ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

遺伝子ノックダウン

索引 遺伝子ノックダウン

遺伝子ノックダウン(いでんしノックダウン)とは、特定の遺伝子の転写量を減少させる操作を指すことが多いが、翻訳を阻害する操作についても用いられる。ノックアウトマウスなどの遺伝子そのものを破壊する遺伝子ノックアウトとは異なり、遺伝子の機能を大きく減弱させるものの完全には失わせない。.

15 関係: 伝令RNAノックアウトマウスプロテアーゼアンチセンス鎖サイクリン線形動物翻訳 (生物学)遺伝子遺伝子ノックアウト表現型転写 (生物学)MiRNARNAiSiRNA核酸医薬

伝令RNA

伝令RNA(でんれいRNA、メッセンジャーRNA、英語:messenger RNA)は、蛋白質に翻訳され得る塩基配列情報と構造を持ったRNAのことであり、通常mRNAと表記される。DNAに比べてその長さは短い。DNAからコピーした遺伝情報を担っており、その遺伝情報は、特定のアミノ酸に対応するコドンと呼ばれる3塩基配列という形になっている。 mRNAはDNAから写し取られた遺伝情報に従い、タンパク質を合成する(詳しくは翻訳)。翻訳の役目を終えたmRNAは細胞に不要としてすぐに分解され、寿命が短く、分解しやすくするために1本鎖であるともいわれている。 古細菌、真正細菌では転写されたRNAはほぼそのままでmRNAとして機能する。一方真核生物では転写されたmRNA前駆体はいくつかの切断(スプライシング)、修飾といったプロセシングを受けたのちに成熟mRNAになる。 真核生物のmRNAはRNAポリメラーゼIIによって転写されたRNAに由来する。5'末端にはm7Gキャップがあり、3'末端は一般にポリアデニル化される(poly (A)鎖で終了している)。これらの構造やmRNAの塩基配列は翻訳活性やmRNAの分解を制御する機能も持っている。古細菌、真正細菌も3'末端に短いpoly (A)鎖を持つが、5'末端のキャップ構造は持たない。 poly (A)鎖はrRNAやtRNAには存在しないmRNAの特徴であるとされており、このことを利用してmRNAを特異的に精製することができる。また、mRNAを鋳型にしてDNAを逆転写酵素によって合成することができ、これはcDNAと呼ばれる。cDNAは遺伝子が働いていることの非常に信頼性の高い証拠であり、ゲノムプロジェクトによって得られた大量のシークエンスデータの中から遺伝子を探す作業を補助することができる。.

新しい!!: 遺伝子ノックダウンと伝令RNA · 続きを見る »

ノックアウトマウス

ノックアウトマウス()は、遺伝子ノックアウトの技法によって1個以上の遺伝子が無効化された遺伝子組換えマウスである。塩基配列は解明されているが機能が不明な遺伝子の研究において、ノックアウトマウスは重要なモデル生物である。マウスの特定の遺伝子を不活性化させ、正常のマウスとの行動や状態を比較することで、研究者はその遺伝子の機能を推定することができる。 マウスは現時点では、遺伝子ノックアウト技法の適用が容易な動物の中で、もっとも人間に近い。これらは遺伝子ノックアウト実験に幅広く使用されており、とりわけ人間の生理機能に関連した遺伝子研究に使われる。ラットでの遺伝子ノックアウトはより難しく、2003年に成功したばかりである。 最初のノックアウトマウスは、1989年、マリオ・カペッキ、マーティン・エヴァンズ、オリヴァー・スミティーズらによって作り出された。これによって彼らは2007年のノーベル生理学・医学賞を受賞している。ノックアウトマウスを生成する方法と、マウス自身について、多くの国で私企業に特許が与えられている。.

新しい!!: 遺伝子ノックダウンとノックアウトマウス · 続きを見る »

プロテアーゼ

プロテアーゼ(Protease、EC 3.4群)とはペプチド結合加水分解酵素の総称で、プロテイナーゼ(proteinase)とも呼ばれる。広義のペプチダーゼ(Peptidase)のこと。タンパク質やポリペプチドの加水分解酵素で、それらを加水分解して異化する。収斂進化により、全く異なる触媒機能を持つプロテアーゼが似たような働きを持つ。プロテアーゼは動物、植物、バクテリア、古細菌、ウイルスなどにある。ヒトでは小腸上皮細胞から分泌する。.

新しい!!: 遺伝子ノックダウンとプロテアーゼ · 続きを見る »

アンチセンス鎖

アンチセンス鎖(アンチセンスさ)は、ある配列のDNAやRNAに対して相補的な配列をもつDNA断片やRNA断片のこと。DNAにおいてはアデニンとチミン、そしてグアニンとシトシンは結合力をもつため、溶液内あるいは細胞内では相補的な断片同士が結合し、さまざまな影響をもたらす。RNAの場合にはアデニンとウラシルが結合する。.

新しい!!: 遺伝子ノックダウンとアンチセンス鎖 · 続きを見る »

サイクリン

イクリン (Cyclin) は、真核生物の細胞において細胞周期を移行させるためのエンジンとして働く蛋白質のひとつ。1989年にイギリスの医学者ティモシー・ハントが、間期において急に発現の落ちる蛋白質として発見した。現在までに哺乳類では20種類以上のサイクリンが見つかっている。.

新しい!!: 遺伝子ノックダウンとサイクリン · 続きを見る »

線形動物

線形動物(せんけいどうぶつ、学名:Nematoda、英名:Nematode, Roundworm)は、線形動物門に属する動物の総称である。線虫ともいう。かつてはハリガネムシなどの類線形動物 (Nematomorpha) も含んだが、現在は別の門とするのが一般的。また、日本では袋形動物門の一綱として腹毛動物・鰓曳動物・動吻動物などとまとめられていたこともあった。回虫・鞭虫などが含まれる。 大半の種は土壌や海洋中で非寄生性の生活を営んでいるが、同時に多くの寄生性線虫の存在が知られる。植物寄生線虫学 (nematology) では農作物に被害をもたらす線虫の、寄生虫学 (parasitology) ではヒトや脊椎動物に寄生する物の研究が行われている。.

新しい!!: 遺伝子ノックダウンと線形動物 · 続きを見る »

翻訳 (生物学)

分子生物学などにおいては、翻訳(ほんやく、Translation)とは、mRNAの情報に基づいて、タンパク質を合成する反応を指す。本来は細胞内での反応を指すが、細胞によらずに同様の反応を引き起こす系(無細胞翻訳系)も開発されている。.

新しい!!: 遺伝子ノックダウンと翻訳 (生物学) · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: 遺伝子ノックダウンと遺伝子 · 続きを見る »

遺伝子ノックアウト

遺伝子ノックアウト(英: gene knockout)は、ある生物に機能欠損型の遺伝子を導入するという、遺伝子工学の技法。この場合のノックアウトは「だめにする」「だめにされた」の意味。この技法は、配列(シークエンス)は既知であるが、機能がよくわかっていない遺伝子を研究するときに用いられる。研究者は、ノックアウト生物と正常個体の間の相違から、遺伝子の機能について推論する。 ノックアウトはしばしばKOと略される。同時に2つの遺伝子をノックアウトすることを「ダブルノックアウト」(DKO)と言う。同様に、「トリプルノックアウト」(TKO)、「クアドラブルノックアウト」(QKO)はそれぞれ、同時に3個、4個の遺伝子をノックアウトすることである。.

新しい!!: 遺伝子ノックダウンと遺伝子ノックアウト · 続きを見る »

表現型

表現型(ひょうげんがた、ひょうげんけい、)とは、ある生物のもつ遺伝子型が形質として表現されたものである。その生物の形態、構造、行動、生理的性質などを含む。獲得形質は含まない。.

新しい!!: 遺伝子ノックダウンと表現型 · 続きを見る »

転写 (生物学)

転写中のDNAとRNAの電子顕微鏡写真。DNAの周りに薄く広がるのが合成途中のRNA(多数のRNAが同時に転写されているため帯状に見える)。RNAポリメラーゼはDNA上をBeginからEndにかけて移動しながらDNAの情報をRNAに写し取っていく。Beginではまだ転写が開始された直後なため個々のRNA鎖が短く、帯の幅が狭く見えるが、End付近では転写がかなり進行しているため個々のRNA鎖が長く(帯の幅が広く)なっている 転写(てんしゃ、Transcription)とは、一般に染色体またはオルガネラのDNAの塩基配列(遺伝子)を元に、RNA(転写産物transcription product)が合成されることをいう。遺伝子が機能するための過程(遺伝子発現)の一つであり、セントラルドグマの最初の段階にあたる。.

新しい!!: 遺伝子ノックダウンと転写 (生物学) · 続きを見る »

MiRNA

miRNA (microRNA, マイクロRNA) は、ゲノム上にコードされ、多段階的な生成過程を経て最終的に20から25塩基長の微小RNAとなる機能性核酸である。 この鎖長の短いmiRNAは、機能性のncRNA (non-coding RNA, ノンコーディングRNA, 非コードRNA: タンパク質へ翻訳されないRNAの総称) に分類されており、ほかの遺伝子の発現を調節するという、生命現象において重要な役割を担っている。.

新しい!!: 遺伝子ノックダウンとMiRNA · 続きを見る »

RNAi

RNAi RNAi(RNA interferenceの略、日本語でRNA干渉ともいう)は、二本鎖RNAと相補的な塩基配列を持つmRNAが分解される現象。RNAi法は、この現象を利用して人工的に二本鎖RNAを導入することにより、任意の遺伝子の発現を抑制する手法 。アンチセンスRNA法やコサプレッションもRNAiの一形態と考えられる。 通常、遺伝子の機能阻害は染色体上の遺伝子を破壊することで行われてきた。しかし、RNAi法はこのような煩雑な操作は必要なく、塩基配列さえ知ることができれば合成したRNAを導入するなどの簡便な手法で遺伝子の機能を調べることができる。ゲノムプロジェクトによって全塩基配列を知ることのできる生物種では、逆遺伝学的解析の速度を上げる大きな要因の一つともなった。一方、完全な機能喪失とはならないこと、非特異的な影響を考慮する必要があるなどの問題もある。 1998年にアンドリュー・ファイアー等は線虫の一種であるモデル生物のCaenorhabditis elegans (C. elegans)を用いて、センス鎖とアンチセンス鎖の混合RNAが、それぞれの単独RNAより大きな阻害効果があることを示した。この効果は、標的mRNAとのモル比などから単純にアンチセンス鎖がmRNAに1:1で張り付いて阻害するのではなく、何らかの増幅過程を含むか、酵素的活性をもつことが予想された。その後、RNase IIIの一種であるDicerによって、長い二本鎖RNAが、siRNA(small interfering RNA)と呼ばれる21-23 ntの短い3'突出型二本鎖RNAに切断されること、siRNAといくつかの蛋白質から成るRNA蛋白質複合体であるRISC複合体が再利用されながら相補的な配列を持つmRNAを分解することがわかってきた。 2001年には哺乳類の細胞でsiRNAを導入することで、それまで問題となってきた二本鎖RNA依存性プロテインキナーゼの反応を回避することができた 。これにより、遺伝子治療応用への期待が高まっている。RNAi機構は酵母からヒトに至るまで多くの生物種で保存されている。その生物学的な意義としてはウイルスなどに対する防御機構として進化してきたという仮説が提唱されている。さらに、染色体再構成などにも関わる可能性が示され、またstRNAなど作用機構の一部を共有するmiRNAが発生過程の遺伝子発現制御を行っていることなどが明らかとなり、小分子RNAが果たす機能に注目が集まるきっかけの一つとなった。また、酵母を用いた研究では、染色体のセントロメアやテロメアのヘテロクロマチン形成にRNAiの機構が関与していることが報告されている。 2006年、アンドリュー・ファイアーとクレイグ・メローはRNAi発見の功績よりノーベル生理学・医学賞を受賞した。.

新しい!!: 遺伝子ノックダウンとRNAi · 続きを見る »

SiRNA

siRNAによるRNA干渉。 siRNA(small interfering RNA)とは21-23塩基対から成る低分子二本鎖RNAである。siRNAはRNA干渉(RNAi)と呼ばれる現象に関与しており、伝令RNA(mRNA)の破壊によって配列特異的に遺伝子の発現を抑制する。この現象はウイルス感染などに対する生体防御機構の一環として進化してきたと考えられている。siRNAは線虫や植物における転写後の遺伝子サイレンシング機構(PTGS)として存在することが報告されていたが、その後合成のsiRNAがヒトの細胞においてRNA干渉を引き起こすことが分かり、siRNAを用いたRNA干渉は遺伝子をノックダウンする方法として生物学および医薬分野の基礎研究に応用されていると共に、臨床への応用も期待されている。.

新しい!!: 遺伝子ノックダウンとSiRNA · 続きを見る »

核酸医薬

核酸医薬(oligonucleotide therapeutics)とは天然型ヌクレオチドまたは化学修飾型ヌクレオチドを基本骨格とする薬物であり、遺伝子発現を介さずに直接生体に作用し、化学合成により製造されることを特徴とする。代表的な核酸医薬にはアンチセンスオリゴヌクレオチド、RNAi、アプタマー、デコイなどがあげられる。核酸医薬は化学合成により製造された核酸が遺伝子発現を介さずに直接生体に作用するのに対して、遺伝子治療薬は特定のDNA遺伝子から遺伝子発現させ、何らかの機能をもつ蛋白質を産出させる点が異なる。核酸医薬は高い特異性に加えてmRNAやnon-coding RNAなど従来の医薬品では狙えない細胞内の標的分子を創薬ターゲットにすることが可能であり、一度プラットフォームが完成すれば比較的短時間で規格化しやすいという特徴がある。そのため核酸医薬は低分子医薬、抗体医薬に次ぐ次世代医薬であり癌や遺伝性疾患に対する革新的医薬品としての発展が期待されている。.

新しい!!: 遺伝子ノックダウンと核酸医薬 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »