ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

跡 (線型代数学)

索引 跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

61 関係: 加群の直和基底変換単位行列単純リー群双対ベクトル空間双代数双線型形式実数完全系列対称行列射影作用素主対角線交代行列交換子余代数ノルムランダウの記号リー代数リー群リー環の指数写像トレース (体論)ヒルベルト空間テンソルの縮約テンソル積ドット積ベクトル空間アダマール積エルミート行列キリング形式クロネッカーのデルタクロネッカー積コンパクト作用素コーシー=シュワルツの不等式ジョルダン標準形冪零行列内積固有多項式固有値線型代数学線型写像線型汎函数総和置換 (数学)翻訳借用結合多元環特殊線型群随伴行列行列行列の定値性行列の相似...行列の階数行列式行列ノルム行列要素行列指数関数複素数Vec作用素核 (代数学)正方行列数学数学原論 インデックスを展開 (11 もっと) »

加群の直和

抽象代数学における直和(ちょくわ、direct sum)は、いくつかの加群を一つにまとめて新しい大きな加群にする構成である。加群の直和は、与えられた加群を「不必要な」制約なしに部分加群として含む最小の加群であり、余積の例である。双対概念であると対照をなす。 この構成の最もよく知られた例はベクトル空間(体上の加群)やアーベル群(整数環 Z 上の加群)を考えるときに起こる。構成はバナッハ空間やヒルベルト空間をカバーするように拡張することもできる。.

新しい!!: 跡 (線型代数学)と加群の直和 · 続きを見る »

基底変換

線型代数学において、ある次元 n のベクトル空間に対する基底は、n 個のベクトル α1,..., αn の列で、その空間内のすべてのベクトルがそれら基底ベクトルの線型結合として一意的に表現されるという性質が成り立つ。作用素の行列表示も、同様にその選ばれた基底によって一意的に決定される。しばしば一つのベクトル空間に対して、複数の基底について考えることが望ましいことがあり、したがって線型代数学における本質的に重要な概念として、ある一つの基底に対するベクトルと作用素の座標に関する表現を、他の基底に対する同値な表現へと簡単に変換する、というものが存在する。そのような変換のことを基底変換(きていへんかん、)と呼ぶ。 以下ではベクトル空間の語を用い、記号 R は実数の体を意味するために用いられるが、そこで議論される結果は R が可換環であり「ベクトル空間」が「自由R-加群に置き換えられた場合にも成立する。.

新しい!!: 跡 (線型代数学)と基底変換 · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: 跡 (線型代数学)と単位行列 · 続きを見る »

単純リー群

群論において、単純リー群 (simple Lie group) は連結非可換リー群 G であって非自明な連結正規部分群を持たないものである。 単純リー環 (simple Lie algebra) は非可換リー環であってイデアルが 0 と自身しかないものである。単純リー環の直和は半単純リー環と呼ばれる。 単純リー群の同値な定義がから従う:連結リー群はリー環が単純であれば単純である。重要な技術的点は、単純リー群は離散的な正規部分群を含むかもしれず、したがって単純リー群であることは抽象群として単純であることとは異なるということである。 単純リー群は多くのを含む。古典型リー群は球面幾何学、射影幾何学、フェリックス・クラインのエルランゲンプログラムの意味で関連する幾何学の群論的支柱を提供する。どんなよく知られた幾何学にも対応しない可能性もいくつか存在することが単純リー群のの過程で現れた。これらの例外群 (exceptional group) により数学の他の分野や当時の理論物理学の多くの特別な例や configuration が説明される。 単純リー群の概念は公理的観点からは十分であるが、の理論のようなリー理論の応用において、幾分一般的な概念である半単純および簡約リー群がもっと有用であることが証明されている。とくに、すべての連結は簡約であり、一般の簡約群の表現の研究は表現論の主要な分野である。.

新しい!!: 跡 (線型代数学)と単純リー群 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 跡 (線型代数学)と双対ベクトル空間 · 続きを見る »

双代数

数学において,体 上の双代数(そうだいすう,bialgebra)とは, 上のベクトル空間であって,単位的結合代数かつ余代数であるようなものである.代数構造と余代数構造はさらなる公理によって整合性を持つ.具体的には,余積と余単位はともに単位的代数の準同型である,あるいは同じことであるが,代数の積と単位射はともに余代数の準同型である.(これらのステートメントは同じ可換図式によって表されるから同値である.) 類似している双代数は双代数準同型によって関連付けられる.双代数の準同型は代数と余代数両方の準同型であるような線型写像である. 可換図式の対称性に反映されているように,双代数の定義は自己双対であり,したがって, の双対を定義できるならば( が有限次元ならいつでも可能である),自動的に双代数になる..

新しい!!: 跡 (線型代数学)と双代数 · 続きを見る »

双線型形式

数学の特に抽象代数学および線型代数学における双線型形式(そうせんけいけいしき、bilinear form)とは、スカラー値の双線型写像、すなわち各引数に対してそれぞれ線型写像となっている二変数函数を言う。より具体的に、係数体 上のベクトル空間 で定義される双線型形式 は.

新しい!!: 跡 (線型代数学)と双線型形式 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 跡 (線型代数学)と実数 · 続きを見る »

完全系列

ホモロジー代数における完全系列(かんぜんけいれつ、exact sequence)あるいは完全列(かんぜんれつ)とは、環上の加群や群などの系列で各射の像空間が次の射の核空間と正確に合致するという意味で完全であるものをいう。.

新しい!!: 跡 (線型代数学)と完全系列 · 続きを見る »

対称行列

線型代数学における対称行列(たいしょうぎょうれつ、symmetric matrix)は、自身の転置行列と一致するような正方行列を言う。記号で書けば、行列 A は を満たすとき対称であるという。相等しい行列の型(次元、サイズ)は相等しいから、この式を満たすのは正方行列に限られる。 定義により、対称行列の成分は主対角線に関して対称である。即ち、成分に関して行列 は任意の添字 に関して を満たす。例えば、次の 行列 1 & 7 & 3\\ 7 & 4 & -5\\ 3 & -5 & 6 \end は対称である。任意の正方対角行列は、その非対角成分が であるから、対称である。同様に、歪対称行列( なる行列)の各対角成分は、自身と符号を変えたものと等しいから、すべて でなければならない。 線型代数学において、実対称行列は実内積空間上の自己随伴作用素を表す。これと、複素内積空間の場合に対応する概念は、複素数を成分に持つエルミート行列(自身の共役転置行列と一致するような複素行列)である。故に、複素数体上の線型代数学においては、対称行列という言葉は行列が実数に成分をとる場合に限って使うことがしばしばある。対称行列は様々な応用の場面に現れ、典型的な数値線型代数ソフトウェアではこれらに特別な便宜をさいている。.

新しい!!: 跡 (線型代数学)と対称行列 · 続きを見る »

射影作用素

変換 ''P'' は直線 ''m'' の上への直交射影 線型代数学および函数解析学における射影作用素あるいは単に射影(しゃえい、projection)とは、いわゆる射影(投影)を一般化した概念である。有限次元ベクトル空間 V の場合は、V 上の線型変換 P: V → V であって、冪等律 P2.

新しい!!: 跡 (線型代数学)と射影作用素 · 続きを見る »

主対角線

線型代数において、n次正方行列の主対角線(しゅたいかくせん)とは、行列の一番左上から一番右下にかけての対角線である。a11 、a22 、…、 annのことで、例えば次の行列では主対角線上の成分は1である。 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end 主対角線上以外の成分が全て0である正方行列を対角行列と呼ぶ。対角行列のうち主対角線上の成分が全て1である正方行列は単位行列である。 主対角線上の成分の和を、トレースと呼ぶ。 Category:行列 Category:数学に関する記事.

新しい!!: 跡 (線型代数学)と主対角線 · 続きを見る »

交代行列

線型代数学において、交代行列(こうたいぎょうれつ、alternative matrix)、歪対称行列(わいたいしょうぎょうれつ、skew-symmetric matrix)または反対称行列(はんたいしょうぎょうれつ、antisymmetric matrix, antimetric matrix; 反称行列)は、正方行列 であってその転置 が自身の 倍となるものをいう。すなわち、転置に対して反対称性を持つ行列は交代行列である。交代行列とは逆に、転置に対して対称な行列は対称行列と呼ばれる。本項において(何も言わなければ)、係数体の標数 は でない と仮定する。標数が のとき、任意のスカラーは自身を反数として持つので、任意の歪対称行列は対称行列の概念に一致する。歪対称行列に付随する双線型形式は歪対称形式であり、標数 のときは対称形式になる。一方、付随する双線型形式が交代形式であるような行列を「交代行列」と呼べば、標数 のとき「交代行列」は歪対称(.

新しい!!: 跡 (線型代数学)と交代行列 · 続きを見る »

交換子

数学における交換子(こうかんし、commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。.

新しい!!: 跡 (線型代数学)と交換子 · 続きを見る »

余代数

余代数(よだいすう、coalgebra)とは、単位元を持つ結合代数に対して、圏の双対をとったものをいう。.

新しい!!: 跡 (線型代数学)と余代数 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 跡 (線型代数学)とノルム · 続きを見る »

ランダウの記号

ランダウの記号(ランダウのきごう、Landau symbol)は、関数の極限における値の変化度合いに、おおよその評価を与えるための記法である。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (オーもしくはオミクロン Ο。数字の0ではない)を用いることから(ランダウの)O-記法、ランダウのオミクロンなどともいう。 記号 O は「程度」の意味のオーダー(Order)から。 なおここでいうランダウはエドムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用いられる。.

新しい!!: 跡 (線型代数学)とランダウの記号 · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: 跡 (線型代数学)とリー代数 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: 跡 (線型代数学)とリー群 · 続きを見る »

リー環の指数写像

リー群論において、指数写像(しすうしゃぞう、exponential map)は、リー群のリー環から局所的な群構造を取り出せるような、リー環からリー群への写像である。指数写像の存在はリー環のレベルでリー群を研究することの主要な正当性の1つである。 解析学の通常の指数関数は G が正の実数の乗法群(そのリー環は実数全体のなす加法群)のときの指数写像という特別な場合である。リー群の指数写像は通常の指数関数の性質と類似の多くの性質を満たすが、しかしながら、多くの重要な面において異なりもする。.

新しい!!: 跡 (線型代数学)とリー環の指数写像 · 続きを見る »

トレース (体論)

体論において、トレース (trace) は、有限次体拡大 L/K に付随して現れる写像で、L から K への K-線型写像である。.

新しい!!: 跡 (線型代数学)とトレース (体論) · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 跡 (線型代数学)とヒルベルト空間 · 続きを見る »

テンソルの縮約

多重線型代数学におけるテンソルの縮約(テンソルのしゅくやく、tensor contraction)は、有限次元のベクトル空間とその双対空間の間の自然な内積から生じる、一つ以上のテンソルに対する演算である。座標を取って考えれば、一つの式に現れる各々の仮添字 (dummy index) の対に対して和の規約を適用することによって生じる、スカラー成分の積和として縮約は表される。特に一つのの縮約は、そのテンソルに現れる見かけの添字の対(一方は上付き、他方は下付き)が同じ文字であるとき、それらに関して和をとることで生じる。アインシュタインの縮約記法とは、このような和を織り込み済みとする記法である。縮約を取って得られるテンソルは階数 (order) が だけ減る 。 テンソルの縮約をトレースの一般化として捉えることもできる。.

新しい!!: 跡 (線型代数学)とテンソルの縮約 · 続きを見る »

テンソル積

数学におけるテンソル積(テンソルせき、tensor product)は、線型代数学で多重線型性を扱うための線型化を担う概念で、既知のベクトル空間・加群など様々な対象から新たな対象を作り出す操作の一つである。そのようないずれの対象に関しても、テンソル積は最もな双線型乗法である。 共通の体 上の二つの ベクトル空間 のテンソル積 (基礎の体 が明らかな時には とも書く)はふたたびベクトル空間を成す。ベクトル空間のテンソル積を繰り返して得られるテンソル空間は物理的なテンソルを数学的に定式化する。テンソル空間に種々の積を入れてさまざまな多重線型代数・クリフォード代数が定式化されるが、その基本となる演算がテンソル積である。.

新しい!!: 跡 (線型代数学)とテンソル積 · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: 跡 (線型代数学)とドット積 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 跡 (線型代数学)とベクトル空間 · 続きを見る »

アダマール積

数学におけるアダマール積(Hadamard product)は、同じサイズの行列に対して成分ごとに積を取ることによって定まる行列の積である。要素ごとの積(element-wise product)、シューア積(Schur product)、点ごとの積(pointwise product)、成分ごとの積(entrywise product)などとも呼ばれる。 ジャック・アダマールやイサイ・シューアらの貢献があり、名称はそれに因むものである。 アダマール積は結合的かつ通常の行列の和(成分ごとの和)に対して分配的であり、かつ通常の行列の積とは異なり(係数環が可換ならば)常に可換である。.

新しい!!: 跡 (線型代数学)とアダマール積 · 続きを見る »

エルミート行列

線型代数学におけるエルミート行列(エルミートぎょうれつ、Hermitian matrix)または自己随伴行列(じこずいはんぎょうれつ、self-adjoint matrix)は、複素数に成分をとる正方行列で自身の随伴行列(共軛転置)と一致するようなものを言う。エルミート行列は、実対称行列の複素数に対する拡張版の概念として理解することができる。 行列 の随伴を と書くとき、複素行列がエルミートであるということは、 が成り立つということであり、これはまた が成り立つことと同値ゆえ、その成分は任意の添字 について -成分は -成分の複素共軛と等しい。 随伴行列 は と書かれるほうが普通だが、 を複素共軛(本項では と書いた)の意味で使う文献も多く紛らわしい。 エルミート行列の名はシャルル・エルミートに因む。エルミートは1855年、この種の行列が固有値が常に実数となるという実対称行列と同じ性質を持つことを示した。 よく知られたパウリ行列、ゲルマン行列および一般化されたそれらはエルミートである。理論物理学においてそれらのエルミート行列には、しばしば虚数の係数が掛かって歪エルミート行列となる。.

新しい!!: 跡 (線型代数学)とエルミート行列 · 続きを見る »

キリング形式

数学において、 (Wilhelm Killing) の名に因むキリング形式 (Killing form) とは、リー群とリー環の理論において基本的な役割を果たす対称双線型形式である。.

新しい!!: 跡 (線型代数学)とキリング形式 · 続きを見る »

クロネッカーのデルタ

ネッカーのデルタ()とは、集合 T(多くは自然数の部分集合)の元 i, j に対して によって定義される二変数関数 δij: T×T → のことをいう。つまり、T×T の対角成分の特性関数のことである。名称は、19世紀のドイツの数学者レオポルト・クロネッカーに因む。 アイバーソンの記法を用いると と書ける。 単純な記号だが、色々な場面で有用である。例えば、単位行列は (δij) と書けたり、n 次元直交座標の基底ベクトルの内積は、(ei, ej).

新しい!!: 跡 (線型代数学)とクロネッカーのデルタ · 続きを見る »

クロネッカー積

数学における行列のクロネッカー積(クロネッカーせき、Kronecker product)⊗ は任意サイズの行列の間に定義される二項演算で、その結果は区分行列として与えられる。行列単位からなる標準基底に関する線型空間のテンソル積の行列として与えられる。クロネッカー積は通常の行列の積とはまったく異なる概念であるので、混同すべきではない。名称はレオポルト・クロネッカーに因む。.

新しい!!: 跡 (線型代数学)とクロネッカー積 · 続きを見る »

コンパクト作用素

数学の一分野函数解析学においてコンパクト作用素(コンパクトさようそ、compact operator)とは、バナッハ空間 X から別のバナッハ空間 Y への線型作用素 L であって、X の任意の有界集合を Y の相対コンパクト集合へ写すようなもののことを言う。このような作用素は有界作用素、つまり連続写像でなければならない。 有界作用素 L で階数が有限なものは全てコンパクト作用素である。実際、無限次元空間上のコンパクト作用素のクラスは階数有限な作用素のクラスの自然な一般化である。X.

新しい!!: 跡 (線型代数学)とコンパクト作用素 · 続きを見る »

コーシー=シュワルツの不等式

数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality) とは、内積空間における二つのベクトルの間の内積がとりうる値をそれぞれのベクトルのノルムによって評価する不等式である。線型代数学や関数解析学における有限次元および無限次元のベクトルに対するさまざまな内積や、確率論における分散や共分散に適用されるなど、様々な異なる状況で現れる有用な不等式である。 数列に対する不等式はオーギュスタン=ルイ・コーシーによって1821年に、積分系での不等式はまずヴィクトール・ブニャコフスキーによって1859年に発見された後ヘルマン・アマンドゥス・シュワルツによって1888年に再発見された。.

新しい!!: 跡 (線型代数学)とコーシー=シュワルツの不等式 · 続きを見る »

ジョルダン標準形

ョルダン標準形(ジョルダンひょうじゅんけい、Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ一つのジョルダン標準形と相似である。名前はカミーユ・ジョルダンにちなむ。.

新しい!!: 跡 (線型代数学)とジョルダン標準形 · 続きを見る »

冪零行列

冪零行列(べきれいぎょうれつ、べきぜろぎょうれつ、nilpotent matrix)とは、冪乗して零(零行列)となる正方行列のこと。すなわち、ある自然数 m に対して、 が成り立つ行列 M をいう。冪零行列は基底の与えられたベクトル空間に対して冪零変換を定める。.

新しい!!: 跡 (線型代数学)と冪零行列 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: 跡 (線型代数学)と内積 · 続きを見る »

固有多項式

線型代数学において、固有多項式(こゆうたこうしき、characteristic polynomial)あるいは特性多項式(とくせいたこうしき)とは、正方行列に付随して得られるある多項式を指し、その行列の固有値、行列式、トレース、最小多項式といった重要な量と関連している。相似な行列に対しては同じ固有多項式が定まる。 またグラフ理論において、グラフの固有多項式とは、グラフの隣接行列の固有多項式のことを指す。この多項式はグラフの不変量となっている。すなわち同型なグラフは同じ固有多項式を持つ。.

新しい!!: 跡 (線型代数学)と固有多項式 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: 跡 (線型代数学)と固有値 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 跡 (線型代数学)と線型代数学 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 跡 (線型代数学)と線型写像 · 続きを見る »

線型汎函数

数学の特に線型代数学における線型汎函数(せんけいはんかんすう、linear functional)は、ベクトル空間からその係数体への線型写像をいう。線型形式 (linear form) 若しくは一次形式 (one-form) あるいは余ベクトル (covector) ともいう。 ユークリッド空間 Rn のベクトルを列ベクトルとして表すならば、線型汎函数は行ベクトルで表され、線型汎函数のベクトルへの作用は点乗積として、若しくは左から行ベクトルと右から列ベクトルとを行列の乗法で掛け合わせることで与えられる。 一般に、体 k 上のベクトル空間 V に対し、その上の線型汎函数とは V から k への写像 f であって、線型性 を満たすものを言う。V から k への線型汎函数全体の成す集合 Homk(V, k) はそれ自体が k 上のベクトル空間を成し、V の双対空間と呼ばれる(連続的双対空間と区別する必要がある場合には代数的双対空間とも呼ばれる)。考えている係数体 k が明らかなときは、V の双対空間はしばしば V∗ または V′ で表される。.

新しい!!: 跡 (線型代数学)と線型汎函数 · 続きを見る »

総和

数学において、総和(そうわ、summation)とは与えられた数を総じて加えることである。.

新しい!!: 跡 (線型代数学)と総和 · 続きを見る »

置換 (数学)

数学における置換(ちかん、permutation)の概念は、いくつか僅かに異なった意味で用いられるが、いずれも対象や値を「並べ替える」ことに関するものである。有り体に言えば、対象からなる集合の置換というのは、それらの対象に適当な順番を与えて並べることを言う。例えば、集合 の置換は、 の全部で六種類ある順序組である。単語のアナグラムは、単語を構成する文字列に対する置換として定められる。そういった意味での置換の研究は、一般には組合せ論に属する話題である。 相異なる n 個の対象の置換の総数は 通りであり、これは "n!" と書いて n の階乗と呼ばれる。 置換の概念は、多かれ少なかれ(あるいは陰に陽に)、数学のほとんどすべての領域に現れる。たとえばある有限集合上に異なる順序付けが考えられる場合に、単にそれらの順番を無視したいとか、無視した時にどれほどの配置が同一視されるかを知る必要があるなどの理由で、置換が行われることも多い。同様の理由で、置換は計算機科学におけるソートアルゴリズムの研究において生じる。 代数学、特に群論において、集合 S 上の置換は S から自身への全単射(つまり写像 で S の各元が像としてちょうど一つずつ現れるもの)として定義される。これは各元 s を対応する f(s) と入れ替えるという意味での S の並び替え (rearrangement) と関連する。このような置換の全体は対称群と呼ばれる群を成す。重要なことは、置換の合成が定義できること、つまり二つの並び替えを続けて行うと、それは全体として別の並べ替えになっているということである。S 上の置換は、S の元(あるいはそれを特定の記号によって置き換えたもの)を対象として、それらに対象の並び替えとして作用する。 初等組合せ論において、「」はともに n 元集合から k 個の元を取り出す方法として可能なものを数え上げる問題に関するもので、取り出す順番を勘案するのが k-順列、順番を無視するのが k-組合せである。k.

新しい!!: 跡 (線型代数学)と置換 (数学) · 続きを見る »

翻訳借用

翻訳借用(ほんやくしゃくよう)とは、ある言語がほかの言語から語を借用するとき、借用元の語の意味をなぞり翻訳して取り入れることを指す。語の音形をなぞって取り入れる「音訳借用」(Homophonic translation)に対立する概念である。 翻訳借用は通例複合語の借用の際に問題となる現象だが(単純語を単純語に翻訳しても「借用」とは意識されない)、借用元の語の構成要素である形態素(または語)のひとつひとつを翻訳し、これを組み合わせて新しい複合語を作る場合(カルク(fr:calque)、なぞりともいう)がほとんどであり、翻訳借用の例(例えば"airport"→「空港」)としてしばしば挙げられるのもすべてカルクである。しかし、実際には後述の漢字語のようにカルクによらない訳例も見られるため、翻訳借用と「カルク」は完全には一致しない。 明確に借用であると分かる音訳借用とは違い、通常の翻訳による造語なのか翻訳借用(考え方・造語法の借用)なのか不明瞭な部分も大きく、両者の間に明確なラインを引けない面もある。.

新しい!!: 跡 (線型代数学)と翻訳借用 · 続きを見る »

結合多元環

数学における(結合)線型環あるいは結合的代数または結合多元環(けつごうたげんかん、associative algebra)は、結合的な環であって、かつそれと両立するような、何らかの体上の線型空間(若しくはもっと一般の可換環上の加群)の構造を備えたものである。即ち、線型環 A は(結合律や分配律を含む)幾つかの公理を満足する二項演算(内部演算)としての加法と乗法を備え、同時に乗法と両立するスカラー(体 K や環 R の元)による乗法(外部演算)を備える。 分野によっては、線型環が乗法単位元 1 を持つと仮定することが典型的である場合もある。このような余分の仮定を満たすことを明らかにする場合には、そのような線型環を単型線型環(単位的(結合)多元環)と呼ぶ。.

新しい!!: 跡 (線型代数学)と結合多元環 · 続きを見る »

特殊線型群

数学において、 体 上の次数 の特殊線型群(とくしゅせんけいぐん、special linear group)とは、 行列式が である 次正方行列のなす集合に、通常の行列の積と逆行列の演算が入った群である。この群は、行列式 の核として得られる、一般線型群 の正規部分群である。 ここで は の乗法群(つまり、 から を除いた集合)を表す。 特殊線型群の元は「特殊な」もの、つまりある多項式が定める一般線型群の部分代数多様体、である(行列式は多項式であることに注意)。.

新しい!!: 跡 (線型代数学)と特殊線型群 · 続きを見る »

随伴行列

数学の特に線型代数学における行列の, エルミート転置 (Hermitian transpose), エルミート共軛 (Hermitian conjugate), エルミート随伴 (Hermitian adjoint) あるいは随伴行列(ずいはんぎょうれつ、adjoint matrix)とは、複素数に成分をとる 行列 に対して、 の転置およびその成分の複素共軛(実部はそのままで虚部の符号を反転する)をとって得られる 行列 を言う。 \end.

新しい!!: 跡 (線型代数学)と随伴行列 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 跡 (線型代数学)と行列 · 続きを見る »

行列の定値性

線型代数学における行列の定値性(ていちせい、definiteness)は、その行列に付随する二次形式が一定の符号を持つか否か (二次形式の定値性) と密接な関係を持つ概念だが、付随する二次形式を経ることなくその行列自身の持つ性質によって特徴づけることもできる。 この概念は対称行列およびエルミート行列に対して定義するのが通例であるが、そうではない行列を含むように「定値性」の概念を一般化して適用する文献もある。.

新しい!!: 跡 (線型代数学)と行列の定値性 · 続きを見る »

行列の相似

線型代数学において、ふたつの n 次正方行列 A, B が相似(そうじ、similar)であるとは、n 次正則行列 P で となるようなものが存在するときに言う。互いに相似な行列は同じ線型写像を異なる基底に関して表現するもので、さきほどの P はそれらの基底の間の基底変換 (change of basis) を与える行列である。上記のような変換はしばしば、変換行列 P に関する相似変換 (similarity transformation) と呼ばれる。線型代数群の文脈では、行列の相似性は(群の元としての)共軛性として言及されることも多い。.

新しい!!: 跡 (線型代数学)と行列の相似 · 続きを見る »

行列の階数

線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 の階数 (あるいは または丸括弧を落として )は、 の列空間(列ベクトルの張るベクトル空間)の次元に等しく、また の行空間の次元とも等しい。行列の階数は、対応する線型写像の階数である。.

新しい!!: 跡 (線型代数学)と行列の階数 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: 跡 (線型代数学)と行列式 · 続きを見る »

行列ノルム

線型代数学における行列ノルム(ぎょうれつノルム、matrix norm)は、ベクトルのノルムを行列に対し自然に一般化したものである。.

新しい!!: 跡 (線型代数学)と行列ノルム · 続きを見る »

行列要素

数学における行列要素(ぎようれつようそ、matrix element)、成分 (matrix entry) あるいは係数 (matrix coefficient) は、群上の特別な形の函数で、その群の線型表現と付加的なデータに依存するものである 有限群に対する行列要素は、その群の元の特定の表現に関する作用に対応する行列の成分として表すことができる。 リー群の表現の行列要素は、特殊函数論と緊密な関係を持ち、理論の大部分を統一的に扱う方法を与える。行列要素の増加性質は、局所コンパクト群(特に簡約実および -進群)の既約表現の分類において重大な役割を持つ。行列要素を用いた方法論は、モジュラー形式の概念に莫大な一般化をもたらした。別な方向では、ある種の力学系の持つが、適当な行列要素の性質によって制御される。.

新しい!!: 跡 (線型代数学)と行列要素 · 続きを見る »

行列指数関数

線型代数学における行列の指数関数(ぎょうれつのしすうかんすう、matrix exponential; 行列乗)は、正方行列に対して定義されるで、通常の(実または複素変数の)指数関数に対応するものである。より抽象的には、行列リー群とその行列リー代数の間の対応関係(指数写像)を行列の指数函数が記述する。 実または複素行列 の指数関数 または は、冪級数 で定義される -次正方行列である。この級数は任意の に対して収束するから、行列 の指数関数は well-defined である。 が 行列のとき、-乗 は 行列であり、その唯一の成分は の唯一の成分に対する通常の指数関数に一致する。これらはしばしば同一視される。この意味において行列の指数函数は、通常の指数函数の一般化である。.

新しい!!: 跡 (線型代数学)と行列指数関数 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 跡 (線型代数学)と複素数 · 続きを見る »

Vec作用素

vec作用素(英: vec operator)とは 行列 の要素を 次元列ベクトルの形に配置し直す作用素である。vec作用素は行列の微分を行うのに便利なことがある。 行列 を 次元列ベクトル \mathbf_i;i.

新しい!!: 跡 (線型代数学)とVec作用素 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 跡 (線型代数学)と核 (代数学) · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: 跡 (線型代数学)と正方行列 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 跡 (線型代数学)と数学 · 続きを見る »

数学原論

数学原論(すうがくげんろん、Éléments de mathématique)は、数学者集団ニコラ・ブルバキ による数学に関するである。2016年現在11の部門からなり、各部門が1つあるいは複数の章に分かれている。最初の巻はエルマン (Hermann) 書店によって1939年から、はじめは小冊子の形で、後に合本として、出版された。編集者との意見の相違から、出版は1970年代にCCLSに代わり、1980年代にはマソン (Masson) 書店に代わった。2006年からは、シュプリンガー・フェアラーク (Springer Verlag) がすべての分冊を再出版している。(なお和訳は絶版である。) 書名の奇妙な "mathématique" は意図的なものであり、通常使われる複数形が示唆するかもしれないことに反し、数学は統一されているという著者の信条を表している。逆に、ブルバキの『数学史』(Éléments d'histoire des mathématiques, 数学史原論)は複数形を用いており、ブルバキ以前には数学はばらばらな分野の集まりであったが、構造の現代的な概念によって統一できるようになったことを示している。 最初の6部門は論理的な順序に従っている。他の部門は初めの6部門に述べられていたことは用いるが、順序立ってはいない。.

新しい!!: 跡 (線型代数学)と数学原論 · 続きを見る »

ここにリダイレクトされます:

トレース (数学)トレース (線型代数学)トレース (行列)シュプール (線型代数学)対角和正方行列のトレース行列のトレース跡和蹟 (線型代数学)自己準同型のトレース

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »