ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

還元剤

索引 還元剤

還元剤(かんげんざい、reducing agent、reductant、reducer)とは、酸化還元反応において他の化学種を還元させる元素または分子のことである。この際、還元剤は酸化される。したがって、還元剤は電子供与体である。 例えば、以下の反応では還元剤はヘキサシアノ鉄(II)酸(ferrocyanide)であり、これが電子供与体となってヘキサシアノ鉄(III)酸(ferricyanide)に酸化され、塩素は塩化物イオンに還元している。 有機化学においても先述の定義が当てはまるが、特に分子への水素の付加を還元と呼んでいる。例えばベンゼンは白金触媒によってシクロヘキサンに還元される。 無機化学では、最も優れた還元剤は水素(H2)である。.

32 関係: 塩化物塩素亜硫酸亜鉛化学種ナトリウムヒドラジンベンゼン分子ウォルフ・キッシュナー還元ギ酸クレメンゼン還元シュウ酸シクロヘキサン元素無機化学白金触媒還元酸化酸化剤酸化還元反応酸化数電子伝達体電気陰性度水素水素化ホウ素ナトリウム水素化アルミニウムリチウム水素化ジイソブチルアルミニウム没食子酸有機化学有機酸化還元反応

塩化物

塩化物(えんかぶつ、chloride)とは、塩素がそれより陽性な元素または原子団と形成する化合物である。塩素 (Cl2) は第18族元素以外のほとんどの元素と反応し塩化物を形成する。 塩素の結合がイオン結合性の場合、容易に塩素の陰イオン (Cl&minus) を遊離するのでこのイオンは塩化物イオン(えんかぶつイオン、chloride ion)または塩素イオン(えんそイオン、現在この呼び方は推奨されていない)と称する。また命名法において後置せずに前置する場合は塩化 (— chloride) と称する。いずれも陰性の塩素原子を意味する名称である。.

新しい!!: 還元剤と塩化物 · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: 還元剤と塩素 · 続きを見る »

亜硫酸

亜硫酸(ありゅうさん、sulfurous acid)は、化学式 H2SO3 で表される硫黄のオキソ酸で、二酸化硫黄の水溶液中に存在するとされる酸である。分子量 82 。酸性雨に含まれる物質の1つである。 遊離酸は不安定なため単離できない。古くは水溶液としては存在するとされていたが、ラマンスペクトルにおいて (HO)2SO という構造を持つ化合物が全く検出されないことから、実際には水溶液中での平衡は以下のようなものであると考えられている。 この反応の平衡定数は K1.

新しい!!: 還元剤と亜硫酸 · 続きを見る »

亜鉛

亜鉛(あえん、zinc、zincum)は原子番号30の金属元素。元素記号は Zn。亜鉛族元素の一つ。安定な結晶構造は、六方最密充填構造 (HCP) の金属。必須ミネラル(無機質)16種の一つ。.

新しい!!: 還元剤と亜鉛 · 続きを見る »

化学種

化学種(かがくしゅ、chemical species)は物質がもつ固有の物理・化学的性質によって他の物質と識別される物質の種類のこと。化合物と違って、イオン、原子、原子団(基とほぼ同じ)、元素、化合物を一括して言う言葉である。.

新しい!!: 還元剤と化学種 · 続きを見る »

ナトリウム

ナトリウム(Natrium 、Natrium)は原子番号 11、原子量 22.99 の元素、またその単体金属である。元素記号は Na。アルカリ金属元素の一つで、典型元素である。医薬学や栄養学などの分野ではソジウム(ソディウム、sodium )とも言い、日本の工業分野では(特に化合物中において)曹達(ソーダ)と呼ばれる炭酸水素ナトリウムを重炭酸ソーダ(重曹)と呼んだり、水酸化ナトリウムを苛性ソーダと呼ぶ。また、ナトリウム化合物を作ることから日本曹達や東洋曹達(現東ソー)などの名前の由来となっている。。毒物及び劇物取締法により劇物に指定されている。.

新しい!!: 還元剤とナトリウム · 続きを見る »

ヒドラジン

ヒドラジン (hydrazine) は、無機化合物の一種で、分子式 N2H4と表される弱塩基。 アンモニアに似た刺激臭を持つ無色の液体で、空気に触れると白煙を生じる。水に易溶。強い還元性を持ち、分解しやすい。引火性があり、ロケットや航空機の燃料として用いられる。 常温での保存が可能であるため、F-16戦闘機の非常用電源装置(EPU)やロシアなどのミサイルの燃料としても広く用いられており、また人工衛星や宇宙探査機の姿勢制御用推進器の燃料としても使われている。プラスチック成形時の発泡剤、エアバッグ起爆剤、各種脱酸素剤として広く使用され、特に火力・原子力発電所用高圧ボイラーの防食剤として使用されている。水加ヒドラジンは水素に代わる燃料電池の燃料としても模索されている。 だが人体へは、気化吸引、皮膚への接触ともに腐食をもたらす。また中毒症状をおこす。「毒物及び劇物取締法」により毒物に指定されている。 水と共沸し、55 mol%のヒドラジンを含む混合物を与える。化学実験で用いる際は通常、抱水ヒドラジン(ヒドラジン一水和物、N2H4•H2O)が用いられる。.

新しい!!: 還元剤とヒドラジン · 続きを見る »

ベンゼン

ベンゼン (benzene) は分子式 C6H6、分子量 78.11 の最も単純な芳香族炭化水素である。原油に含まれており、石油化学における基礎的化合物の一つである。分野によっては慣用としてドイツ語 (Benzol:ベンツォール) 風にベンゾールと呼ぶことがある。ベンジン(benzine)とはまったく別の物質であるが、英語では同音異綴語である。.

新しい!!: 還元剤とベンゼン · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 還元剤と分子 · 続きを見る »

ウォルフ・キッシュナー還元

ウォルフ・キッシュナー還元(ウォルフ・キッシュナーかんげん、Wolff-Kishner reduction)はケトンやアルデヒドのカルボニル基をヒドラジンによって還元してメチレン基にする化学反応のことである。 center 1911年にロシアのニコライ・キッシュナー、1912年にプファルツのルートヴィヒ・ヴォルフによって独立に発見された。原報はカルボニル化合物をヒドラジンと反応させてヒドラゾンとした後、塩基とともに封管中で加熱融解するというかなり厳しい反応条件であったが、1946年に黄鳴竜(ファン・ミンロン、Huang—Minlon)によってカルボニル化合物とヒドラジン水和物をエチレングリコール中で水酸化カリウムを触媒としてヒドラゾンを単離することなく反応させる改良法が報告された。また溶媒としてジメチルスルホキシドを使用すると室温付近の温和な条件でも反応が進行するという改良法も報告されている。 反応機構はヒドラジンとカルボニル化合物が反応して生成したヒドラゾン(R2C.

新しい!!: 還元剤とウォルフ・キッシュナー還元 · 続きを見る »

ギ酸

酸(ギさん、蟻酸、formic acid)は、分子量が最少のカルボン酸である。分子式は CH2O2、示性式は HCOOH。IUPAC命名法ではメタン酸 (methanoic acid) が系統名である。カルボキシ基(-COOH)以外にホルミル基(-CHO)も持つため、性質上、還元性を示す。空気中で加熱すると発火しやすい。なお、ギ酸を飽和脂肪酸として見た時は、常温常圧において他の飽和脂肪酸よりも比重が大きいことで知られる。多くの飽和脂肪酸の比重が1を下回っているのに対し、ギ酸の比重は約1.22と酢酸よりもさらに比重が大きい。ギ酸は工業的に生産されており、その水溶液は市販されている。.

新しい!!: 還元剤とギ酸 · 続きを見る »

クレメンゼン還元

レメンゼン還元(クレメンゼンかんげん、Clemmensen reduction)は亜鉛アマルガムを用いて塩酸などの強酸性の溶媒中でケトンやアルデヒドのカルボニル基を還元してメチレン基にする化学反応である。 1913年にエリック・クレメンゼンによって報告された。 水に溶けにくい基質では酢酸やメタノール、ジオキサンを補助溶媒とする。 また、トルエンを溶媒として二相系で反応を行なうこともある。 このようにすると、亜鉛アマルガムの表面に樹脂状の副生成物が固着して反応が停止するのを防止することができる。 原報は反応条件としてはかなり激しいため適用できる基質が限定されること、また水銀を使用するため、現在では有機合成に使われることはまれとなっている。 代わりに塩化水素の無水酢酸、ジエチルエーテル、ジオキサン等の溶液中で亜鉛粉末を加えて行なう非水系の改良法が知られており、こちらが適用される。 亜鉛アマルガムの表面で起こっている反応のため反応機構の詳細は明らかではない。 しかし、アルコールはこの条件ではメチレン基へと還元されないため、アルコールは反応中間体ではないと推定されている。 カルボニル基の還元により、Zn-C-OH の構造が生成した後、これからヒドロキシ基が脱離してカルベン錯体のようになり、これがプロトン化されてメチレン基となる機構が提唱されている。.

新しい!!: 還元剤とクレメンゼン還元 · 続きを見る »

シュウ酸

ュウ酸(シュウさん、蓚酸、oxalic acid)は構造式 HOOC–COOH 、示性式 (COOH)2 で表される、もっとも単純なジカルボン酸。分子量は90.03(無水物)及び126.07(二水和物)。IUPAC命名法ではエタン二酸 (ethanedioic acid)。1776年、カール・ヴィルヘルム・シェーレによりカタバミ (oxalis) から初めて単離されたことから命名された。 命名の由来にもなったように、植物に多く含まれる。漢字の「蓚」はタデ科のスイバを意味する。タデ科(他にギシギシ、イタドリなど)、カタバミ科、アカザ科(アカザ、ホウレンソウなど)の植物には水溶性シュウ酸塩(シュウ酸水素ナトリウムなど)が、サトイモ科(サトイモ、ザゼンソウ、マムシグサなど)には不溶性シュウ酸塩(シュウ酸カルシウムなど)が含まれる。とろろが肌に付くと痒みを生じるのは、シュウ酸カルシウムの針状結晶が肌に刺さって刺激を受ける為である。 体内で血液中のカルシウムイオンと強く結合するため毒性があり、毒物及び劇物取締法により劇物に指定されている。 還元性があるため、滴定によく使われる。また、染料原料や漂白剤としても用いられる。.

新しい!!: 還元剤とシュウ酸 · 続きを見る »

シクロヘキサン

ヘキサン (cyclohexane) は、分子式 C6H12、分子量 84.16 のシクロアルカンの一種の有機化合物である。ベンゼンの水素付加によって作られる。常温常圧で無色の液体で、揮発性がある。極性溶媒には溶けにくいが、有機溶媒には溶ける。.

新しい!!: 還元剤とシクロヘキサン · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

新しい!!: 還元剤と元素 · 続きを見る »

無機化学

無機化学(むきかがく、英語:inorganic chemistry)とは、研究対象として元素、単体および無機化合物を研究する化学の一分野である。通常有機化学の対概念として無機化学が定義されている為、非有機化合物を研究対象とする化学と考えて差し支えない。.

新しい!!: 還元剤と無機化学 · 続きを見る »

白金

白金(はっきん、platinum)は原子番号78の元素。元素記号は Pt。白金族元素の一つ。 学術用語としては白金が正しいが、現代日本の日常語においてはプラチナと呼ばれることもある。白金という言葉はオランダ語の witgoud(wit.

新しい!!: 還元剤と白金 · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

新しい!!: 還元剤と触媒 · 続きを見る »

還元

還元(かんげん、英:reduction)とは、対象とする物質が電子を受け取る化学反応のこと。または、原子の形式酸化数が小さくなる化学反応のこと。具体的には、物質から酸素が奪われる反応、あるいは、物質が水素と化合する反応等が相当する。 目的化学物質を還元する為に使用する試薬、原料を還元剤と呼ぶ。一般的に還元剤と呼ばれる物質はあるが、反応における還元と酸化との役割は物質間で相対的である為、実際に還元剤として働くかどうかは、反応させる相手の物質による。 還元反応が工業的に用いられる例としては、製鉄(原料の酸化鉄を還元して鉄にする)などを始めとする金属の製錬が挙げられる。また、有機合成においても、多くの種類の還元反応が工業規模で実施されている。.

新しい!!: 還元剤と還元 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: 還元剤と酸化 · 続きを見る »

酸化剤

酸化剤のハザードシンボル 酸化とは、ある物質が酸と化合する、水素を放出するなどの化学反応である。酸化剤(さんかざい、Oxidizing agent、oxidant、oxidizer、oxidiser)は、酸化過程における酸の供給源になる物質である。主な酸化剤は酸素であり、一般的な酸化剤は酸素を含む。 酸化反応に伴い熱やエネルギーが発生し、燃焼や爆発は、急激な酸化現象である。酸化剤は燃料や爆薬が燃焼する際に加えられて、酸素を供給する役割を果たす。一般に用いられる酸化剤としては空気,酸素,オゾン,硝酸,ハロゲン (塩素,臭素,ヨウ素) などがある。.

新しい!!: 還元剤と酸化剤 · 続きを見る »

酸化還元反応

酸化還元反応(さんかかんげんはんのう)とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のことである。英語表記の Reduction / Oxidation から、レドックス (Redox) というかばん語も一般的に使われている。 酸化還元反応ではある物質の酸化プロセスと別の物質の還元プロセスが必ず並行して進行する。言い換えれば、一組の酸化される物質と還元される物質があってはじめて酸化還元反応が完結する。したがって、反応を考えている人の目的や立場の違いによって単に「酸化反応」あるいは「還元反応」と呼称されている反応はいずれも酸化還元反応と呼ぶべきものである。酸化還元反応式は、そのとき酸化される物質が電子を放出する反応と、還元される物質が電子を受け取る反応に分けて記述する、すなわち電子を含む2つの反応式に分割して記述することができる。このように電子を含んで式化したものを半反応式、半電池反応式、あるいは半電池式と呼ぶ。.

新しい!!: 還元剤と酸化還元反応 · 続きを見る »

酸化数

酸化数(さんかすう、英: Oxidation number)とは、対象原子の電子密度が、単体であるときと比較してどの程度かを知る目安の値である。1938年に米国のウェンデル・ラティマー (Wendell Mitchell Latimer) が考案した。 酸化とはある原子が電子を失うことであるから、単体であったときより電子密度が低くなっている。それに対して還元とはある原子が電子を得ることであるから、単体であったときより電子密度が高くなっている。 ある原子が酸化状態にある場合、酸化数は正の値をとり、その値が大きいほど電子不足の状態にあることを示す。逆に還元状態にある場合には負の数値をとり、その値が大きいほど電子過剰の状態にあることを示す。 酸化数はローマ数字で記述するのが通例である。.

新しい!!: 還元剤と酸化数 · 続きを見る »

電子伝達体

電子伝達体(でんしでんたつたい)とは生体内における電子伝達反応を担う化合物の総称である。電子伝達体の多くには、補酵素、補欠分子族あるいはそれに含まれない多くの物質が含まれているが、その全てが電子を受け取る「酸化型」および電子を与える「還元型」の2つの状態を取る。また二電子還元を受けるものでは中間型(一電子還元型)も取り得る。別名水素伝達体、電子伝達物質など。.

新しい!!: 還元剤と電子伝達体 · 続きを見る »

電気陰性度

電気陰性度(でんきいんせいど、electronegativity)は、分子内の原子が電子を引き寄せる強さの相対的な尺度であり、ギリシャ文字のχで表されるShriver & Atkins (2001), p.45。。 異種の原子同士が化学結合しているとする。このとき、各原子における電子の電荷分布は、当該原子が孤立していた場合と異なる分布をとる。これは結合の相手の原子からの影響によるものであり、原子の種類により電子を引きつける強さに違いが存在するためである。 この電子を引きつける強さは、原子の種類ごとの相対的なものとして、その尺度を決めることができる。この尺度のことを電気陰性度と言う。一般に周期表の左下に位置する元素ほど小さく、右上ほど大きくなる。.

新しい!!: 還元剤と電気陰性度 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 還元剤と水素 · 続きを見る »

水素化ホウ素ナトリウム

水素化ホウ素ナトリウム(すいそかホウそナトリウム、sodium borohydrideもしくはsodium tetrahydroborate)は 化学式を NaBH4 で表される無機化合物で、ケトンやアルデヒドなどを始めとするさまざまな有機化合物の還元反応に用いられる代表的な還元剤のひとつである。ハーバート・ブラウンによって初めて合成され、偶然にその還元力が見出された。.

新しい!!: 還元剤と水素化ホウ素ナトリウム · 続きを見る »

水素化アルミニウムリチウム

水素化アルミニウムリチウム(すいそかアルミニウムリチウム、lithium aluminium hydride)は、組成式 LiAlH4で表されるアルミニウムのヒドリド錯体で無機化合物の一種であり、ケトン、アルデヒド、アミド、エステルなどの還元に用いられる。粉末状の強い還元剤であり、水と激しく反応し水素を発生するため、使用する際はジエチルエーテルなどの脱水溶媒を用いる必要がある。LAH(ラー)という略称がよく用いられる。.

新しい!!: 還元剤と水素化アルミニウムリチウム · 続きを見る »

水素化ジイソブチルアルミニウム

水素化ジイソブチルアルミニウム(すいそかジイソブチルアルミニウム、diisobutylaluminium hydride)は有機合成において汎用される還元剤である。DIBAL, DIBAH, DIBAL-H などと略される。化学式は 2AlH、もしくはイソブチル基を iBu と略記し iBu2AlH と表される。もともとはアルケンを重合させる際の共触媒として開発された化合物である。.

新しい!!: 還元剤と水素化ジイソブチルアルミニウム · 続きを見る »

没食子酸

没食子酸(もっしょくしさん または ぼっしょくしさん、gallic acid)は、有機化合物の一種で、示性式 C6H2(OH)3CO2H、分子量 170.12 の芳香族カルボン酸。別名3,4,5-トリヒドロキシ安息香酸。白色の吸湿性の結晶で、昇華点 210 ℃。加熱すると脱炭酸してピロガロールを生じる。CAS登録番号は 。1818年にフランスの薬学者アンリ・ブラコノーにより発見され、テオフィル=ジュール・ペルーズにより研究された。 五倍子(ヌルデの虫こぶ)、没食子(中近東のブナ・カシワの虫こぶ)、マンサク科の植物ハマメリス(Witch-hazel)、茶の葉、オークの樹皮など、多くの植物に含まれる。加水分解性タンニンの基本骨格を成す。 アルカリ性水溶液は還元力が強く、還元剤、写真の現像剤に使われる。また、タンニン合成の原料になり、青インク(没食子インク)の製造に使われ、さらに、没食子酸プロピル、没食子酸イソアミルなどのエステルとして油脂・バターの酸化防止剤にも使用される。カテキンの一種、エピガロカテキンガラートも没食子酸のエステルである。 category:ジヒドロキシ安息香酸 category:ポリフェノール Category:ピロガロール.

新しい!!: 還元剤と没食子酸 · 続きを見る »

有機化学

有機化学(ゆうきかがく、英語:organic chemistry)は、有機化合物の製法、構造、用途、性質についての研究をする化学の部門である。 構造有機化学、反応有機化学(有機反応論)、合成有機化学、生物有機化学などの分野がある。 炭素化合物の多くは有機化合物である。また、生体を構成するタンパク質や核酸、糖、脂質といった化合物はすべて炭素化合物である。ケイ素はいくぶん似た性質を持つが、炭素に比べると Si−Si 結合やSi.

新しい!!: 還元剤と有機化学 · 続きを見る »

有機酸化還元反応

有機酸化還元反応(ゆうきさんかかんげんはんのう、organic redox reaction)は、有機化合物が起こす酸化還元反応である。多くの有機反応が酸化と還元という言葉を使っているが、実際には電気化学的な意味での電子移動は伴っていないため、一般的な酸化還元反応とは異なる。 酸化数の定義に従えば、個々の炭素原子の酸化数は以下のようになる。.

新しい!!: 還元剤と有機酸化還元反応 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »