ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

速度論的同位体効果

索引 速度論的同位体効果

速度論的同位体効果(そくどろんてきどういたいこうか)は、化学反応において反応物の原子の1つを同位体で置き換えた場合に起こる反応速度の変化を指す。 化学結合の生成・開裂に関与する部位の原子を同位体で置き換えると、反応速度は大きく影響を受ける。この速度変化は1次の同位体効果と呼ばれる。一方、置き換えが反応に直接関与しない部位で行われた場合の速度変化はより小さく、これは2次の同位体効果と呼ばれる。従って、速度論的同位体効果の大きさは反応機構を推定するのに使うことができる。同位体効果は反応の律速段階に最も観測されやすい。もし反応のある段階が律速でないならば、同位体の置き換えによる効果は現れにくい。 同位体効果は質量比の違いが大きい場合により顕著に現れる。例えば、水素を重水素で置き換えると質量は2倍になるが、炭素12を炭素13で置き換えた場合の質量増加は 8% にしか過ぎない(この例では質量数は共に 1 amu 増加している)。12C−H 結合を含む反応の速度は一般的に 12C−D 結合のものと比べると6から10倍の速さであるが、13C−H で置き換えた場合にはおよそ1.04倍にしかならない。 同位体の置き換えは様々な形で反応速度に影響を及ぼす。多くの場合、原子の質量変化は電子配置にはほとんど関係しないが、形成している化学結合の振動数に影響を与える。この観点から速度差が生じる原因の説明ができる。より重い原子を含む結合は、古典物理学的にはより低い振動数を持ち、量子論的にはより低いゼロ点エネルギーを持つ。ゼロ点エネルギーが低いと結合を開裂させるのにより多くのエネルギーが必要になり、すなわち結合を切断するための活性化エネルギーはより高くなる。従って、観測される反応速度は小さくなる(アレニウスの式を参照)。 ある場合には、量子学的トンネル効果によって、より軽い同位体についてさらなる増速が観測される。通常、この現象はトンネル効果が十分に得られるほど軽い水素原子にのみ見られる。 水素/三重水素の置き換えに対する水素/重水素の置き換えの効果の比はスウェイン式によって予測される。.

21 関係: 原子反応速度反応速度論反応機構古典物理学同位体同位体効果三重水素化学反応化学結合トンネル効果アレニウスの式統一原子質量単位調和振動子重水素量子力学零点エネルギー換算質量水素活性化エネルギー振動数

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 速度論的同位体効果と原子 · 続きを見る »

反応速度

反応速度(はんのうそくど、reaction rate)とは化学反応の反応物あるいは生成物に関する各成分量の時間変化率を表す物理量。通常、反応速度を表現する式は濃度のべき関数として表現される。.

新しい!!: 速度論的同位体効果と反応速度 · 続きを見る »

反応速度論

反応速度論(はんのうそくどろん、chemical kinetics)とは反応進行度の時間変化(速度)に関する物理化学の一分野である。物体の速度を扱う力学との類推で、かつては化学動力学と呼ばれていた。反応速度論の目的は反応速度を解析することで、反応機構や化学反応の物理学的本質を解明することにあった。今日においては原子あるいは分子の微視的運動状態は、巨視的な反応速度解析に頼ることなく、量子化学などの理論に基づき計算化学的な手法で評価する分子動力学によって解明できるようになっている。それゆえ、今日の反応速度論は学問的真理の探求よりは、実際の化学反応を制御する場合の基礎論理として利用されている。 なお、反応速度の求め方については記事 反応速度に詳しい。.

新しい!!: 速度論的同位体効果と反応速度論 · 続きを見る »

反応機構

化学において、反応機構(はんのうきこう、Reaction mechanism)は、全体の化学的変化を起こす段階を追った一続きのである。 反応機構は全体の化学反応の各段階で起こることを詳細に記述しようと試みる理論的な推論である。反応の詳細な段階はほとんどの場合において観測不可能である。推測反応機構はそれが熱力学的にもっともらしいという理由で選ばれ、単離した中間体または反応の定量的および定性的特徴から実験的に支持される。反応機構は個々の反応中間体、、遷移状態や、どの結合が(どの順番で)切れるか、どの結合が(どの順番で)形成されるか、も記述する。完全な機構はと触媒が使われた理由や、反応物および生成物で観察される立体化学、全ての生成物とそれぞれの量、についても説明しなければならない。 反応機構を図示するために描画法が頻繁に使われる。 反応機構は分子が反応する順番についても説明しなければならない。大抵、単段階変換に見える反応は実際には多段階反応である。.

新しい!!: 速度論的同位体効果と反応機構 · 続きを見る »

古典物理学

古典物理学(こてんぶつりがく、Physics in the Classical Limit)とは、量子力学を含まない物理学。その多くは量子力学が発達する前の原理に基づいて体系だてられたものだが、量子力学と同時またはそれ以降に構築された特殊相対性理論、一般相対性理論も含まれる。現代物理学の対義語では必ずしもないので注意を要する。.

新しい!!: 速度論的同位体効果と古典物理学 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

新しい!!: 速度論的同位体効果と同位体 · 続きを見る »

同位体効果

同位体効果(どういたいこうか、Isotope effect)は、物質や化合物を構成する原子の同位体に起因して、物性、反応性が変化する事や、同位体比が変化する事をいう。.

新しい!!: 速度論的同位体効果と同位体効果 · 続きを見る »

三重水素

三重水素(さんじゅうすいそ、tritium、記号:H または T)とは、質量数が3、すなわち原子核が陽子1つと中性子2つから構成される水素の放射性同位体である。一般に、トリチウムと呼ばれる。.

新しい!!: 速度論的同位体効果と三重水素 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: 速度論的同位体効果と化学反応 · 続きを見る »

化学結合

化学結合(かがくけつごう)は化学物質を構成する複数の原子を結びつけている結合である。化学結合は分子内にある原子同士をつなぎ合わせる分子内結合と分子と別の分子とをつなぎ合わせる分子間結合とに大別でき、分子間結合を作る力を分子間力という。なお、金属結晶は通常の意味での「分子」とは言い難いが、金属結晶を構成する結合(金属結合)を説明するバンド理論では、分子内結合における原子の数を無限大に飛ばした極限を取ることで、金属結合の概念を定式化している。 分子内結合、分子間結合、金属結合のいずれにおいても、化学結合を作る力は原子の中で正の電荷を持つ原子核が、別の原子の中で負の電荷を持つ電子を電磁気力によって引きつける事によって実現されている。物理学では4種類の力が知られているが、電磁気力以外の3つの力は電磁気力よりも遥かに小さい為、化学結合を作る主要因にはなっていない。したがって化学結合の後述する細かな分類、例えば共有結合やイオン結合はどのような状態の原子にどのような形で電磁気力が働くかによる分類である。 化学結合の定式化には、複数の原子がある場合において電子の軌道を決定する必要があり、そのためには量子力学が必須となる。しかし多くの簡単な化合物や多くのイオンにおいて、化学結合に関する定性的な説明や簡単な定量的見積もりを行う分には、量子力学で得られた知見に価電子や酸化数といった分子の構造と構成を使って古典力学的考察を加える事でも可能である。 それに対し複雑な化合物、例えば金属複合体では価電子理論は破綻し、その振る舞いの多くは量子力学を基本とした理解が必要となる。これに関してはライナス・ポーリングの著書、The Nature of the Chemical Bondで詳しく述べられている。.

新しい!!: 速度論的同位体効果と化学結合 · 続きを見る »

トンネル効果

トンネル効果 (トンネルこうか) 、量子トンネル(りょうしトンネル )、または単にトンネリングとは、古典力学的には乗り越えられないはずのを粒子があたかも障壁にあいたトンネルを抜けたかのように通過する量子力学的現象である。太陽のような主系列星で起こっている核融合など、いくつかの物理的現象において欠かせない役割を果たしている。トンネルダイオード、量子コンピュータ、走査型トンネル顕微鏡などの装置において応用されているという意味でも重要である。この効果は20世紀初頭に予言され、20世紀半ばには一般的な物理現象として受け入れられた。 トンネリングはハイゼンベルクの不確定性原理と物質における粒子と波動の二重性を用いて説明されることが多い。この現象の中心は純粋に量子力学的な概念であり、量子トンネルは量子力学によって得られた新たな知見である。.

新しい!!: 速度論的同位体効果とトンネル効果 · 続きを見る »

アレニウスの式

アレニウスの式(アレニウスのしき、Arrhenius equation)は、スウェーデンの科学者スヴァンテ・アレニウスが1884年に提出した、ある温度での化学反応の速度を予測する式である。5年後の1889年、ヤコブス・ヘンリクス・ファント・ホッフによりこの式の物理学的根拠が与えられた。 反応の速度定数 k は で表される。活性化エネルギーEa の単位として、1モルあたりではなく1粒子あたりで考えると、 と表すことも出来る。 活性化エネルギーはアレニウスパラメータとも呼ばれる。また指数関数部分 exp (-Ea /RT) はボルツマン因子と呼ばれる。.

新しい!!: 速度論的同位体効果とアレニウスの式 · 続きを見る »

統一原子質量単位

統一原子質量単位(とういつげんししつりょうたんい、unified atomic mass unit、記号 u)およびダルトン、ドルトン(dalton、記号 Da)は、原子や分子のような微小な粒子の質量を表す単位である。かつては原子質量単位(記号 amu)とも言ったが、この名と記号は現在は非公式である。ダルトンと Da はかつて非公式だったが、2006年に国際度量衡局(BIPM) により承認された。 統一原子質量単位とダルトンの定義は全く同じで、静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12と定義されている。国際単位系 (SI) では共に、SI単位ではないがSIと併用できるSI併用単位のうち、「SI単位で表されるその数値が実験的に決定され、したがって不確かさが伴う単位」に位置付けられている。.

新しい!!: 速度論的同位体効果と統一原子質量単位 · 続きを見る »

調和振動子

調和振動子(ちょうわしんどうし、harmonic oscillator)とは、質点が定点からの距離に比例する引力を受けて運動する系である。調和振動子は定点を中心として振動する系であり、その運動は解析的に解くことができる。.

新しい!!: 速度論的同位体効果と調和振動子 · 続きを見る »

重水素

重水素(じゅうすいそ、heavy hydrogen)またはデューテリウム (deuterium) とは、水素の安定同位体のうち、原子核が陽子1つと中性子1つとで構成されるものをいう。重水素は H と表記するが、 D(deuteriumの頭文字)と表記することもある。例えば重水の分子式を DO と表記することがある。 原子核が陽子1つと中性子2つとで構成される水素は三重水素(H)と呼ばれる。重水素、三重水素に対して普通の水素(原子核が陽子1つのもの)は軽水素(H)と呼ばれる。.

新しい!!: 速度論的同位体効果と重水素 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 速度論的同位体効果と量子力学 · 続きを見る »

零点エネルギー

零点エネルギー(れいてんエネルギー、zero-point energy)あるいはゼロ点エネルギーとは、絶対零度においても原子が不確定性原理のために静止せずに一定の振動をする場合のエネルギーである。 零点エネルギーは量子力学の系における最も低いエネルギーである。基底状態のエネルギーと言いかえることもできる。量子力学では、すべての粒子には波動性を持っているため、基底状態であっても振動した状態にあり、零点エネルギーというエネルギーを持つことになる。結果として、絶対零度であっても振動していることになる。たとえば、液体ヘリウムは零点エネルギーの影響で、大気圧中ではどんなに温度を下げても固体になることはない。 零点エネルギーの考えは、1913年のドイツにおいて、アルバート・アインシュタインとオットー・シュテルンによって生み出された。この考えは1900年に書かれたマックス・プランクの式を元にしている。.

新しい!!: 速度論的同位体効果と零点エネルギー · 続きを見る »

換算質量

換算質量(かんさんしつりょう)とは、ニュートン力学の二体問題において用いられる有効な慣性質量のことである。質量の次元を持つ量であり、二体問題を一体問題であるかのように扱うことを可能にする。換算質量はよくギリシャ文字\mu\!\,を使って示される。 換算質量は2つの質量の調和平均の半分であり、常に2物体それぞれの質量以下となる。ただし、重力の大きさを決める重力質量自体が減っているとみなせるわけではない。一方の質量を換算質量で置き換えた場合、他方を2物体の質量の和に置き換えれば、計算上は重力を正しく表せる。.

新しい!!: 速度論的同位体効果と換算質量 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 速度論的同位体効果と水素 · 続きを見る »

活性化エネルギー

活性化エネルギー(かっせいかエネルギー)とは、反応の出発物質の基底状態から遷移状態に励起するのに必要なエネルギーである。アレニウスパラメータとも呼ばれる。活性化エネルギーが高いことを活性化障壁と表現することもある。 吸熱反応においては、反応物と生成物の内部エネルギー(またはエンタルピー)に差がある場合には、最低限その差に相当するエネルギーを外部から受け取らなければならない。しかし、実際の反応においてはそれだけでは十分でなく、その差以上のエネルギーを必要とする場合がほとんどである。大きなエネルギーを受け取ることで、出発物質は生成物のエネルギーよりも大きなエネルギーを持った遷移状態となり、遷移状態となった出発物質はエネルギーを放出しながら生成物へと変換する。これは発熱反応の場合にも当てはまり、たとえ出発物質よりも生成物のエネルギーの方が低いとしても、活性化エネルギーの壁を越えられなければ反応は進行しない。例えば炭素と酸素を常温・常圧で混ぜても反応しないが、熱などにより活性化エネルギー分を供給してやることによって燃焼反応が進行する。 触媒作用とは、遷移状態を安定化することにより反応に必要な活性化エネルギーを下げ、反応を進みやすくすることである。.

新しい!!: 速度論的同位体効果と活性化エネルギー · 続きを見る »

振動数

振動数(しんどうすう、英語:frequency)は、物理学において等速円運動あるいは単振動などの振動運動や波動が単位時間当たりに繰り返される回数である。振動数は、運動の周期の逆数であり、単位はヘルツ(Hz)原康夫 『物理学通論 I』 第I部3章3.4 単振動、学術図書出版、1988年。 「周波数」も英語では frequency(ラテン語で「“frequentia”」から) であり根本的には同じことであるが、「周波数」がおもに電気振動(電磁波や振動電流)のような電気工学・電波工学または音響工学などで用いられる工学用語であるのに対し、力学的運動など自然科学(理学)における物理現象には「振動数」が用いられることが多い。一般的には記号 f を用いて表されるが、光の振動数などはν(ニュー)の記号を用いられることが多い。 等速円運動においては、振動数は「回転速度(回転数)」と同じ数値になるが、単位は異なる。.

新しい!!: 速度論的同位体効果と振動数 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »