプリルさん、caprylic acid)は、炭素数8の直鎖状脂肪酸で、IUPAC系統名はオクタン酸 (octanoic acid) である。天然にはココナッツや母乳などに含まれる。常温常圧においては、弱い不快な腐敗臭を持つ油状の液体であるオクタン酸(カプリル酸)の常圧での融点は約16.7 ℃であるため、常温(25 ℃)においては液体であるものの、寒冷な場所では固体となる。なお、同じ直鎖状の飽和炭化水素鎖を持ったカルボン酸の中では、酢酸(エタン酸)がほぼ同じ融点を持つ。蟻酸(メタン酸)、プロパン酸、酪酸(ブタン酸)、吉草酸(ペンタン酸)、ヘキサン酸、ヘプタン酸は、いずれもオクタン酸や酢酸と比べて常圧での融点が低い。。なお、水にはほとんど溶けない。 工業的には香料として用いられるエステルの合成や染料の製造に利用される。.

新しい!!: 酢酸とカプリル酸 · 続きを見る »

カプロン酸

プロン酸(カプロンさん、caproic acid)は示性式 CH3(CH2)4COOH、分子量 116.13 の直鎖飽和カルボン酸である。IUPAC系統名ではヘキサン酸 (hexanoic acid) となる。CAS登録番号は142-62-1。消防法に定める第4類危険物 第3石油類に該当する。.

新しい!!: 酢酸とカプロン酸 · 続きを見る »

カティバ法

ティバ法の触媒として使われる Ir(CO)2I2- の空間充填モデル カティバ法 (Cativa process) は、メタノールのカルボニル化による酢酸製造法である。モンサント法に類似するこの製造法は、BPケミカルズ社によって開発され、BP社のライセンスのもとにある。この方法は、イリジウムを含む錯体触媒 - (1) に基づく。 カティバ法とモンサント法は、同じプラントを使うことができるくらいよく似ている。モンサントによる初期の研究では、メタノールのカルボニル化のためには、イリジウムはロジウムほど有効ではないことが示されていた。しかし、後の研究によって、イリジウム触媒がルテニウムによって促進され、この組み合わせがロジウムベースのものより優れた触媒になることが示された。ロジウムからイリジウムへの置き換えにより、反応混合物中での水の使用量を減少させることが可能になった。これにより必要な乾燥塔の数が減り、プロピオン酸のような副生物の生成が減少し、水性ガスシフト反応を抑制することができる。 カティバ法による触媒サイクル 上記のように、カティバ法による触媒サイクルは、平面四角形の触媒活性種 - (1) とヨウ化メチルの反応によって、八面体形のイリジウム(III)種 ''fac''-- (2) が生成することで開始する。この酸化的付加反応は、ヨウ化メチルの Me-I 結合にイリジウム(I)中心が挿入されることで起こる。I- と CO の配位子交換 (3) の後に、Ir-Me 結合へのCO挿入反応が起こることで、Ir にアセチル基が結合した四角錐形の化学種 (4) が生成する。活性触媒種 (1) は、(4) からヨウ化アセチルが還元的脱離して再生する。ヨウ化アセチルは加水分解されて酢酸となり、同時にヨウ化水素が生成し、メタノールと反応してヨウ化メチルとして再利用される。.

新しい!!: 酢酸とカティバ法 · 続きを見る »

ガイウス・プリニウス・セクンドゥス

イウス・プリニウス・セクンドゥス(Gaius Plinius Secundus、23年 – 79年8月24日)は、古代ローマの博物学者、政治家、軍人。ローマ帝国の属州総督を歴任する傍ら、自然界を網羅する百科全書『博物誌』を著した。一般には大プリニウスと呼ばれる。 甥に、文人で政治家のガイウス・プリニウス・カエキリウス・セクンドゥス(小プリニウス)がおり、養子としている。.

新しい!!: 酢酸とガイウス・プリニウス・セクンドゥス · 続きを見る »

ギ酸

酸(ギさん、蟻酸、formic acid)は、分子量が最少のカルボン酸である。分子式は CH2O2、示性式は HCOOH。IUPAC命名法ではメタン酸 (methanoic acid) が系統名である。カルボキシ基(-COOH)以外にホルミル基(-CHO)も持つため、性質上、還元性を示す。空気中で加熱すると発火しやすい。なお、ギ酸を飽和脂肪酸として見た時は、常温常圧において他の飽和脂肪酸よりも比重が大きいことで知られる。多くの飽和脂肪酸の比重が1を下回っているのに対し、ギ酸の比重は約1.22と酢酸よりもさらに比重が大きい。ギ酸は工業的に生産されており、その水溶液は市販されている。.

新しい!!: 酢酸とギ酸 · 続きを見る »

クラゲ

ラゲ(水母、海月、水月)は、刺胞動物門に属する動物のうち、淡水または海水中に生息し浮遊生活をする種の総称。体がゼラチン質で、普通は触手を持って捕食生活をしている。また、それに似たものもそう呼ぶこともある。.

新しい!!: 酢酸とクラゲ · 続きを見る »

クロム

ム(chromium 、Chrom 、chromium、鉻)は原子番号24の元素。元素記号は Cr。クロム族元素の1つ。.

新しい!!: 酢酸とクロム · 続きを見る »

クロロホルム

ホルム (chloroform) は化学式 CHCl3 で表されるハロゲン化アルキルの一種である。IUPAC名はトリクロロメタン (trichloromethane) であり、トリハロメタンに分類される。広範囲で溶媒や溶剤として利用されている。.

新しい!!: 酢酸とクロロホルム · 続きを見る »

クロロ酢酸

酢酸(クロロさくさん)は示性式 CH2ClCOOH で表される有機化合物である。水素原子が置換された数を特に強調する場合にはモノクロロ酢酸と呼ばれる。毒物及び劇物取締法で劇物に指定されている。.

新しい!!: 酢酸とクロロ酢酸 · 続きを見る »

クロストリジウム属

トリジウム属(Clostridium)は、真正細菌の一属である。偏性嫌気性で芽胞を形成するグラム陽性の桿菌である。この属名は、ギリシャ語のkloth(捻じれ)から派生したklostridion(小さい捻じれたもの)から来ており、ラテン語化するとClostridium となる。 クロストリジウム属の菌は、土壌内部や生物の腸内などの酸素濃度が低い環境に生息する偏性嫌気性菌であり、酸素存在下では増殖できない。一般に偏性嫌気性菌は、スーパーオキシドディスムターゼやカタラーゼなどの活性酸素を無毒化する酵素を持たないため、酸素がある通常の環境下では不活化するが、クロストリジウム属細菌は酸素存在下で、耐久性の高い芽胞を作って休眠することで、死滅を免れることができる。この性質から、他の偏性嫌気性菌が生き残れない状態でも生き残るため、偏性嫌気性菌の中では比較的古くからその存在が発見され、研究が進められてきた。 ハイム・ワイツマン(後にイスラエル初代大統領)による1919年の特許によりデンプンから発酵によって工業的な規模でのアセトン・ブタノール生産が可能になったが、この発酵に用いられたのもクロストリジウム属細菌であり、第一次世界大戦中は燃料や火薬の原材料として破砕したトウモロコシからアセトンを生産していた。この発酵生産法は化学合成法が発達する1950年代まで、アセトンやブタノールの主な生産法であった。 206種 (分類学)と5亜種が知られている。.

新しい!!: 酢酸とクロストリジウム属 · 続きを見る »

クエン酸回路

ン酸回路。クリックで拡大 クエン酸回路(クエンさんかいろ)とは好気的代謝に関する最も重要な生化学反応回路であり、酸素呼吸を行う生物全般に見られる。1937年にドイツの化学者ハンス・クレブスが発見し、この功績により1953年にノーベル生理学・医学賞を受賞している。 解糖や脂肪酸のβ酸化によって生成するアセチルCoAがこの回路に組み込まれ、酸化されることによって、電子伝達系で用いられるNADHなどが生じ、効率の良いエネルギー生産を可能にしている。またアミノ酸などの生合成の前駆体も供給する。 クエン酸回路の呼称は高等学校の生物学でよく用いられるが、大学以降ではTCA回路、TCAサイクル (tricarboxylic acid cycle) と呼ばれる場合が多い。その他に、トリカルボン酸回路、クレブス回路 (Krebs cycle) などと呼ばれる場合もある。.

新しい!!: 酢酸とクエン酸回路 · 続きを見る »

グリーンサスティナブルケミストリー

リーンサスティナブルケミストリー(英語:green sustainable chemistry)とは生態系に与える影響を考慮し、持続成長可能な化学工業のあり方を提言する環境運動である。日本においては化学製品に対する環境政策はグリーンケミストリーとサスティナブルケミストリーとを同時に推進することを目的としているので、グリーンサスティナブルケミストリーという用語が使用される。 グリーンケミストリーの用語はアメリカ合衆国の環境省(EPA)が化学製品の生産から廃棄までの全ライフサイクルにおいて生態系に与える影響を最小限にし、且つ経済的効率性を向上させようとする次世代の化学工業の改革運動に対してこの語を用い始めたことを起源とする。 一方、サスティナブルケミストリーはヨーロッパを中心としたOECDが提唱した環境政策で、化学製品が生態系に与える影響の他にもリサイクルによる省資源化を通じて持続成長可能な産業のあり方を提案したものである。したがってアメリカの『グリーンケミストリー』にはリサイクルの概念がない為、両者はこの点で大きく異なる。 グリーンケミストリーにおいてもサスティナブルケミストリーにおいても、化学工業で使用される化学物質を製造から廃棄・再生まで網羅的に量的監視下に置きそれらのコントロールするための法規制とそれを達成するための環境負荷が小さく、従来よりも高効率な化学プロセスの開発が必要となってくる。前者は日本においては「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」(化管法)を中心に法整備が進められている。後者はゼオライトZSM-5を触媒にしたε-カプロラクタムの新規合成プロセスが実用化され、光触媒を用いて水から水素発生させる太陽光エネルギー-化学エネルギーの直接変換プロセスなどの開発が進められている。.

新しい!!: 酢酸とグリーンサスティナブルケミストリー · 続きを見る »

グリセリン

リセリン (glycerine, glycerin) は、3価のアルコールである。学術分野では20世紀以降グリセロール (glycerol) と呼ぶようになったが、医薬品としての名称を含め日常的にはいまだにグリセリンと呼ぶことが多い。食品添加物として、甘味料、保存料、保湿剤、増粘安定剤などの用途がある。虫歯の原因となりにくい。医薬品や化粧品には、保湿剤・潤滑剤として使われている。.

新しい!!: 酢酸とグリセリン · 続きを見る »

ケテン

テン類の構造式。 ケテン (ketene) とは、構造式 CH2.

新しい!!: 酢酸とケテン · 続きを見る »

コバルト

バルト (cobalt、cobaltum) は、原子番号27の元素。元素記号は Co。鉄族元素の1つ。安定な結晶構造は六方最密充填構造 (hcp) で、強磁性体。純粋なものは銀白色の金属である。722 K以上で面心立方構造 (fcc) に転移する。 鉄より酸化されにくく、酸や塩基にも強い。.

新しい!!: 酢酸とコバルト · 続きを見る »

コリン (栄養素)

リン(, )は、循環器系と脳の機能、および細胞膜の構成と補修に不可欠な水溶性の栄養素である。.

新しい!!: 酢酸とコリン (栄養素) · 続きを見る »

コルポスコピー

ルポスコープ 腟鏡 コルポスコピー(Colposcopy)とは、腟の外にカメラ機器を置き、腟の奥にある子宮頸部を拡大観察する検査法。.

新しい!!: 酢酸とコルポスコピー · 続きを見る »

コークス

ークス(ドイツ語:Koks、英語:coke)とは、石炭を乾留(蒸し焼き)して炭素部分だけを残した燃料のことである。漢字では骸炭と書く。.

新しい!!: 酢酸とコークス · 続きを見る »

シードル

トロングボウのリンゴ酒(英国産)1パイント(568ml) シードル(、、 、、)またはリンゴ酒(林檎酒)とは、リンゴを発酵させて造られるアルコール飲料。発泡性であることも多く、日本の酒税法では発泡性のものは発泡性酒類のその他の発泡性酒類に、発泡性でないものはワインと同様に「果実酒」に分類されている。 リンゴ連 (Maleae) リンゴ亜連 (Malinae) に属する果実を発酵させて造られるアルコール飲料を意味する言葉としても使われるため、ナシのシードル(ペアサイダー)なども存在する。.

新しい!!: 酢酸とシードル · 続きを見る »

ジャービル・イブン=ハイヤーン

アブー・ムーサー・ジャービル・イブン・ハイヤーン(, جابر بن حيان بن عبد الله الأزدي), (721年? – 815年?)は、アッバース朝時代のイスラム世界の哲学者、学者。後に11世紀にかけて続くイスラム科学黄金期を築く元祖とされる。彼の業績は、著作がラテン語に翻訳されてヨーロッパ世界へ伝わり、中世ヨーロッパの錬金術に多大な影響を及ぼすとともに、近代の化学の基礎を与えた。ラテン語ではGeberus(ゲベルス)又はGeber(ゲーベル、ジーベル)というラテン名で言及される。ジャービルは半ば伝説的な存在であり、その実像を正確に定めることは難しい。生年は721年あるいは722年ともいわれる。生地はホラーサーン(現在のイラン北東部およびアフガニスタン北西部)とされる。彼の父は化学、薬学者であった。イエメンで学業を修め、後にアッバース朝イラクのクーファで活躍、その地で没した。815年あるいは808年ともいわれる。アッバース朝最盛期のカリフであるハールーン・アッ=ラシードに宮廷学者として仕えた。.

新しい!!: 酢酸とジャービル・イブン=ハイヤーン · 続きを見る »

ジャガイモ

花 地上部 '''ジャガイモ'''のアミノ酸スコアhttp://www.nal.usda.gov/fnic/foodcomp/search/『タンパク質・アミノ酸の必要量 WHO/FAO/UNU合同専門協議会報告』日本アミノ酸学会監訳、医歯薬出版、2009年5月。ISBN 978-4263705681 邦訳元 ''http://whqlibdoc.who.int/trs/WHO_TRS_935_eng.pdf Protein and amino acid requirements in human nutrition'', Report of a Joint WHO/FAO/UNU Expert Consultation, 2007 thumb ジャガイモ(馬鈴薯〈ばれいしょ〉、、学名:Solanum tuberosum L.)は、ナス科ナス属の多年草の植物。デンプンが多く蓄えられている地下茎が芋の一種として食用とされる。.

新しい!!: 酢酸とジャガイモ · 続きを見る »

ジルコニウム

ルコニウム(zirconium)は原子番号40の元素。元素記号は Zr。チタン族元素の1つ、遷移金属でもある。常温で安定な結晶構造は、六方最密充填構造 (HCP) のα型。862 ℃以上で体心立方構造 (BCC) のβ型へ転移する。比重は6.5、融点は1852 ℃。銀白色の金属で、常温で酸、アルカリに対して安定。耐食性があり、空気中では酸化被膜ができ内部が侵されにくくなる。高温では、酸素、窒素、水素、ハロゲンなどと反応して、多様な化合物を形成する。.

新しい!!: 酢酸とジルコニウム · 続きを見る »

ジエチルエーテル

チルエーテル(diethyl ether)とは、エチル基とエチル基がエーテル結合した分子構造をしている有機化合物である。したがって、分子式は で、示性式は 、又は、で表される。分子量 74.12 。密度は0.708 g/cm。特徴的な甘い臭気を持つ、無色透明の液体である。エチルエーテル、硫酸エーテルとも呼び、また単にエーテルというときはこのジエチルエーテルのことを指す場合が多い。IUPAC名ではエトキシエタンとも呼ばれる。.

新しい!!: 酢酸とジエチルエーテル · 続きを見る »

ジクロロ酢酸

酢酸(ジクロロさくさん、dichloroacetic acid、略号DCA)は示性式CHCl2COOHで示される化学物質である。酸として、あるいは酢酸のメチル基の水素を塩素で置換したアナログとして知られている。ジクロロ酢酸の塩もしくはエステルは英語ではdichloroacetatesと表記される。DCA塩は酵素であるPDH(ピルビン酸デヒドロゲナーゼ)キナーゼの阻害剤として利用される。毒物及び劇物取締法により劇物に指定されている 。.

新しい!!: 酢酸とジクロロ酢酸 · 続きを見る »

ステロイド

300px ステロイド (steroid) は、天然に存在する化合物または合成アナログである。シクロペンタヒドロフェナントレンを基本骨格とし、その一部あるいはすべての炭素が水素化されている。通常はC-10とC-13にメチル基を、また多くの場合C-17にアルキル基を有する。天然のステロイドはトリテルペノイド類から生合成される。共通して、ステロイド核(シクロペンタノ-ペルヒドロフェナントレン核)と呼ばれる、3つのイス型六員環と1つの五員環がつながった構造を持っている。ステロイド骨格そのものは脂溶性で水に不溶であるが、生体物質としてのステロイドはC-3位がヒドロキシル化されあるいはカルボニル基となったステロール類であり、ステロイドホルモンをはじめ、水溶性の性質も有する。 ステロイドはステラン核と付随する官能基群により特徴付けられるテルペノイド脂質で、核部分は3つのシクロヘキサン環と1つのシクロペンタン環から成る4縮合環炭素構造である。ステロイドはこれらの炭素環に付随する官能基およびその酸化状態により異なったものとなる。 何百もの異なるステロイドが植物、動物、菌類で見つかっており、それらすべてのステロイドがそれぞれの細胞においてラノステロール(動物および菌類)またはシクロアルテノール(植物)といったステロールから生成され、これらステロール(ラノステロールとシクロアルテノール)は何れもトリテルペンの一種であるスクアレンの環状化により誘導される。 ステロールはステロイドの特殊型であり、C-3にヒドロキシ基を有しコレスタンから生成される骨格である 。コレステロールは最もよく知られるステロールのひとつである。 ステロイドは、ほとんどの生物の生体内にて生合成され、中性脂質やタンパク質、糖類とともに細胞膜の重要な構成成分となっているほか、胆汁に含まれる胆汁酸や生体維持に重要なホルモン類(副腎皮質ホルモンや昆虫の変態ホルモンなど)として、幅広く利用されている。.

新しい!!: 酢酸とステロイド · 続きを見る »

ステンレス鋼

テンレス鋼(ステンレスこう、stainless steel)とは、クロム、またはクロムとニッケルを含む、さびにくい合金鋼である。ISO規格では、炭素含有量 1.2 %(質量パーセント濃度)以下、クロム含有量 10.5 % 以上の鋼と定義される。名称は、省略してステンレスという名称でもよく呼ばれる。かつては不銹鋼(ふしゅうこう)と呼ばれていた。.

新しい!!: 酢酸とステンレス鋼 · 続きを見る »

セラニーズ

ラニーズコーポレーションはアメリカ合衆国テキサス州ダラス市に本社を置く、石油化学製品・プラスチック製品等を製造する世界的グローバル企業である。ニューヨーク証券取引所(NYSE: CE)に上場し、フォーチュン500にもリストされる企業体である。 事業体はEngineered Materials(旧ティコナ部門)やFood Ingredients(旧ニュートリノバ部門)、Cellurose Delivertivesから構成されるマテリアルソルーションズと Intermediate Chemistry(化学品中間体)、Emulsion Polymers, EVA Polymersから構成されるアセチルチェーンの2グループから構成される。米州、ヨーロッパ、アジアの32か所の製造拠点で、酢酸および酢酸誘導体、高機能プラスチック等を製造している。各種産業分野に広く使用される酢酸の世界トップメーカーであり、関連する酢酸ビニルモノマー(VAM)においても世界トップの生産規模を有する。最大の工場はアメリカ合衆国テキサス州クリアレーク市(Clear Lake, Texas)のパサデナプラント(Pasadena)であり、世界最大能力の酢酸製造プラントを保有している。高機能プラスチック分野においても、ポリアセタール樹脂、液晶ポリマー、超高分子ポリエチレン、PPS樹脂では世界トップクラスの生産規模を誇る。ヨーロッパではドイツのフランクフルトプラント、オバーハウゼンプラント、アジアにおいてはシンガポールプラント、中国の南京プラント等、アメリカの主要生産拠点の他、ヨーロッパ・アジアにも主要な生産拠点を保有する。 同社は1863年設立のドイツの総合化学企業であるヘキスト(Hoechst AG)と1918年設立のアメリカンセラニーズ(American Celanese)の流れを引き継ぎ、巨大製薬会社であるヘキストセラニーズ(Hoechst Celanese)の時代を経て、ヘキストの解体と共に事業再編が行われ、前述の事業を継承して現在のセラニーズコーポレーション(Celanese Corporation)の形となった。 2015年時点での売上は5700百万米ドル、従業員数は約7400名となっている。 2016年には北米で130万トンのメタノールの製造を開始している。.

新しい!!: 酢酸とセラニーズ · 続きを見る »

ゼラチン

ラチン(gelatin)は、動物の皮膚や骨、腱などの結合組織の主成分であるコラーゲンに熱を加え、抽出したもの。タンパク質を主成分とする説が有力。.

新しい!!: 酢酸とゼラチン · 続きを見る »

サイレージ

イレージ (silage) とは家畜用飼料の一種で、飼料作物をサイロ(silo)などで発酵させたもの。一般には、青刈りした牧草を発酵させたもの(牧草サイレージ)をいう。それ以外の場合には、サイレージの前に穀物名を付けて呼ぶこともある(例: コーンサイレージ)。.

新しい!!: 酢酸とサイレージ · 続きを見る »

サソリモドキ

リモドキ(蠍擬)は、クモ綱サソリモドキ目に属する節足動物の総称。英名からムチサソリ、ビネガロンとも呼ばれる。 "Uropygi" はギリシャ語 οὐροπύγιον (ouropugion)に由来し、οὐρά (oura) は"尾"・πυγή (puge) は"尻"を意味する。これは尾節が鞭のような尾となっていることに由来する。 なお、この名称はかつては日本産の種(サソリモドキ Typopeltis stimpsonii)の和名として使われたこともあるが、現在ではそれらは後述のように2種が含まれていたことが分かって、それぞれ別個の和名で呼ばれるようになっている。.

新しい!!: 酢酸とサソリモドキ · 続きを見る »

写真

写真(しゃしん、古くは寫眞)とは、.

新しい!!: 酢酸と写真 · 続きを見る »

写真フィルム

35mmスチールカメラ用のパトローネ入りフィルムの例 写真フィルム(しゃしんフィルム)とは写真(映画も含む)において、カメラから得られた光の情報を記録する感光材料であり、現像されることにより記録媒体となるフィルムのこと。透明な薄い膜状のベース(支持体)に感光剤(主として銀化合物.

新しい!!: 酢酸と写真フィルム · 続きを見る »

共沸

共沸(きょうふつ)とは液体の混合物が沸騰する際に液相と気相が同じ組成になる現象である。このような混合物を共沸混合物(きょうふつこんごうぶつ)という。通常の液体混合物は沸騰するにしたがって組成が変化し、沸騰する温度が徐々に上昇していくが、共沸混合物の場合は組成が変わらず沸点も一定のままである。このことから定沸点混合物(ていふってんこんごうぶつ、constant boiling mixture, CBM)ともいう。 例えば水(沸点100)とエタノール(沸点78.3)の混合物が沸騰する際、エタノールの濃度が低ければ気相におけるエタノール濃度は液相のそれより高い。ところが、エタノールの濃度が96%(重量%、以下同じ)に達すると共沸混合物となり、気相のエタノール濃度も同じく96%となる。よって蒸留によって水-エタノール混合物のエタノール濃度を96%以上に濃縮することはできない(なお、この組成の酒は、スピリタスとして市販されている)。 水-エタノール共沸混合物の沸点は78.2で、水およびエタノール単体の沸点より低い。このような共沸混合物の沸点を極小共沸点という。一方、水と塩化水素(沸点 −80)の混合物は塩化水素20%の濃度で共沸混合物となり、その沸点は109であるので、これを極大共沸点という。 水-エタノールや水-塩化水素の共沸混合物は液相が溶け合っており均一共沸混合物という。水と有機溶媒のように完全には溶け合わない組み合わせでも共沸混合物となることがあり、これを不均一共沸混合物という。.

新しい!!: 酢酸と共沸 · 続きを見る »

固定 (組織学)

固定(こてい)とは、生物試料を自己分解や腐敗による劣化から保護するための化学処理をいう。固定によりあらゆる生化学反応が停止し、場合により物理的強度や化学的安定性が向上することもある。固定された試料は標本として保存され、あるいは包埋・薄切・染色などを経て観察される。.

新しい!!: 酢酸と固定 (組織学) · 続きを見る »

四塩化炭素

四塩化炭素(しえんかたんそ、carbon tetrachloride)あるいはテトラクロロメタン(tetrachloromethane)は、化学式 CCl4 で表される化学物質。.

新しい!!: 酢酸と四塩化炭素 · 続きを見る »

BASF

BASF(ビーエーエスエフ、BASF SE)は、ドイツ南西部のルートヴィヒスハーフェン・アム・ラインに本社を置き、150年の歴史を持つ世界最大の総合化学メーカーである。フランクフルト証券取引所、ロンドン証券取引所上場企業(、)。スイス証券取引所にも上場しており、ニューヨーク証券取引所、東京証券取引所にもかつて上場していた。.

新しい!!: 酢酸とBASF · 続きを見る »

石炭化学

石炭化学(せきたんかがく、coal chemistry)は、石炭の化学的な利用や構造、成因の解明に関する学問で工業化学の一種。.

新しい!!: 酢酸と石炭化学 · 続きを見る »

石油エーテル

石油エーテル(せきゆエーテル、petroleum ether)とは、石油の低沸点留分の一種である。ほぼ無色透明の液体であり、溶剤として広く用いられている。水に不溶である。名称に「エーテル」が含まれているが、化学種としてのエーテルは含有していない。強い揮発性と引火性があり、消防法危険物の第四類第一石油類に指定されている。.

新しい!!: 酢酸と石油エーテル · 続きを見る »

現像

像(げんぞう)とは、銀塩写真において、露光することによって撮影された写真・映画の感光材料(フィルム・乾板・印画紙)を薬品(現像液)で処理して、画像・映像(潜像)を出現・可視化(顕像)させることである、2011年11月30日閲覧。、2011年11月30日閲覧。、2011年11月30日閲覧。。この定義は、英語等でいう developing 、2011年12月3日閲覧。であって、日本語では、英語でいう processing の指す範囲、つまり、 developing から fixing (定着)まで(現像を開始したフィルムが感光性を失い安定するまで)の一連の行程を指す、2011年11月30日閲覧。『図解入門よくわかる最新半導体プロセスの基本と仕組み』、佐藤淳一、秀和システム、2010年2月 ISBN 4798025232 、p.100.

新しい!!: 酢酸と現像 · 続きを見る »

現像液

像液(げんぞうえき)は、写真・映画の現像工程において、フィルムや印画紙などの感光材料を現像するための薬液、水溶液である、2011年12月6日閲覧。、2011年12月6日閲覧。。現像主薬(げんぞうしゅやく)、現像保恒剤(げんぞうほこうざい)、現像促進剤(げんぞうそくしんざい)、現像抑制剤(げんぞうよくせいざい)等の混合溶液である。.

新しい!!: 酢酸と現像液 · 続きを見る »

硫黄

硫黄(いおう、sulfur, sulphur)は原子番号 16、原子量 32.1 の元素である。元素記号は S。酸素族元素の一つ。多くの同素体や結晶多形が存在し、融点、密度はそれぞれ異なる。沸点 444.674 ℃。大昔から自然界において存在が知られており、発見者は不明になっている。硫黄の英名 sulfur は、ラテン語で「燃える石」を意味する言葉に語源を持っている。.

新しい!!: 酢酸と硫黄 · 続きを見る »

硫酸

硫酸(りゅうさん、sulfuric acid)は、化学式 H2SO4 で示される無色、酸性の液体で硫黄のオキソ酸の一種である。古くは緑礬油(りょくばんゆ)とも呼ばれた。化学薬品として最も大量に生産されている。.

新しい!!: 酢酸と硫酸 · 続きを見る »

硫酸水銀

硫酸水銀(りゅうさんすいぎん、)は、水銀の硫酸塩。硫酸水銀(I)と、硫酸水銀(II)の二種類がある。単に硫酸水銀という場合、通常は硫酸水銀(II)のことを指す。.

新しい!!: 酢酸と硫酸水銀 · 続きを見る »

穀物

小麦畑。フランスで撮影。 イネの穂。 ハンガリーで撮影されたトウモロコシ。 カトマンズで売られている様々な豆類。 穀物(こくもつ)は、植物から得られる食材の総称の1つで、澱粉質を主体とする種子を食用とするもの。農学・経済学・人類学にの分野では、糧食(りょうしょく)と呼ばれる場合ある。 イネ科作物の種子を禾穀類(かこくるい、Cereals、シリアル)日本作物学会編『作物学用語事典』農山漁村文化協会 p.241 2010年といい、マメ科作物の種子を菽穀類(しゅこくるい、Pulses)という。そして、穀物は狭義にはイネ科作物の種子(禾穀類)のみを指し、広義にはこれにマメ科作物の種子(菽穀類)や他科の作物の種子を含む『丸善食品総合辞典』丸善 p.393 1998年。広義の穀物のうち、禾穀類の種子(単子葉植物であるイネ科作物の種子)と似ていることから穀物として利用される双子葉植物の種子をまとめて擬禾穀類あるいは擬似穀類(疑似穀類、Pseudocereals)と呼ぶ『丸善食品総合辞典』丸善 p.393 1998年日本作物学会編『作物学用語事典』農山漁村文化協会 p.242 2010年『丸善食品総合辞典』丸善 p.268 1998年。擬似穀類には、ソバ(タデ科)、アマランサス(ヒユ科)、キヌア(キノア、アカザ科)などが含まれる『食料の百科事典』丸善 p.18 2001年。.

新しい!!: 酢酸と穀物 · 続きを見る »

第9族元素

9族元素(だいきゅうぞくげんそ、Group 9 element)はIUPAC形式での周期表において第9族に属する元素。コバルト・ロジウム・イリジウム・マイトネリウムから構成される。 長周期表の第8族〜第10族元素は最外殻の4s電子を2つ持ち、短周期表で VIII族、あるいは VIIIB族 としてまとめられたように同一周期元素の化学的性質が似通っている。それ故、第4周期の26Fe、27Co、28Niを鉄族元素と呼び、第5周期あるいは第6周期の44Ru、45Rh、46Pd、76Os、77Ir、78Ptを白金族元素と呼ぶ。したがって族の代表元素を属名の別名とする他の族との場合との違いを留意する必要がある。 閉殻していないd軌道を持ち、遷移元素として取り扱われる。.

新しい!!: 酢酸と第9族元素 · 続きを見る »

米(こめ、rice)は、稲の果実である籾から外皮を取り去った粒状の穀物である。穀物の一種として米穀(べいこく)とも呼ぶ。東アジア・東南アジア・南アジア以外では一般的に主食として特別視することが希薄であり、日本語でいう「米」「稲」「飯」といった、収穫前・収穫後・調理前・調理後などによる区別がない言語が多数ある。例えば英語圏ではすべてriceという同一の単語で扱われる。.

新しい!!: 酢酸と米 · 続きを見る »

粘膜

粘膜(ねんまく、mucous membrane)は、上皮細胞に覆われた外胚葉由来の上皮層である。吸収と分泌に関わる。さまざまな体腔に配置し、外部環境や内部臓器に面している。鼻孔、唇、耳、生殖器、肛門などあちこちで肌とつながる。 粘膜や腺から分泌された濃い粘性の流体が粘液である。粘膜は体内において見られた場所を指し、全ての粘膜が粘液を分泌するわけではない。その表面がいつも粘液性の分泌物で濡れている柔性膜を称するときに限り、「粘膜」という呼称を用いる。位置的には中空性臓器の内腔表面に多い。粘膜上皮、粘膜固有層、粘膜筋板より構成される。 大概の呼吸器系は粘膜が特徴的である体腔に含まれる。陰茎亀頭(陰茎の頭部)、陰核亀頭、陰茎包皮、陰核包皮は粘膜であって、皮膚ではない。.

新しい!!: 酢酸と粘膜 · 続きを見る »

糖(とう)とは、多価アルコールの最初の酸化生成物であり、アルデヒド基 (−CHO) またはケトン基 (>C.

新しい!!: 酢酸と糖 · 続きを見る »

置換反応

置換反応(ちかんはんのう)とは有機化学において、化合物の同一原子上で置換基が置き換わる化学反応のことを指す。一般的に結合エネルギーが高い結合から結合エネルギーの低い結合へと置き換わる反応が進行しやすい。 置換反応は大きく求核置換反応と求電子置換反応(親電子置換反応とも言う)に分けられる。求核置換反応は反応機構別に SN2反応やSN1反応などのさまざまな形式に分類される。親電子置換反応は芳香環によく見られる反応である。また、置き換わる分子の数によって、単置換反応(en:single displacement reaction)と二重置換反応(en:double displacement reaction)に分けられる。 反応機構は求核置換反応、芳香族求核置換反応、芳香族求電子置換反応の項に詳しい。 芳香族求電子置換反応の場合、反応が同一原子上に限定されて進行するわけではないので厳密には置換反応の定義から外れるが、反応前後の様式から置換反応と呼ばれる。.

新しい!!: 酢酸と置換反応 · 続きを見る »

真正細菌

真正細菌(しんせいさいきん、bacterium、複数形 bacteria バクテリア)あるいは単に細菌(さいきん)とは、分類学上のドメインの一つ、あるいはそこに含まれる生物のことである。sn-グリセロール3-リン酸の脂肪酸エステルより構成される細胞膜を持つ原核生物と定義される。古細菌ドメイン、真核生物ドメインとともに、全生物界を三分する。 真核生物と比較した場合、構造は非常に単純である。しかしながら、はるかに多様な代謝系や栄養要求性を示し、生息環境も生物圏と考えられる全ての環境に広がっている。その生物量は膨大である。腸内細菌や発酵細菌、あるいは病原細菌として人との関わりも深い。語源はギリシャ語の「小さな杖」(βακτήριον)に由来している。.

新しい!!: 酢酸と真正細菌 · 続きを見る »

炭化カルシウム

炭化カルシウム(たんかカルシウム)、別名カルシウムカーバイド (calcium carbide) は、化学式 CaC2 で表される化合物である。灰色がかった白色固体で、主にアセチレンガスの簡便な発生源として利用される。 燃料用に市販されているカルシウムカーバイドは灰白色の塊状固体である。これには不純物としてリン化カルシウムや硫黄などが含まれている。この不純物に由来するホスフィンや硫化水素のため、市販品によって発生したアセチレンはわずかな不快臭を呈する。純粋な炭化カルシウムは無色透明の結晶である。.

新しい!!: 酢酸と炭化カルシウム · 続きを見る »

炭酸

炭酸(たんさん、)は、化学式 H2CO3 で表される炭素のオキソ酸であり弱酸の一種である。.

新しい!!: 酢酸と炭酸 · 続きを見る »

炭酸カリウム

炭酸カリウム(たんさんカリウム、Potassium carbonate)は、組成式K2CO3で表されるカリウムの炭酸塩である。陸上植物の灰に10 - 30%程度含まれる(それに水を加えたものが灰汁と呼ばれる)。炭ボツや真珠灰と呼ばれていた。.

新しい!!: 酢酸と炭酸カリウム · 続きを見る »

生合成

生合成(せいごうせい)とは、生体がその構成成分である生体分子を作り出すことをいう。多くの生物に共通している基本的な化合物(アミノ酸、糖、脂肪酸、核酸など)を合成する経路を一次代謝、特定の種や科に特有の化合物(ホルモン、フェロモン、毒素など)を作り出す経路を二次代謝と呼ぶが、両者の区分は必ずしも明確ではない。 ひとつの化合物が生合成されるには単一の酵素でなく、酸化還元酵素、転移酵素、合成酵素、加水分解酵素など数多くの酵素が関わり、多数の段階を踏むことが普通である。 生合成が不可能な分子は、体外より栄養素として取り入れなければならず、こういった栄養素を必須栄養素と呼ぶ。ヒトにおいて生合成が不可能なアミノ酸、脂肪酸をそれぞれ必須アミノ酸、必須脂肪酸と呼び、栄養学において非常に重要である。さらに、生体内での代謝に必須でありながら、生合成できない補酵素群をビタミンと呼び、同様に生合成できないミネラルとともにこれらもまた、栄養学上重要である。 Category:生化学.

新しい!!: 酢酸と生合成 · 続きを見る »

生気論

生気論(せいきろん、vitalism)は、「生命に非生物にはない特別な力を認める」仮説である。生気説、活力説、活力論とも呼ばれる。.

新しい!!: 酢酸と生気論 · 続きを見る »

無機酸

無機酸(むきさん、Mineral acid)は、無機化合物の化学反応で得られる酸で、有機酸の対義語である。鉱酸(礦酸、こうさん)ともいう。 例えば次のようなものがある。.

新しい!!: 酢酸と無機酸 · 続きを見る »

無水酢酸

無水酢酸(むすいさくさん、acetic anhydride)とは、カルボン酸無水物の一種で、酢酸2分子が脱水縮合したものに相当する。分子式は C4H6O3、示性式は (CH3CO)2O と表される。 無水酢酸は、稀に純酢酸(氷酢酸とも)と混同されることがあるが、純酢酸とは水をほとんど含まない、純度がほぼ 100% の酢酸のことで、異なる化合物である。.

新しい!!: 酢酸と無水酢酸 · 続きを見る »

熱分解

熱分解(ねつぶんかい、)は、有機化合物などを、酸素やハロゲンなどを存在させずに加熱することによって行われる化学分解である。化学合成の変化を実験で調べることができる。また逆反応は起こらない。英語 pyrolysis の語源はギリシャ語由来の形態素 pyro-〈火〉と ''-lysis''〈分解〉の合成によるものである。蒸気の共存下に行われる場合もある。 化学分析においては、複雑な組成の物質を単純な分子へと分けることによって同定を行う目的で利用される。熱分解ガスクロマトグラフィーなどがその例である。 工業的には、ある単一物質を他の物質へ変換するのに用いられる。例えば1,2-ジクロロエタンを熱分解して塩化ビニルが製造される。これはポリ塩化ビニルの原料となる。また、バイオマスや廃棄物をより有益な、あるいはより危険性の少ない物質へ変換するのにも利用される(合成ガスなど)。 炭素のみが得られる過酷な条件での熱分解は炭化と呼ばれる。.

新しい!!: 酢酸と熱分解 · 続きを見る »

牛乳

ップに入れられた牛乳 牛乳(ぎゅうにゅう、)とは、ウシの乳汁である。日本の#法律による定義は、成分を調整していない生乳が牛乳と定義され、脂肪分を調整したものが低脂肪牛乳などとされ、また商品に「牛乳」の名をつけることができる。牛乳成分を増減したり乳糖を分解すれば加工乳であり、乳飲料は牛乳由来成分以外を加えた栄養添加やコーヒーミルクなどである。牛乳の加工製品は乳製品であり、脱脂粉乳、バター、生クリーム、チーズ、ヨーグルト、アイスクリームなどが作られる。 牛乳はカルシウムが豊富な食品として知られる。脂肪分は飽和脂肪酸の比率が高く、健康上の懸念のため低脂肪牛乳などが製造されている。タンパク質のアミノ酸スコアは100だが、牛乳たんぱく質のカゼインは、特に子供にとって鶏卵に次ぐ主な食物アレルギーの原因となりうる。炭水化物は乳糖が豊富で、離乳期を過ぎたヒトでは多かれ少なかれ乳糖不耐症として消化不良となる。 牛乳の利用の歴史は古く、チーズやバターなどと共にヨーロッパ、アフリカ、インドで用いられてきた。利用のはっきりとした証拠としては、5500年から6千年前の現在のイギリスにあたる地域の陶器から牛乳の脂肪分が発見されている。そのまま飲まれた牛乳が大きく産業化されて普及するのは、19世紀に低温殺菌法が開発され、保存技術が向上してからである。そうした時代に日本や中国では牛乳は普及しておらず、日本では戦後にアメリカ合衆国からの脱脂粉乳を含む食糧支援のララ物資を経て、1954年に学校給食法が制定され、牛乳の提供を規則としてから大きく普及してきたが、50年を経た2005年には、中央酪農会議が日本人の牛乳離れを期に「牛乳に相談だ。」のキャンペーンを実施した。 栄養学者達は、牛乳がカルシウムを摂取するために適切な食品であるかに疑問を投げかけ続けている。牛乳を多く飲用すればその分だけ骨折を予防できるという主張にはデータが乏しいことに疑問を持ち、疫学研究が実施された結果、確固とした因果関係は見られていない。.

新しい!!: 酢酸と牛乳 · 続きを見る »

発酵

酵(はっこう。醱酵とも表記).

新しい!!: 酢酸と発酵 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: 酢酸と銅 · 続きを見る »

銀(ぎん、silver、argentum)は原子番号47の元素。元素記号は Ag。貴金属の一種。.

新しい!!: 酢酸と銀 · 続きを見る »

融雪剤

道路に設けられた塩化カルシウムの貯蔵容器 融雪剤(ゆうせつざい)とは、雪や氷などを溶かし、生活に支障をきたさない状態にする剤のこと。凍結防止剤、凍結抑制剤とも呼ばれている。.

新しい!!: 酢酸と融雪剤 · 続きを見る »

過塩素酸

過塩素酸(かえんそさん、perchloric acid)とは、塩素のオキソ酸の一種で、化学式 と表される過ハロゲン酸。水に溶けやすい無色の液体。酸化数7価の塩素に、ヒドロキシ基(-OH)1個とオキソ基(.

新しい!!: 酢酸と過塩素酸 · 続きを見る »

顔料

粉末状の天然ウルトラマリン顔料 合成ウルトラマリン顔料は、化学組成が天然ウルトラマリンと同様であるが、純度などが異なる。 顔料(がんりょう、pigment)は、着色に用いる粉末で水や油に不溶のものの総称。着色に用いる粉末で水や油に溶けるものは染料と呼ばれる。 特定の波長の光を選択的に吸収することで、反射または透過する色を変化させる。蛍光顔料を除く、ほぼ全ての顔料の呈色プロセスは、自ら光を発する蛍光や燐光などのルミネセンスとは物理的に異なるプロセスである。 顔料は、塗料、インク、合成樹脂、織物、化粧品、食品などの着色に使われている。多くの場合粉末状にして使う。バインダー、ビークルあるいは展色剤と呼ばれる、接着剤や溶剤を主成分とする比較的無色の原料と混合するなどして、塗料やインクといった製品となる。実用的な分類であり、分野・領域によって、顔料として認知されている物質が異なる。 顔料の世界市場規模は2006年時点で740万トンだった。2006年の生産額は176億USドル(130億ユーロ)で、ヨーロッパが首位であり、それに北米とアジアが続いている。生産および需要の中心はアジア(中国とインド)に移りつつある。.

新しい!!: 酢酸と顔料 · 続きを見る »

飲酒の化学

飲酒の化学(いんしゅのかがく)では、飲酒などによりエタノールを摂取したことによる、人体に対する医学・生理学的影響について述べる。.

新しい!!: 酢酸と飲酒の化学 · 続きを見る »

補酵素A

補酵素A(ほこうそA、コエンザイムA あるいは CoA)は、生物にとって極めて重要な補酵素(助酵素)である。パントテン酸とアデノシン二リン酸、および 2-メルカプトエチルアミンから構成されており、化学式はC21H36P3N7O16S、分子量は767.5 g/molである。 末端にあるチオール基に様々な化合物のアシル基がチオエステル結合することによってクエン酸回路やβ酸化などの代謝反応に関わる。例えばアセチル基が結合したものはアセチルCoAである。その他にも多くの補酵素Aのチオエステル化合物がある。 1945年、ピルビン酸からクエン酸回路に入る過程の中間体「活性酢酸」(アセチルCoA)としてリップマンによって発見された。この業績により、彼は1953年にノーベル賞を受賞した。なお、同年、一緒に授賞したクレブスは、1937年にクエン酸回路を完成したことで有名である。しかし、1937年当時は補酵素Aはまだ知られておらず、中間代謝の研究におけるリップマンの業績は非常に大きいといえる。.

新しい!!: 酢酸と補酵素A · 続きを見る »

解糖系

解糖系 解糖系(かいとうけい、Glycolysis)とは、生体内に存在する生化学反応経路の名称であり、グルコースをピルビン酸などの有機酸に分解(異化)し、グルコースに含まれる高い結合エネルギーを生物が使いやすい形に変換していくための代謝過程である。ほとんど全ての生物が解糖系を持っており、もっとも原始的な代謝系とされている。嫌気状態(けんきじょうたい、無酸素状態のこと)でも起こりうる代謝系の代表的なものである一方で、得られる還元力やピルビン酸が電子伝達系やクエン酸回路に受け渡されることで好気呼吸の一部としても機能する。.

新しい!!: 酢酸と解糖系 · 続きを見る »

試薬

試薬(しやく、Reagent)もしくは試剤(しざい)とは、化学実験で反応させる目的で製造した薬品をさす呼称であり、メーカーが販売しているものを指すことが多い。同一の化合物であっても、生体や組織に作用させる薬品は試薬と呼ばれることは少なく、生化学あるいは生理学実験では薬剤と呼ばれる。そしてヒトや動物の疾患の治療に用いられる場合は医薬品(動物薬)である。一方、人工的な条件下で行う生物学実験などにおいては、酵素や受容体そのものを生体より取り出して作用させる場合にこれらを試薬と呼ぶこともある。 通常、薬剤や医薬品の場合は不純物が含まれていると副作用が発生し目的にそぐわないことが懸念される為、より高純度の製品であったり、場合によっては副作用を示さない保証の為に種々の確認試験が製品に施される。 化学用途の試薬の中でも汎用されるものには日本工業規格(JIS)に試薬特級、試薬一級という規格が設けられており、これを満たしているものだけがその規格名を冠して呼称される。それ以外の試薬では各メーカー毎に純度規格があり、規格の違いにより工業用試薬、一級試薬、特級試薬など呼ばれるが、これらはメーカーが独自に選定した呼称である。概ね工業用試薬は純度95%以下、一級相当試薬は95%前後、特級相当試薬は95%以上であることが多い。 また、特定の反応を起こす、あるいは分析に使われるものについては、純物質であるか混合物であるかを問わず、固有名として「○○試薬」と呼ばれることがある(求電子試薬、グリニャール試薬、ネスラー試薬など)。この中には、トレンス試薬のように、不安定なために市販品がなく、使用の直前に調製する必要があるものも存在する。.

新しい!!: 酢酸と試薬 · 続きを見る »

調味料

調味料(ちょうみりょう、英: Seasoning)は、料理の調味に使う材料。主なものに、砂糖、塩、酢、醤油、味噌(さしすせそ)などがある。.

新しい!!: 酢酸と調味料 · 続きを見る »

麦芽

麦芽(ばくが、英語:malt)とは、麦、特に大麦の種子を発芽させたもので、ビール、ウイスキー、水飴の原料となる。.

新しい!!: 酢酸と麦芽 · 続きを見る »

錬金術

ウィリアム・ダグラス作 『錬金術師』 錬金術(れんきんじゅつ、خيمياء alchemia, alchimia alchemy)とは、最も狭義には、化学的手段を用いて卑金属から貴金属(特に金)を精錬しようとする試みのこと。広義では、金属に限らず様々な物質や、人間の肉体や魂をも対象として、それらをより完全な存在に錬成する試みを指す。 古代ギリシアのアリストテレスらは、万物は火、気、水、土の四大元素から構成されていると考えた。ここから卑金属を黄金に変成させようとする「錬金術」が生まれる。錬金術はヘレニズム文化の中心であった紀元前のエジプトのアレクサンドリアからイスラム世界に伝わり発展。12世紀にはイスラム錬金術がラテン語訳されてヨーロッパでさかんに研究されるようになった。 17世紀後半になると錬金術師でもあった化学者のロバート・ボイルが四大元素説を否定、アントワーヌ・ラヴォアジェが著書で33の元素や「質量保存の法則」を発表するに至り、錬金術は近代化学へと変貌した。 錬金術の試行の過程で、硫酸・硝酸・塩酸など、現在の化学薬品の発見が多くなされており、実験道具が発明された。これらの成果も現在の化学に引き継がれている。歴史学者フランシス・イェイツは16世紀の錬金術が17世紀の自然科学を生み出した、と指摘した。.

新しい!!: 酢酸と錬金術 · 続きを見る »

舎密開宗

舎密開宗 (せいみかいそう)は、宇田川榕菴により著された日本初の体系的な化学書。内編18巻、外編3巻からなり、1837年から1847年最終巻が発行されたのは榕菴が亡くなった翌年である。にかけて発行された 。.

新しい!!: 酢酸と舎密開宗 · 続きを見る »

防腐剤

防腐剤(ぼうふざい)とは、(1)微生物の侵入・発育・増殖を防止して、(2)腐敗・発酵が起こらないようにする、「静菌作用」を目的として使われる薬剤である。必ずしも殺菌作用はなく、持続的に働くことが求められる。.

新しい!!: 酢酸と防腐剤 · 続きを見る »

薬局方

薬局方(やっきょくほう、、)は、医薬品に関する品質規格書。医薬品や生薬が収載されているほか、試験法や純度の基準・剤型などが記されている。 国または地域ごとに制定されており、多くは公定書である(アメリカ合衆国では、民間団体が作成)。日本においては、特に指定されていない限り、「日本薬局方」(略称は「日局」、「局方」)を指す。日本薬局方(Japanese Pharmacopoeia: JP)、中国薬局方(中国药典 Pharmacopoeia of the People's Republic of China: PPRC)、米国薬局方(United States Pharmacopeia: USP)、英国薬局方(British Pharmacopoeia: B.P.)、ヨーロッパ薬局方(European Pharmacopoeia: EP)などが主な薬局方とされる。他の国々は、これら薬局方を参考に、伝統医薬品類(特にアジア地域)を加え、国情に合わせて作成している。近年は日米欧の三極薬局方の国際調和を進めているが、合意に達した部分は少ない。.

新しい!!: 酢酸と薬局方 · 続きを見る »

脱離基

脱離基 (だつりき、leaving group) はヘテロリシスで開裂された原子団のうち電子対を持つほうの原子団のことである。脱離基はアニオンか中性の分子である。Cl−、Br−、I−のようなハロゲン化物イオン、トシル基 (TsO−) のようなスルホン酸エステルはよくみられるアニオン性脱離基である。水 (H2O)、アンモニア (NH3)、アルコール (ROH)はよくみられる中性脱離基である。 脱離基の脱離しやすさは共役酸のpKaと関係があり、小さなを持つほどよい脱離基(脱離しやすい脱離基)として働く場合が多い。よって強塩基であるアルコキシド (RO−)、水酸化物イオン (HO−)、アミドイオン (R2N−) はよくない脱離基である。 ヒドリド (H-)、アルキルアニオン (R3C-)、アミドイオン (R2N-)は不安定なのでふつう脱離基として働くことはない。.

新しい!!: 酢酸と脱離基 · 続きを見る »

脂肪酸

脂肪酸(しぼうさん、Fatty acid)とは、長鎖炭化水素の1価のカルボン酸である。一般的に、炭素数2-4個のものを短鎖脂肪酸(低級脂肪酸)、5-12個のものを中鎖脂肪酸、12個以上のものを長鎖脂肪酸(高級脂肪酸)と呼ぶ。炭素数の区切りは諸説がある。脂肪酸は、一般式 CnHmCOOH で表せる。脂肪酸はグリセリンをエステル化して油脂を構成する。脂質の構成成分として利用される。 広義には油脂や蝋、脂質などの構成成分である有機酸を指すが、狭義には単に鎖状のモノカルボン酸を示す場合が多い。炭素数や二重結合数によって様々な呼称があり、鎖状のみならず分枝鎖を含む脂肪酸も見つかっている。また環状構造を持つ脂肪酸も見つかってきている。.

新しい!!: 酢酸と脂肪酸 · 続きを見る »

脂肪酸の合成

脂肪酸の合成(しぼうさんのごうせい、英:Fatty acid synthesis)では、脂肪酸シンターゼによってアセチルCoAとマロニルCoAから脂肪酸が作られる過程を記述する。.

新しい!!: 酢酸と脂肪酸の合成 · 続きを見る »

野依良治

野依 良治(のより りょうじ、1938年9月3日 - )は、日本の化学者(有機化学)。学位は工学博士(京都大学・1967年)。2001年に「キラル触媒による不斉反応の研究」が評価されノーベル化学賞を受賞した。 国立研究開発法人科学技術振興機構研究開発戦略センター長、名古屋大学特別教授、名城大学客員教授、高砂香料工業株式会社取締役。名古屋大学大学院理学研究科研究科長、理学部長、物質科学国際研究センター長、独立行政法人理化学研究所理事長などを歴任した。日本学士院会員。.

新しい!!: 酢酸と野依良治 · 続きを見る »

重合反応

重合反応(じゅうごうはんのう、polymerization)とは重合体(ポリマー)を合成することを目的にした一群の化学反応の呼称である。また重合反応はその元となる反応の反応機構や化学反応種により細分化され、区分された反応名に重または重合の語を加えることで重合体合成反応であることを表す。.

新しい!!: 酢酸と重合反応 · 続きを見る »

重合体

重合体(じゅうごうたい)またはポリマー(polymer)とは、複数のモノマー(単量体)が重合する(結合して鎖状や網状になる)ことによってできた化合物のこと。このため、一般的には高分子の有機化合物である。現在では、高分子と同義で用いられることが多くなっている。ポリマー(polymer)の poly- は接頭語で「たくさん」を意味する。 2種類以上の単量体からなる重合体のことを特に共重合体と言う。 身近なものとしては、繊維に用いられるナイロン、ポリ袋のポリエチレンなどの合成樹脂がある。また、生体内のタンパク質は、アミノ酸の重合体である。.

新しい!!: 酢酸と重合体 · 続きを見る »

臭素

臭素(しゅうそ、bromine)は、原子番号 35、原子量 79.9 の元素である。元素記号は Br。ハロゲン元素の一つ。 単体(Br2、二臭素)は常温、常圧で液体(赤褐色)である。分子量は 159.8。融点 -7.3 ℃、沸点 58.8 ℃。反応性は塩素より弱い。刺激臭を持ち、猛毒である。海水中にも微量存在する。.

新しい!!: 酢酸と臭素 · 続きを見る »

ハーブの入ったビネガー。 バルサミコ酢とワインビネガー。 酢(す、醋とも酸とも書く、英: Vinegar)は、酢酸を3 - 5%程度含み酸味のある調味料広辞苑第5版の1種。.

新しい!!: 酢酸と酢 · 続きを見る »

酢酸ナトリウム

酢酸ナトリウム(さくさんナトリウム、Sodium acetate)とは、酢酸とナトリウムのつくる塩である。示性式CH3COONaで表される。酢酸ソーダとも言う。無水物と三水和物が存在する。 無水物、三水和物ともに無色の結晶である。 無水物、三水和物ともに水によく溶けるが、有機溶媒にはほとんど溶けない。弱酸と強塩基の塩なので、水溶液は弱アルカリ性を示す。 酢酸と水酸化ナトリウムまたは炭酸ナトリウムの中和により三水和物が得られ、この三水和物を120℃ - 250℃で加熱すると無水物となる。.

新しい!!: 酢酸と酢酸ナトリウム · 続きを見る »

酢酸マグネシウム

酢酸マグネシウム(さくさんマグネシウム)はマグネシウムの酢酸塩で、化学式Mg(CH3COO)2で表される。無水物と四水和物とがあるが、通常は四水和物が流通している。潮解性があり、加熱すると酸化マグネシウムと刺激性のあるフュームに分解する。近年では果樹・園芸用土壌改良剤としても用いられる。.

新しい!!: 酢酸と酢酸マグネシウム · 続きを見る »

酢酸メチル

酢酸メチル(さくさんメチル、Methyl acetate)、エタン酸メチルもしくは酢酸メチルエステルは、接着剤やマニキュアリムーバーの不快ではない臭いとして知られている、独特な臭いをもつ無色可燃性液体の有機化合物である。酢酸メチルの性質は酢酸エチルとよく似ており、酢酸エチルの置換え品として利用される。酢酸メチルは接着剤やマニキュアリムーバーの溶剤として利用される他、化学実験の反応溶媒や抽出溶媒、フルーツ・洋酒・ナッツの香料としても使用される『合成香料 化学と商品知識』印藤元一著 2005年増補改訂 化学工業日報社 ISBN 4-87326-460-X。酢酸メチルは疎水性(親油性)と弱い極性(親水性)とを併せ持った非プロトン溶媒である。室温下、酢酸メチルは水に対して25%の溶解性を持ち、温度を上昇させると水との混和性が増大する。酢酸メチルは強い酸性または塩基性水溶液中では安定ではない。.

新しい!!: 酢酸と酢酸メチル · 続きを見る »

酢酸ブチル

酢酸ブチル(さくさんブチル、butyl acetate、酢酸n-ブチル)はラッカーの製造などに用いられる化学物質である。.

新しい!!: 酢酸と酢酸ブチル · 続きを見る »

酢酸プロピル

酢酸プロピル(さくさんプロピル、propyl acetate)もしくはエタン酸プロピルと呼ばれる化学物質は溶媒として広く利用される。酢酸プロピルは無色透明な液体で、梨に似た独特の臭いを持ち、それ故、香料として一般に利用されている。酢酸プロピルは酢酸と1-プロパノールとをエステル化することで生成する。天然にはラズベリーやバナナに含まれる『合成香料 化学と商品知識』印藤元一著 2005年増補改訂 化学工業日報社 ISBN 4-87326-460-X。.

新しい!!: 酢酸と酢酸プロピル · 続きを見る »

酢酸ビニル

酢酸ビニル(さくさんビニル)、別名ビニルアセタート (vinyl acetate) は、分子式 C4H6O2 で表される、酢酸とビニルアルコールのエステルである。ポリ酢酸ビニルの合成に使われる、工業的に重要な物質である。酢酸ビニル(モノマー)は光や熱で容易に重合するため、微量の重合禁止剤が添加されている。そのため、重合実験などで使用する際は精製して重合禁止剤を除去する必要がある。.

新しい!!: 酢酸と酢酸ビニル · 続きを見る »

酢酸ダーリア溶液

酢酸ダーリア溶液(さくさんダーリアようえき)は酢酸カーミン溶液などと同じく顕微鏡での観察に際し、細胞核や染色体の染色に用いる染色固定剤。30%の酢酸水溶液100mLに、ダーリアバイオレットダーリアバイオレットは一時、製造中止になっていたが、2016年には販売されている。ケニス株式会社から酢酸ダーリアとして調整済みの染色液が販売されている。ダーリアバイオレットの代わりにメチルバイオレットも使用可能である。30%の酢酸水溶液100mLに、メチルバイオレット0.5gを溶かし、酢酸バイオレット液とする。0.5gなどを加えて作る。生物の細胞にこの溶液を加えると、酢酸によって固定が起こり、負に荷電した核や染色体に、正に荷電したダーリアが吸着して紫色(青色)に染まる。同じく細胞などを染める酢酸カーミン溶液や酢酸オルセイン溶液よりも少々値段が高いが、染色の成功率が高い。ただし、染まりすぎることがあるので、そのときは塩酸を用いて少しなら脱色することが可能である。 中学校での染色の実験では、酢酸オルセイン溶液や酢酸カーミン溶液も使用される。.

新しい!!: 酢酸と酢酸ダーリア溶液 · 続きを見る »

酢酸アンモニウム

酢酸アンモニウム(さくさんアンモニウム、ammonium acetate)は組成式 CH3COONH4 で表される化学物質。酢酸とアンモニアを化学反応させて得られる有機アンモニウム塩である。 商業的に幅広く利用されている。.

新しい!!: 酢酸と酢酸アンモニウム · 続きを見る »

酢酸イソブチル

酢酸イソブチル(さくさんイソブチル、isobutyl acetate)は、酢酸とイソブチルアルコールが脱水縮合した構造を持つエステルで、バナナの香気の主成分である。 引火性が高く、空気と混合すると爆発の危険がある。α位がフェニル基で置き換わったフェニル酢酸イソブチルはバラの香りの香料として、食品衛生法で食品添加物に指定されている。 酢酸ブチル、酢酸 ''sec''-ブチル、酢酸 ''tert''-ブチルと同様に溶媒としても用いられる。.

新しい!!: 酢酸と酢酸イソブチル · 続きを見る »

酢酸イソアミル

酢酸イソアミル(さくさん—、isoamyl acetate)とは、分子式 C7H14O2、示性式 CH3COO(CH2)2CH(CH3)2 で表されるカルボン酸エステルの一種である。また、酢酸イソペンチル(isopentyl acetate)、酢酸3-メチルブチル(3-methylbutyl acetate)とも呼ばれる。CAS登録番号は 。酢酸とイソアミルアルコールが縮合したカルボン酸エステルにあたる。 分子量 130.18、融点 −78.5 ℃、沸点 142 ℃、比重 0.876 (15 ℃) のバナナあるいはメロン様の果実臭のする無色の液体である。通常の有機溶媒には易溶で、水にもわずかに溶ける。 香料(バナナエッセンス)や有機溶媒として用いられる。 日本酒の芳香成分の一つで、吟醸酒には数100 ppb–数 ppm 程度含まれている。日本酒の高品質化のため、大量の酢酸イソアミルを生産する清酒酵母の開発が進んでいる。.

新しい!!: 酢酸と酢酸イソアミル · 続きを見る »

酢酸エチル

酢酸エチル(さくさんエチル、ethyl acetate)とは、示性式 CH3COOCH2CH3 で表される有機化合物である。酢酸とエタノールが脱水縮合したエステル。引火点 −2 ℃の、パイナップルに似た果実臭のする無色で揮発性の液体で、有機溶媒として用いられる。 極性が高く、最大で 3重量% ほど酢酸エチルに水が溶解する。逆に水に対しては 10体積%(25℃)ほど溶解し温度が低いほど増大する。また、エタノール、エーテル、ベンゼン、ヘキサンなどのほとんどの有機溶媒と任意の割合で混ざり合う。.

新しい!!: 酢酸と酢酸エチル · 続きを見る »

酢酸オルセイン溶液

酢酸オルセイン溶液(さくさんオルセインようえき)は、細胞染色に用いられる固定染色液。この液により細胞が酢酸によって固定され、細胞核或いは染色体が塩基性色素のオルセインによって紫色に染色される。酢酸オルセイン溶液は光学顕微鏡で核を観察する際に汎用されている。中学校での実験では、酢酸オルセイン溶液の他に酢酸カーミン溶液が使用されることがある。.

新しい!!: 酢酸と酢酸オルセイン溶液 · 続きを見る »

酢酸カリウム

酢酸カリウム(さくさんカリウム、potassium acetate)は化学物質である。酢酸のカリウム塩にあたる。水溶液は弱塩基性を示し、0.1M の溶液の pH は 9.7 である。 水酸化カリウムや炭酸カリウムなどカリウムを含む塩基と酢酸を反応させ、 という中和反応によって生成される。水酸化カリウムの場合も同様に中和される。 湿気、熱、燃焼、酸化剤に対しては不安定である。.

新しい!!: 酢酸と酢酸カリウム · 続きを見る »

酢酸カルシウム

酢酸カルシウム(さくさんカルシウム、calcium acetate)は示性式 (CH3COO)2Ca もしくは Ca(CH3COO)2 で表される酢酸とカルシウムの塩。CAS登録番号は 。無水物と一水和物がよく知られるが、無水物は吸湿性が強いため、通常取り扱われるのは一水和物である。一水和物はわずかに吸湿性がある白色の結晶あるいは結晶性粉末で、無臭またはわずかな酢酸臭がある。水に易溶、エタノールに難溶。水溶液は加水分解して微アルカリ性を示す。400℃で分解し、アセトンと炭酸カルシウムになる。実験室的方法として、400℃以上で酢酸カルシウムを乾留することでアセトンが得られる。 酢酸カルシウムは国際的に食品添加物として安定剤、増粘剤等に汎用されているが、日本では現在未認可で、厚生労働省で認可に向けて調整中である。 category:カルシウムの化合物 Category:酢酸塩.

新しい!!: 酢酸と酢酸カルシウム · 続きを見る »

酢酸カーミン溶液

酢酸カーミン溶液(さくさんカーミンようえき)は顕微鏡観察に際し、細胞核や染色体の染色に用いる赤色の染色固定剤。45%酢酸水溶液を煮沸し、そこに塩基性色素であるカーミンを加えて飽和させ、さらに鉄イオンを含む物質を微量加えて作る。生物の細胞にこの溶液を加えると、まず酢酸によって固定が起こり、負に荷電した核や染色体に、正に荷電したカーミンが吸着して赤く染まる。鉄イオンは媒染剤としての効果がある。同様なDNA染色法として酢酸オルセイン染色法があるが、それに比べて生細胞の核が染色されやすいとされる。 アセトカルミン(acetocarmine)溶液とも呼ぶ。 中学校での実験では、染色に酢酸オルセイン溶液や酢酸ダーリア溶液も使用されることがある。.

新しい!!: 酢酸と酢酸カーミン溶液 · 続きを見る »

酢酸銅(II)

酢酸銅(II)(さくさんどう、 Copper(II) acetate)は、化学式 Cu(CH3COO)2 または省略して Cu(OAc)2 の化合物である。式量は181.64、CAS登録番号は。普通は一水和物として得られる。一水和物は緑青色の結晶で、水またはエタノールに可溶である。芳香族アミンにアクリルニトリルを作用させてシアノエチル化する際に、触媒として用いられる。また、草木染めの媒染剤、殺菌剤、として用いられる。多くのデータベースに融点が115℃と記載されているが、実際には115℃付近では一水和物の水分子の脱離反応が進行する。.

新しい!!: 酢酸と酢酸銅(II) · 続きを見る »

酢酸菌

酢酸菌(さくさんきん)とは、エタノールを酸化発酵して酢酸を生産するグラム陰性の好気性細菌の総称である。その名の通り酢酸を産生し、耐酸性を有する。pH 5.0 以下でも問題なく増殖するが、好適な範囲は5.4から6.3である。酢酸菌の代表例として食酢を醸造する際に用いられる アセトバクター属 Acetobacter aceti や グルコノバクター属 Gluconacetobacter が存在する惠美須屋 廣昭、 日本乳酸菌学会誌 Vol.26 (2015) No.2 p.118-123, 。.

新しい!!: 酢酸と酢酸菌 · 続きを見る »

酢酸鉄(II)

酢酸鉄(II)(さくさんてつ、英Iron(II) acetate)は鉄の酢酸塩で、化学式Fe(CH3CO2)2で表される。淡い茶色の固体で、酢酸第一鉄とも俗称される。水に易溶で、水溶液は淡い緑色になる。酢酸に鉄を溶かして作られ、媒染剤として染色に使われるほか、日本をはじめアジアの一部地域ではお歯黒として用いられた。.

新しい!!: 酢酸と酢酸鉄(II) · 続きを見る »

酢酸鉛(II)

酢酸鉛(II) (さくさんなまり に)は鉛化合物の一種で、甘みを持つ無色の結晶である。酸化鉛(II)を酢酸と反応させることによって得られる。他の鉛化合物と同様、毒性が強い。水やグリセリンに可溶である。水の存在下で3水和物 Pb(OCOCH3)2·3H2O を生じ、これは潮解性を持つ単斜晶系の結晶である。価数を付さず単に酢酸鉛、あるいは鉛糖 (sugar of lead)、土の糖 (salt of Saturn)、グラール粉 (Goulard's powder, トマ・グラールにちなむ)などとも呼ばれる。.

新しい!!: 酢酸と酢酸鉛(II) · 続きを見る »

酪酸

酪酸(らくさん、butyric acid)、IUPAC名ブタン酸 (butanoic acid) もしくはn-ブタン酸 (n-butyric acid) は、分子式 C4H8O2、示性式 CH3(CH2)2COOH の直鎖カルボン酸である。構造異性体にイソ酪酸 (CH3)2CHCOOH がある。哺乳類は極微量でも臭いを探知することができ、イヌでは 10 ppb、ヒトでは 10 ppm まで嗅ぎ分けることができる。.

新しい!!: 酢酸と酪酸 · 続きを見る »

酸と塩基

酸と塩基(さんとえんき)は化学反応における性質である。化学の初期には水溶液における化学反応を水素イオンと水酸化物イオンから説明するものとして酸と塩基を定義付けていたが(アレニウスの定義)、化学の発展とともにその定義は拡張され、今日では水溶液に限定しない一般の化学反応における電子対の授受により酸と塩基は定義付けられている(ルイスの定義)。.

新しい!!: 酢酸と酸と塩基 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: 酢酸と酸化 · 続きを見る »

酸化プロピレン

酸化プロピレン(さんかプロピレン)は、分子式 C3H6O で表される有機化合物で、エポキシドのひとつ。無色で揮発性の高い液体で、ポリウレタンをはじめとする各種化成品の原料として重要であり、石油化学工業的に大量に生産されている。別名プロピレンオキシド、1,2-エポキシプロパン、メチルオキシランなど。構造異性体のオキセタン(1,3-プロピレンオキシド)と区別するため1,2-プロピレンオキシドと呼ばれることもある。.

新しい!!: 酢酸と酸化プロピレン · 続きを見る »

酸化カルシウム

酸化カルシウム(さんかカルシウム、Calcium oxide、quick lime)は化学式 CaO で表される化合物。慣用名として、 生石灰(せいせっかい)とも呼ばれる。生石灰は「しょうせっかい」とも読めるため、消石灰と区別するため「きせっかい」と通称される場合がある。のあるアルカリで、室温では結晶である。石灰という語はカルシウムを含む無機化合物の総称であり、石灰岩のようにケイ素やマグネシウム、鉄、アルミニウムなどよりカルシウムの炭酸塩や酸化物、水酸化物が多く含まれている岩石も指す。対照的に、生石灰は純粋な化合物のみを指す。 生石灰は比較的安価で、酸化カルシウム()とその誘導体である水酸化カルシウムは重要なである。.

新しい!!: 酢酸と酸化カルシウム · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 酢酸と酸素 · 続きを見る »

酸無水物

酸無水物(さんむすいぶつ)とは、オキソ酸2分子が脱水縮合した化合物の総称。単に酸無水物といった場合にはカルボン酸無水物を指すことが多い。カルボン酸のような有機酸だけでなく、硫酸、硝酸、リン酸といった無機酸も酸無水物を形成する。.

新しい!!: 酢酸と酸無水物 · 続きを見る »

酵母

酵母(こうぼ)またはイースト(英語:yeast)は、広義には生活環の一定期間において栄養体が単細胞性を示す真菌類の総称である。 狭義には、食品などに用いられて馴染みのある出芽酵母の一種 Saccharomyces cerevisiae を指し、一般にはこちらの意味で使われ、酵母菌と俗称されている。 広義の「酵母」は正式な分類群の名ではなく、いわば生活型を示す名称であり、系統的に異なる種を含んでいる。 狭義の酵母は、発酵に用いられるなど工業的に重要であり、遺伝子工学の主要な研究対象の1つでもある。明治時代にビール製法が輸入されたときに、yeast の訳として発酵の源を意味する字が当てられたのが語源であるが、微生物学の発展とともにその意味するところが拡大していった。.

新しい!!: 酢酸と酵母 · 続きを見る »

様々な種類の酒 缶チューハイに記された点字"おさけ" 酒(さけ)は、エタノール(アルコールの一種)が含まれた飲料の総称で、抑制作用があるため飲むと酩酊を起こす。お酒という丁寧な呼び方もよく用いられ、酒類やアルコール飲料、またソフトドリンクに対して「ハードドリンク」とも呼ばれることがある。西洋ではワインに相当する語彙が総称として用いられることがある。 酒は人類史において最古から存在する向精神薬の一つである。人間には普遍的に「自分以外の存在になりたい」という潜在的願望があり、酒による酩酊はその願望を叶える有効な手段の一つだった。しかし、酩酊は往々にして混乱や無秩序をもたらし、社会から忌避される。「百薬の長とはいへど、よろづの病は酒よりこそ起これ」などと言われ、古来より酒は社会にとって両価値的存在だった。 酒の歴史は古く、有史以前から作られていたと見られている(→#歴史)。製造方法や原料等多種多様であるが、原材料から発酵によってエタノールを生成することで共通している。果実原料ではブドウを使ったワインやリンゴなど果実酒、穀物原料では大麦によるビールや米など、イモ類ではサツマイモを使った焼酎など。様々なアルコール度数を持った酒が作られる(→#種類)。 効用としては、俗にストレスの解消、コミュニケーションの円滑化、疲労回復が挙げられる(→#効用)。しかし脳を委縮させ、時に違法薬物を上回ると言われる最も有害な薬物であり、世界で毎年250万人の死亡につながり死因の4%を占める。作用量と致命的な量が近く急性アルコール中毒になりやすい薬物であり、アルコール乱用や、禁断症状が致命的な振戦せん妄となりうるアルコール依存症となることもあり、アルコール飲料はIARC発がん性でグループ1(発がん性あり)にも分類される。(→#健康への影響)判断力が低下し、交通事故などの事故、また一時的に記憶が完全になくなることもある。社会的には暴力や自殺が挙げられる(→#飲酒と社会)。 このように及ぼす影響が大きいため、2010年に世界保健機関のアルコールの有害な使用を低減するための世界戦略が採択されており、また政府の税収確保のため、酒の製造および流通(販売)は、多くの国において法律により規制されている(→#法律)。宗教ごとに酒の扱いは異なっており、儀式に用いられたり、神への捧げものであったり、また身を清め神との一体感を高めるための飲み物とされている。宗教によっては、飲酒を禁じているものもある(→#宗教と酒)。.

新しい!!: 酢酸と酒 · 続きを見る »

鉛(なまり、lead、plumbum、Blei)とは、典型元素の中の金属元素に分類される、原子番号が82番の元素である。なお、元素記号は Pb である。.

新しい!!: 酢酸と鉛 · 続きを見る »

鉛中毒

鉛中毒(なまりちゅうどく、lead poisoning)とは、鉛の摂取を原因とする中毒のことである。重金属中毒の1種に分類される。かつては鉛毒(えんどく)とも言った。.

新しい!!: 酢酸と鉛中毒 · 続きを見る »

鉛白

鉛白 鉛白(えんぱく、White Lead)は古代から使用されてきた白色顔料で、組成は塩基性炭酸鉛 2PbCO3•Pb(OH)2である。.

新しい!!: 酢酸と鉛白 · 続きを見る »

電子回折

電子回折または電子線回折 (electron diffraction) は、試料に電子を当てて干渉パターンを観察することで、物質を研究するのに使われる技法。粒子と波動の二重性によって起こる現象であり、粒子(この場合は電子)は波動としても説明できる。このため、電子は音や水面の波のような波動として見ることができる。類似の技法として、X線回折や中性子回折がある。 電子回折は固体物理学や化学において、固体の結晶構造の研究によく使われる。実験では電子後方散乱回折像法を使った機器である透過型電子顕微鏡 (TEM) や走査型電子顕微鏡 (SEM) を使うことが多い。これらの装置では、電子は静電ポテンシャルによって加速されることで必要なエネルギーを得、対象の試料に向かって放出する前に特定の波長となるよう設定する。 結晶体は周期的構造を持つため、回折格子として機能し、予測可能な形で電子を散乱させる。観測された回折パターンに基づき、その回折パターンを生じさせた結晶構造を推測することができる。しかし位相問題があるため、この技法の有効性は限定的である。 結晶の研究以外に、電子回折は非晶体や気体分子の研究にも使われる。.

新しい!!: 酢酸と電子回折 · 続きを見る »

電気炉製鋼法

電気炉製鋼法(でんきろせいこうほう)は、電気炉を用いた製鉄法の一種である。略して電気炉法、電炉法などとも呼ばれ、一般的に知られている高炉法による製鉄をへる場合と正反対の性質を持つ製鋼法である。.

新しい!!: 酢酸と電気炉製鋼法 · 続きを見る »

IUPAC命名法

IUPAC命名法(アイユーパックめいめいほう)は、IUPACが定める、化合物の体系名の命名法の全体を指す言葉。IUPAC命名法は、化学界における国際的な標準としての地位を確立している。 有機・無機化合物の命名法についての勧告は2冊の出版物としてまとめられ、英語ではそれぞれ「ブルー・ブック」「レッド・ブック」の愛称を持つ。 広義には、その他各種の定義集の一部として含まれる化合物の命名法を含む。IUPAPとの共同編集で、記号および物理量を扱った「グリーン・ブック」、その他化学における多数の専門用語を扱った「ゴールド・ブック」のほか、生化学(ホワイト・ブック;IUBMBとの共同編集)、分析化学(オレンジ・ブック)、高分子化学(パープル・ブック)、臨床化学(シルバー・ブック)があり、各分野の用語法の拠り所となっている。 これらの「カラー・ブック」について、IUPACはPure and Applied Chemistry誌上で、特定の状況に対応するための補足勧告を継続的に発表している。.

新しい!!: 酢酸とIUPAC命名法 · 続きを見る »

X線回折

X線回折(エックスせんかいせつ、、XRD)は、X線が結晶格子で回折を示す現象である。 1912年にドイツのマックス・フォン・ラウエがこの現象を発見し、X線の正体が波長の短い電磁波であることを明らかにした。 逆にこの現象を利用して物質の結晶構造を調べることが可能である。このようにX線の回折の結果を解析して結晶内部で原子がどのように配列しているかを決定する手法をX線結晶構造解析あるいはX線回折法という。しばしばこれをX線回折と略して呼ぶ。他に同じように回折現象を利用する結晶構造解析の手法として、電子回折法や中性子回折法がある。.

新しい!!: 酢酸とX線回折 · 続きを見る »

接着剤

接着剤(せっちゃくざい、Adhesive、Glue)は、物と物をつなぐ(接着)ために使われる物質。塗料やラミネート・シーリング材なども、片面を接着するという機能から接着剤の一種に含まれることがある。なお、日本では家庭用品品質表示法の適用対象とされており雑貨工業品品質表示規程に定めがある。.

新しい!!: 酢酸と接着剤 · 続きを見る »

樟脳

樟脳(しょうのう)とは分子式 C10H16Oで表される二環性モノテルペンケトンの一種。カンフルあるいはカンファー(kamfer、Campher、camphor、camphre)と呼ばれることもある。IUPAC命名法による系統名は 1,7,7-トリメチルビシクロヘプタン-2-オン、また、母骨格のボルナンが同命名法における許容慣用名であるため、そこからボルナン-2-オン(bornan-2-one)、2-ボルナノンなどの名称が誘導される。ほかの別名は、1,7,7-トリメチルノルカンファー、2-カンファノン、2-カンフォノン、またはカラドリル。.

新しい!!: 酢酸と樟脳 · 続きを見る »

標準状態

標準状態(ひょうじゅんじょうたい)とは、物理学、化学や工学などの分野で、測定する平衡状態に依存する熱力学的な状態量を比較するときに基準とする状態である。標準状態をどのように設定するかは完全に人為的なものであり、理論的な裏付けはないが、歴史的には人間の自然認識に立脚する。 一般的には気体の標準状態のことを指すことが多く、圧力と温度を指定することで示される。科学の分野により、また学会、国際規格団体によって、その定義は様々であり混乱が見られる。このため、日本熱測定学会は統一した値として、地球の大気の標準的な圧力である標準大気圧()を用いるべきであると主張し啓蒙活動を展開している日本熱測定学会 ICCT2008で発表したポスター。.

新しい!!: 酢酸と標準状態 · 続きを見る »

殺菌剤

殺菌剤(さっきんざい)は、一般に、病原性あるいは有害性を有する微生物を殺すための薬剤をいう。 医薬品、農薬や工業用品などがあるが、呼び方や内容が異なるので以下のように分けて記載する。それぞれの項目を参照。.

新しい!!: 酢酸と殺菌剤 · 続きを見る »

比誘電率

比誘電率(ひゆうでんりつ、relative permittivity、 dielectric constant)とは媒質の誘電率と真空の誘電率の比 ε / ε0.

新しい!!: 酢酸と比誘電率 · 続きを見る »

比重

比重(ひじゅう)とは、ある物質の密度(単位体積当たり質量)と、基準となる標準物質の密度との比である。通常、固体及び液体については水、気体については、同温度、同圧力での空気を基準とする。.

新しい!!: 酢酸と比重 · 続きを見る »

水俣病

水俣病(みなまたびょう)は、メチル水銀化合物(有機水銀)による中毒性中枢神経系疾患のうち、産業活動が発生源となり、同物質が環境に排出され、食物連鎖によってヒトが経口摂取して集団発生した場合に言う。 1956年(昭和31年)5月1日に熊本県水俣市にて公式発見され、1957年(昭和32年)に発生地の名称から命名された。その後、類似の公害病にも命名されている。 1997年(平成9年)に水俣湾の安全宣言がなされ、漁が再開されている。.

新しい!!: 酢酸と水俣病 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 酢酸と水素 · 続きを見る »

水素結合

doi.

新しい!!: 酢酸と水素結合 · 続きを見る »

水酸化カルシウム

水酸化カルシウム(すいさんかカルシウム、Calcium hydroxide)は、化学式 Ca(OH)2 で表されるカルシウムの水酸化物。消石灰(しょうせっかい)とも呼ばれる。固体はカルシウムイオンと水酸化物イオンからなるイオン結晶である。水溶液は石灰水とも呼ばれ、強いアルカリ性を示し、二酸化炭素を簡易的に検出する試薬として多用されている。.

新しい!!: 酢酸と水酸化カルシウム · 続きを見る »

氷(冰、こおり)とは、固体の状態にある水のこと。 なお、天文学では宇宙空間に存在する一酸化炭素や二酸化炭素、メタンなど水以外の低分子物質の固体をも氷(誤解を避けるためには「○○の氷」)と呼ぶこともある。また惑星科学では、天王星や海王星の内部に存在する高温高密度の水やアンモニアの液体のことを氷と呼ぶことがある。さらに日常語でも、固体の二酸化炭素をドライアイスと呼ぶ。しかしこの記事では、水の固体を扱う。.

新しい!!: 酢酸と氷 · 続きを見る »

木酢液

木酢液(もくさくえき)とは、木材を乾留した際に生じる乾留液の上澄分のこと。代表的な例としては、炭焼き時に副産物として木酢液が製造される。外見は赤褐~暗褐色の液体。ほとんどが水分であるが、木材由来の有機酸(酢酸など)が含まれ弱酸性を示す。それ以外の成分として 、アルコール類、カルボニル化合物、あるいはフェノール類やフラン類といった芳香族化合物などが含まれる。製法によってはホルムアルデヒドやベンゾピレンなどの毒性の高い物質も含まれる。原材料や乾留の条件により成分にばらつきがある松井、松下、菅本、角石「木質系バイオマスの炭化生成物の調製と分析: スギ樹皮およびスギ葉の酢液・タールの分析」宮崎大学工学部紀要、37巻、57-64 ページ - (本論文で分析されている木酢液はスギのサンプルを 400 ℃ で炭化して得られたもの) - 農林水産省 2005年8月31日(本資料で挙げられている成分は 80~150 ℃ の範囲で調製したサンプルによる) -,, 。 メタノールの別名である「木精」は、かつて木酢液の蒸留により得られていたことに由来する。フェノール類は主に木材の成分であるリグニンから生じる。.

新しい!!: 酢酸と木酢液 · 続きを見る »

有機合成化学

有機合成化学(ゆうきごうせいかがく、英語:organic synthetic chemistry)とは、有機化合物の新規な合成方法を研究する学問であり、有機化学の一大分野である。時として合成有機化学(synthetic organic chemistry)、あるいは「有機」の語が略されて単に合成化学と呼ばれる場合もある。.

新しい!!: 酢酸と有機合成化学 · 続きを見る »

有機化学

有機化学(ゆうきかがく、英語:organic chemistry)は、有機化合物の製法、構造、用途、性質についての研究をする化学の部門である。 構造有機化学、反応有機化学(有機反応論)、合成有機化学、生物有機化学などの分野がある。 炭素化合物の多くは有機化合物である。また、生体を構成するタンパク質や核酸、糖、脂質といった化合物はすべて炭素化合物である。ケイ素はいくぶん似た性質を持つが、炭素に比べると Si−Si 結合やSi.

新しい!!: 酢酸と有機化学 · 続きを見る »

昭和電工

昭和電工株式会社(しょうわでんこう、)は、日本の化学工業会社。 1939年(昭和14年)6月、森矗昶が設立した日本電気工業と、経営に参加した味の素傘下の昭和肥料の合併により設立され、戦前は森コンツェルンの中核企業であった。社名の由来は、前身両社の名を組み合わせたもの。 2011年(平成23年)3月7日より、同社グループのスローガンとして「具体化。」(英文では“Shaping Ideas”)が制定され、あわせて鉛筆をモチーフとしたシンボルマークも制定された。.

新しい!!: 酢酸と昭和電工 · 続きを見る »

3-メチル-1-ブタノール

3-メチル-1-ブタノール (3-methyl-1-butanol) とは、アルコールに分類される有機化合物の一種で、不快な臭いを持つ無色の液体。イソアミルアルコール (isoamyl alcohol)、イソペンチルアルコール (isopentyl alcohol) の慣用名で呼ばれることが多い。ペンタノールの異性体のひとつ。 沸点の高いアルコールとして、反応溶媒として使用される。また、下記に示すエステル誘導体の原料として用いられる。 消防法に定める第4類危険物 第2石油類に該当する。.

新しい!!: 酢酸と3-メチル-1-ブタノール · 続きを見る »

3-ヒドロキシ-2-ブタノン

3-ヒドロキシ-2-ブタノン (3-hydroxy-2-butanone) は分子式 C4H8O2 で表されるα-ヒドロキシケトン (アシロイン) である。 アセトイン (acetoin) の慣用名がよく使用されている。.

新しい!!: 酢酸と3-ヒドロキシ-2-ブタノン · 続きを見る »

ここにリダイレクトされます:

AcOHCH3COOHアセトキシ基エタン酸氷酢酸醋酸

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »