ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

誤差関数

索引 誤差関数

誤差関数(ごさかんすう、error function)は、数学におけるシグモイド形状の特殊関数(非初等関数)の一種で、確率論、統計学、物質科学、偏微分方程式などで使われる。ガウスの誤差関数とも。定義は以下の通り。 相補誤差関数 (complementary error function) は erfc と表記され、誤差関数を使って以下のように定義される。 スケーリング相補誤差関数(scaled complementary error function)W.

88 関係: Abramowitz and Stegun原点偏微分方程式偶関数と奇関数偶数単位単位元反復境界条件奇数定義対称性不定積分不完全ガンマ関数微分法係数マイナスヘヴィサイドの階段関数ヘッダファイルプロビットテイラー展開デジタルフレネル積分初等関数分子分数オンライン整数列大辞典ガンマ関数ガウス積分ガウス関数グラフコンピュータシグモイド関数システムサブルーチン冪級数C++C++11C99C言語確率確率分布確率論積分法符号誤り率符号関数級数統計学...無限熱伝導特異点特殊関数直線表現複素共役複素数計算近似関数 (数学)自然数通信逐次積分逆写像除法FORTRANGFortranMathematica材料工学極限標準偏差正の数と負の数正規分布比較測定漸近展開期待値浮動小数点数数学整関数整数曲線あてはめ インデックスを展開 (38 もっと) »

Abramowitz and Stegun

Abramowitz and Stegunとはアメリカ合衆国国立標準局(現:国立標準技術研究所)在籍のとが編集した数学参考書の通称である。正式名称は“Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables”。 1964年に出版された1046ページの初版は応用数学における事実上すべての分野で使用される多数の関数の値の表や定義、識別、近似値、プロットを含む特殊関数の情報において最も包括的な情報源の一つとなっていった。この書籍で使われている表記は今日、多くの応用数学でデファクトスタンダードとなっている。 出版時、この書籍は実務家にとって不可欠なリソースであった。昨今では数式処理システムが関数表の代わりに使用されているが、この書籍は重要なリファレンスソースであり続けている。1954年に開催された会議の序文では「高速コンピューター機器の出現は数表を作成する仕事を変えるが、数表の必要性は間違いなく無くなることは無いだろう。」とされている。.

新しい!!: 誤差関数とAbramowitz and Stegun · 続きを見る »

原点

原点(げんてん、, origo)は、物事のはじまりや基(もと)、基準、根拠となるところ。人の人生、企業などの歴史を振り返る際に、出発点という意味で比喩でも用いられる。.

新しい!!: 誤差関数と原点 · 続きを見る »

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: 誤差関数と偏微分方程式 · 続きを見る »

偶関数と奇関数

数学において、偶関数(ぐうかんすう、even function)および奇関数(きかんすう、odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪函数の冪指数の(整数としての)偶奇に由来する(すなわち、函数 は が偶数のとき偶函数であり、 が奇数のとき奇函数である)。 この、函数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の函数やベクトル変数複素数値の函数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断らない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 y 軸対称 奇関数の例:正弦関数は原点対称 正弦関数と余弦関数 偶関数の例:絶対値関数 偶関数の例:双曲線余弦関数 奇関数の例:双曲線正弦関数 1.

新しい!!: 誤差関数と偶関数と奇関数 · 続きを見る »

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: 誤差関数と偶数 · 続きを見る »

単位

単位(たんい、unit)とは、量を数値で表すための基準となる、約束された一定量のことである。約束ごとなので、同じ種類の量を表すのにも、社会や国により、また歴史的にも異なる多数の単位がある。.

新しい!!: 誤差関数と単位 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 誤差関数と単位元 · 続きを見る »

反復

反復(はんぷく).

新しい!!: 誤差関数と反復 · 続きを見る »

境界条件

境界条件(きょうかいじょうけん、boundary condition)とは、境界値問題に課される拘束条件のこと。特に数学・物理学の用語としてよく用いられる。 境界条件は、境界値問題において興味のある解の探索領域とそれ以外の領域とを分けるために設定される。境界上では、境界内部で成り立つ方程式だけでは解の形を決定することができないので、補助的な条件を設定することで解を定める必要がある。この境界条件は多くの場合、対象とする境界値問題より一般的に成り立つであろう解の性質によって決定される。それは例えば境界上での解の値であったり、解の連続性や滑らかさであったりする。 時間的な境界条件の一つとして初期条件がある。時間発展を記述する方程式について、初期条件は応用上特別な意味を持つため、一般の境界条件とは分けて言及されることが多い。.

新しい!!: 誤差関数と境界条件 · 続きを見る »

奇数

奇数(きすう、 odd number)とは、2で割り切れない整数のことをいう。一方、2で割り切れる整数のことは、偶数という。−15, −3, 1, 7, 19 などは全て奇数である。 10進法では、一の位が 1, 3, 5, 7, 9 である数は奇数である。2進法では、20 の位(すなわち一の位)が 1 ならば奇数で、0 ならば偶数である。一般に 2n 進法(n は自然数)において、ある数が偶数であるか奇数であるかは、一の位(n0 の位)を見るだけで判別できる。 偶数と奇数は、位数が2の体の例を与える。.

新しい!!: 誤差関数と奇数 · 続きを見る »

定義

定義(ていぎ)は、一般にコミュニケーションを円滑に行うために、ある言葉の正確な意味や用法について、人々の間で共通認識を抱くために行われる作業。一般的にそれは「○○とは・・・・・である」という言い換えの形で行われる。基本的に定義が決められる場合は1つである。これは、複数の場合、矛盾が生じるからである。.

新しい!!: 誤差関数と定義 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 誤差関数と対称性 · 続きを見る »

不定積分

関数の不定積分という用語には次に挙げる四種類の意味で用いられる場合がある。 (逆微分) 0) 微分の逆操作を意味する:すなわち、与えられた関数が連続関数であるとき、微分するとその関数に一致するような新たな関数(原始関数)を求める操作のこと、およびその原始関数の全体(集合)を 逆微分としての不定積分(antiderivative)と言う。 (積分論) 1) 一変数関数 に対して、定義域内の任意の閉区間 上の定積分が に一致する関数 を関数 の 不定積分 (indefinite integral) と言う。 (積分論) 2) 一変数関数の定義域内の定数 から変数 までの(端点が定数でない)積分で与えられる関数を関数 の を基点とする不定積分 (indefinite integral with base point) と言う。 (積分論) 3) ルベーグ積分論において定義域内の可測集合を変数とし、変数としての集合上での積分を値とする集合関数を関数 の 集合関数としての不定積分 (indefinite integral as a set-function) と言う。 海外の数学サイトでは wikipedia を含めて主として上記の (逆微分) 0) を記述している場合が多いが、岩波書店の数学辞典や積分論の現代的な専門書では上記の (積分論) での不定積分が記述されている。ただしこれらはそれぞれ無関係ではなく、後述するように、例えば (積分論) 1) は (積分論) 3) を数直線上で考えたものであって (逆微分) 0) と同等となるべきものであり、(積分論) 2) は本質的には (積分論) 1) や (積分論) 3) の一部分と見なすことができる。また (積分論) 2) から (逆微分) 0) を得ることもできるが、この対応は一般には全射でも単射でもない。これ以後、この項目で考える積分は、特に指定がない限り、リーマン積分であるものとする。 また後述するように、(積分論) の意味の不定積分を連続でない関数へ一般化すると、不定積分は通常の意味での原始関数となるとは限らなくなり、(初等数学) と一致しなくなるのだが、連続関数に対してはほぼ一致する概念であるため、しばしば混同して用いられる。.

新しい!!: 誤差関数と不定積分 · 続きを見る »

不完全ガンマ関数

数学において、不完全ガンマ関数(ふかんぜんガンマかんすう、incomplete gamma function)あるいは、ルジャンドルの不完全ガンマ関数は、ガンマ関数の一般化の一つ。ガンマ関数は定積分を用いて定義されるが、不完全ガンマ関数は不定積分を用いて定義される。.

新しい!!: 誤差関数と不完全ガンマ関数 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: 誤差関数と微分法 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: 誤差関数と係数 · 続きを見る »

マイナス

マイナ.

新しい!!: 誤差関数とマイナス · 続きを見る »

ヘヴィサイドの階段関数

ヘヴィサイドの階段関数(ヘヴィサイドのかいだんかんすう、Heaviside step function)は、正負の引数に対しそれぞれ 1, 0 を返す階段関数 である。名称はオリヴァー・ヘヴィサイドにちなむ。ヘヴィサイド関数と呼ばれることもある。通常、H(x) や Y(x) などで表されることが多い。 単位ステップ関数と似ているが、こちらは と x.

新しい!!: 誤差関数とヘヴィサイドの階段関数 · 続きを見る »

ヘッダファイル

ヘッダファイル(Header file)は、特にC言語やC++でのプログラミングで使われるファイルであり、一般にソースコード形式をしていて、コンパイラが別のソースファイルの一部として自動的に展開して使用する。一般にヘッダファイルは、ソースファイルの先頭部分に書かれたディレクティブによってインクルード(その場に内容を展開)される。インクルードファイル(Include file)とも。 ヘッダファイルには、サブルーチンや変数やその他の識別子の前方宣言が含まれていることが多い。複数のソースファイルで宣言する必要のある識別子を1つのヘッダファイルに置き、必要に応じて個々のソースファイルがそのヘッダファイルをインクルードする。 C言語やC++では、標準ライブラリ関数はヘッダファイルで宣言されている。詳しくは、標準Cライブラリと標準C++ライブラリを参照されたい。.

新しい!!: 誤差関数とヘッダファイル · 続きを見る »

プロビット

プロビット(Probit)とは、統計処理に用いられる関数で、正規分布累積関数の逆関数である。Probitは"probability unit"(確率単位)の略。定義域は(0,1)、値域は全実数である。 特に、標準正規分布 N(0, 1) に対するプロビット関数を普通 Φ(z) と書いて用いる。Φ(z) は連続単調増加関数であり、Φ(0).

新しい!!: 誤差関数とプロビット · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 誤差関数とテイラー展開 · 続きを見る »

デジタル

デジタル(digital, 。ディジタル)量とは、離散量(とびとびの値しかない量)のこと。連続量を表すアナログと反対の概念である。工業的には、状態を示す量を量子化・離散化して処理(取得、蓄積、加工、伝送など)を行う方式のことである。 計数(けいすう)という訳語もある。古い学術文献や通商産業省の文書などで使われている。digitalの語源はラテン語の「指 (digitus)」であり、数を指で数えるところから離散的な数を意味するようになった。.

新しい!!: 誤差関数とデジタル · 続きを見る »

フレネル積分

''C''(''x'')。''C''(''x'') の最大値は約 0.977451424。''t''2 の代わりに π''t''2/2 を使うと、図は水平および垂直方向に縮小される(下図) フレネル積分(フレネルせきぶん、英: Fresnel integrals)とは、オーギュスタン・ジャン・フレネルの名を冠した2つの超越関数 S(x) と C(x) であり、光学で使われている。近接場のフレネル回折現象を説明する際に現れ、以下のような積分で定義される。 S(x) と C(x) をパラメトリック方程式として描画したものがクロソイド曲線である。.

新しい!!: 誤差関数とフレネル積分 · 続きを見る »

初等関数

初等関数(しょとうかんすう、)とは、実数または複素数の1変数関数で、代数関数、指数関数、対数関数、三角関数、逆三角関数および、それらの合成関数を作ることを有限回繰り返して得られる関数のことである。ガンマ関数、楕円関数、ベッセル関数、誤差関数などは初等関数でない。初等関数のうちで代数関数でないものを初等超越関数という。双曲線関数やその逆関数も初等関数である。 初等関数の導関数はつねに初等関数になるが、初等関数の不定積分や初等関数を用いた微分方程式の解なども一般に初等関数にはならない。例えば、次の二つの不定積分 f(x).

新しい!!: 誤差関数と初等関数 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 誤差関数と分子 · 続きを見る »

分数

分数(ぶんすう、fraction)とは 2 つの数の比を用いた数の表現方法のひとつである。.

新しい!!: 誤差関数と分数 · 続きを見る »

オンライン整数列大辞典

ンライン整数列大辞典(オンラインせいすうれつだいじてん、On-Line Encyclopedia of Integer Sequences, 以下 OEIS)は、無料で利用可能な整数列(各項が整数である数列)のオンラインデータベースである。 2018年3月時点で30万を超える整数列の情報が収められており、この種のデータベースとしては最大のものである。英単語や数列の一部分を入力することにより検索ができる。各々の項目は数列の名前に始まり、由来、参考文献、公式、キーワードなどの情報を含む。その他、数列を一定の規則で変換した音楽を聞くことができるといった遊び心もあり、数学の専門家から数学パズル愛好者まで幅広い利用者の興味を集めている。 コンテンツは基本的に全て英語である(各言語版も用意されているが、一部のごく簡単なメッセージが翻訳されているに過ぎない)。.

新しい!!: 誤差関数とオンライン整数列大辞典 · 続きを見る »

ガンマ関数

1.

新しい!!: 誤差関数とガンマ関数 · 続きを見る »

ガウス積分

π) がガウス積分を表す ガウス積分(がうす-せきぶん、Gaussian integral)あるいはオイラー=ポアソン積分(—せきぶん、Euler–Poisson integral)はガウス関数 の実数全体での広義積分: のことである。名称は、数学・物理学者のカール・フリードリヒ・ガウスに由来する。 この積分の応用は広い。例えば、変数の微小変化に伴う正規分布の正規化定数の計算に用いられる。積分の上の限界を有限な値に替えることで、誤差関数や正規分布の累積分布関数とも深く関連する。 誤差関数を表す初等関数は存在しないが、リッシュのアルゴリズムにより微分積分学の道具立てを用いてガウス積分の値が解析的に求まることが証明できる。つまり、初等関数としての不定積分 \textstyle\int e^ \, dx は存在しないが、定積分 \textstyle\int_^ e^ \, dx は評価することができるのである。 ガウス積分は物理学で非常に頻繁に現れ、またガウス積分の様々な一般化が場の量子論に現れる。.

新しい!!: 誤差関数とガウス積分 · 続きを見る »

ガウス関数

ウス関数(ガウスかんすう、Gaussian function)は、 の形の初等関数である。なお、2c2 のかわりに c2 とするなど、表し方にはいくつかの変種がある。 ガウシアン関数、あるいは単にガウシアンとも呼ばれる。 図のような釣鐘型の関数である。.

新しい!!: 誤差関数とガウス関数 · 続きを見る »

グラフ

ラフ; graph.

新しい!!: 誤差関数とグラフ · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 誤差関数とコンピュータ · 続きを見る »

シグモイド関数

モイド関数(シグモイドかんすう、sigmoid function)は、 で表される実関数である。なお、a をゲイン (gain) と呼ぶ。 狭義には、ゲインが1の標準シグモイド関数 (standard sigmoid function) をさす。 以下は広義のシグモイド関数について述べる。標準シグモイド関数については、 a.

新しい!!: 誤差関数とシグモイド関数 · 続きを見る »

システム

テム(system)は、相互に影響を及ぼしあう要素から構成される、まとまりや仕組みの全体。一般性の高い概念であるため、文脈に応じて系、体系、制度、方式、機構、組織といった多種の言葉に該当する。系 (自然科学) の記事も参照。 それ自身がシステムでありながら同時に他のシステムの一部でもあるようなものをサブシステムという。.

新しい!!: 誤差関数とシステム · 続きを見る »

サブルーチン

ブルーチン(subroutine)は、コンピュータプログラミングにおいて、プログラム中で意味や内容がまとまっている作業をひとつの手続きとしたものである。繰り返し利用されるルーチン作業をモジュールとしてまとめたもので、呼び出す側の「主」となるもの(メインルーチン)と対比して「サブルーチン」と呼ばれる。サブプログラム (subprogram) と呼ばれることもある。また、「サブ」をつけずに「ルーチン」と呼ぶこともある。 プログラムのソース中で、繰り返し現れる作業をサブルーチン化することで、可読性や保守性を高く保つことができる。繰り返し現れる作業でなくても、意味的なまとまりを示すためにサブルーチン化することもある。また、キャッシュのような階層的メモリの設計を持つコンピュータ(現在のパソコンやワークステーションなどほぼすべて)では、よく使われるサブルーチンがキャッシュに格納されることで高速な動作を期待できる。.

新しい!!: 誤差関数とサブルーチン · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: 誤差関数と冪級数 · 続きを見る »

値(あたい、ね、ち).

新しい!!: 誤差関数と値 · 続きを見る »

C++

C++(シープラスプラス)は、汎用プログラミング言語の一つである。日本語では略してシープラプラ、シープラなどとも呼ばれる。.

新しい!!: 誤差関数とC++ · 続きを見る »

C++11

C++11は、プログラミング言語 C++ のISO標準 ISO/IEC 14882:2011 の略称である。規格の策定中は2009年中の標準化を目指していたため、C++0x という仮称で呼ばれていた。 ISO/IEC 14882:2003 (C++03) に代わるものとして、2011年8月12日にISOによって承認された。後継のC++14が2014年8月18日に承認されている。 コア言語への機能追加や標準C++ライブラリの拡張を施し、C++TR1ライブラリの大部分を(数学的特殊関数ライブラリを除いて)取り込んでいる。.

新しい!!: 誤差関数とC++11 · 続きを見る »

C99

C99は、ISOで定められたC言語の規格である。正式な規格名は ISO/IEC 9899:1999。.

新しい!!: 誤差関数とC99 · 続きを見る »

C言語

C言語(シーげんご)は、1972年にAT&Tベル研究所のデニス・リッチーが主体となって開発したプログラミング言語である。英語圏では単に C と呼んでおり、日本でも文書や文脈によっては同様に C と呼ぶことがある。.

新しい!!: 誤差関数とC言語 · 続きを見る »

確率

率(かくりつ、)とは、偶然性を持つある現象について、その現象が起こることが期待される度合い、あるいは現れることが期待される割合のことをいう。確率そのものは偶然性を含まないひとつに定まった数値であり、発生の度合いを示す指標として使われる。.

新しい!!: 誤差関数と確率 · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: 誤差関数と確率分布 · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: 誤差関数と確率論 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 誤差関数と積分法 · 続きを見る »

符号誤り率

通信において、誤り率は、指定時間間隔の間に送られる、符号(ビット)、データエレメント、キャラクタ、ブロックの総数に対する、誤って受信した符号(ビット)、データエレメント、キャラクタ、ブロックの数の比率である。 最も一般的に利用される比率は符号誤り率(BER: Bit Error Rate)である。.

新しい!!: 誤差関数と符号誤り率 · 続きを見る »

符号関数

号関数 (ふごうかんすう、sign function, signum function) は、実数に対しその符号に応じて1、−1、0のいずれかを返す関数 およびそれを拡張した複素関数。 記号は のほかに、 なども使われる。 英語から「サイン関数」とも呼ぶが、この名は正弦関数 と非常に紛らわしい。区別するために sign のラテン語形の signum(シグヌム、英語読みはシグナム)から「シグナム関数」(signum function) と呼ぶことがある。英語以外でもドイツ語などいくつかの言語で signum 系の名前で呼ばれる。.

新しい!!: 誤差関数と符号関数 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 誤差関数と級数 · 続きを見る »

線(せん)とは、細長く描かれたものや連続して細長いものをいう。なお、点により断続して描かれるものを点線(てんせん)といい、点線などに対して切れ目のない普通の線は実線と呼ぶ。.

新しい!!: 誤差関数と線 · 続きを見る »

統計学

統計学(とうけいがく、statistics、Statistik)とは、統計に関する研究を行う学問である。 統計学は、経験的に得られたバラツキのあるデータから、応用数学の手法を用いて数値上の性質や規則性あるいは不規則性を見いだす。統計的手法は、実験計画、データの要約や解釈を行う上での根拠を提供する学問であり、幅広い分野で応用されている。 現在では、医学(疫学、EBM)、薬学、経済学、社会学、心理学、言語学など、自然科学・社会科学・人文科学の実証分析を伴う分野について、必須の学問となっている。また、統計学は哲学の一分科である科学哲学においても重要な一つのトピックになっている。.

新しい!!: 誤差関数と統計学 · 続きを見る »

点(てん).

新しい!!: 誤差関数と点 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 誤差関数と無限 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: 誤差関数と熱伝導 · 続きを見る »

特異点

特異点(とくいてん、singularity)とは、ある基準 の下、その基準が適用できない (singular) 点である。したがって、特異点は基準があって初めて認識され、「—に於ける特異点」「—に関する特異点」という呼ばれ方をする。特異点という言葉は、数学と物理学の両方で用いられる。.

新しい!!: 誤差関数と特異点 · 続きを見る »

特殊関数

特殊関数(とくしゅかんすう、special functions)は、何らかの名前や記法が定着している関数であり、解析学、関数解析学、物理学、その他の応用分野でよく使われる関数であることが多い。 何が特殊関数であるかのはっきりした定義は存在しないが、しばしば特殊関数として扱われるものには、ガンマ関数、ベッセル関数、ゼータ関数、楕円関数、ルジャンドル関数、超幾何関数、ラゲール多項式、エルミート多項式などがある。一般には初等関数の対義語ではなく、ある関数が初等関数であって同時に特殊関数とされる場合もある。.

新しい!!: 誤差関数と特殊関数 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 誤差関数と直線 · 続きを見る »

; 項(こう); 項(うなじ) Category:曖昧さ回避.

新しい!!: 誤差関数と項 · 続きを見る »

表現

表現(ひょうげん)とは、自分の感情や思想・意志などを形として残したり、態度や言語で示したりすることである。また、ある物体や事柄を別の言葉を用いて言い換えることなども表現という。.

新しい!!: 誤差関数と表現 · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: 誤差関数と複素共役 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 誤差関数と複素数 · 続きを見る »

解(かい).

新しい!!: 誤差関数と解 · 続きを見る »

計算

計算(けいさん)とは、与えられた情報をもとに、命題に従って演繹することである。 これは人間が無意識のレベルで行っている判断(→判断力)や、動物一般が行っている思考を、計算という形で意識化する手法ともいえ、その意味では「ものを考えること」一般が「計算」の一種だとみなすことも可能である。計算に使用される手続きはアルゴリズムと呼ばれる。対人関係において、戦略をアルゴリズムとして状況を有利に運ぶことも時に「計算」と表現される。 もっとも一般的かつ義務教育の範疇で最初に習うものは、算術(算数)における四則演算を、演算記号に示されたアルゴリズム通りに処理するものである。こういった「計算」は日常生活から専門的分野まで幅広く行われており、これを専門に処理する装置や機械も、人類の歴史において数多く開発され利用されている。.

新しい!!: 誤差関数と計算 · 続きを見る »

近似

近似(きんじ、approximation)とは、数学や物理学において、複雑な対象の解析を容易にするため、細部を無視して、対象を単純化する行為、またはその方法。近似された対象のより単純な像は、近似モデルと呼ばれる。 単純化は解析の有効性を失わない範囲内で行われなければならない。解析の内容にそぐわないほど、過度に単純化されたモデルにもとづいた解析は、近似モデルの適用限界を見誤った行為であり、誤った解析結果をもたらす。しかしながら、ある近似モデルが、どこまで有効性を持つのか、すなわち適用限界がどこにあるのかは、実際にそのモデルに基づいた解析を行ってみなければ分からないことが多い。.

新しい!!: 誤差関数と近似 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 誤差関数と関数 (数学) · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 誤差関数と自然数 · 続きを見る »

通信

通信(つうしん)とは、情報の伝達を意味する言葉である。有史以前から徐々に発展し、近代における様々なそして急激な技術的発展によって、より多様で利便性の高い、大衆的なものに発展してきた。.

新しい!!: 誤差関数と通信 · 続きを見る »

逐次積分

数学の微分積分学周辺分野における逐次積分(ちくじせきぶん、iterated integral; 累次積分、反復積分)または繰り返し積分 (repeated integral) とは、複数の変数を持つ函数に対して、そのいくつかの変数を任意定数と看做すことによって得られる複数の積分を繰り返し適用して得られる積分のことである。例えば二変数函数 f(x, y) に対して、y は定数(あるいは助変数)と看做して x に関する積分 ∫ f(x, y)dx を考えることができて、これは y の函数をあたえるから、さらに y に関して積分して、逐次積分 が得られる。逐次積分の概念を考えるに当たり一つ重要な点としては、これは多重積分 とは原則として異なる概念であるということが挙げられる。すなわち、一般にはこの二つは異なるのであるけれども、それでも十分緩やかな条件下でこれらが一致することを主張するフビニの定理が知られている。 括弧を省いて表記を簡素化する のような記法も慣習的によく用いられるが、これを ∫dy と ∫f(x)dx との積と混同してはならない。 逐次積分は、括弧などで指定された演算順序に従って計算していくことになるが、内側から順に逐次外側へ向かって計算するのが自然である。.

新しい!!: 誤差関数と逐次積分 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 誤差関数と逆写像 · 続きを見る »

除法

法(じょほう、division)とは、乗法の逆演算であり四則演算のひとつに数えられる二項演算の一種である。除算、割り算とも呼ばれる。 除法は ÷ や /, % といった記号を用いて表される。除算する 2 つの数のうち一方の項を被除数 (dividend) と呼び、他方を除数 (divisor) と呼ぶ。有理数の除法について、その演算結果は被除数と除数の比を与え、分数を用いて表すことができる。このとき被除数は分子 (numerator)、除数は分母 (denominator) に対応する。被除数と除数は、被除数の右側に除数を置いて以下のように表現される。 除算は商 (quotient) と剰余 (remainder) の 2 つの数を与え、商と除数の積に剰余を足したものは元の被除数に等しい。 剰余は余りとも呼ばれ、除算によって「割り切れない」部分を表す。剰余が 0 である場合、「被除数は除数を割り切れる」と表現され、このとき商と除数の積は被除数に等しい。剰余を具体的に決定する方法にはいくつかあるが、自然数の除法については、剰余は除数より小さくなるように取られる。たとえば、 を で割った余りは 、商は となる。これらの商および剰余を求める最も原始的な方法は、引けるだけ引き算を行うことである。つまり、 を で割る例では、 から を 1 回ずつ引いていき()、引かれる数が より小さくなるまで引き算を行ったら、その結果を剰余、引き算した回数を商とする。これは自然数の乗法を足し算によって行うことと逆の関係にある。 剰余を与える演算に % などの記号を用いる場合がある。 除数が である場合、除数と商の積は必ず になるため商を一意に定めることができない。従ってそのような数 を除数とする除法の商は未定義となる(ゼロ除算を参照)。 有理数やそれを拡張した実数、複素数における除法では、整数や自然数の除法と異なり剰余は用いられず、 という関係が除数が 0 の場合を除いて常に成り立つ。この関係は次のようにも表すことができる。 実数などにおける定義から離れると、除法は乗法を持つ代数的構造について「乗法の逆元を掛けること」として一般化することができる。一般の乗法は交換法則が必ずしも成り立たないため、除法も左右 2 通り考えられる。.

新しい!!: 誤差関数と除法 · 続きを見る »

FORTRAN

FORTRAN(フォートラン)は、1954年にIBMのジョン・バッカスによって考案された、コンピューターにおいて広く使われた世界最初の高級言語である。.

新しい!!: 誤差関数とFORTRAN · 続きを見る »

GFortran

GFortran(ジーフォートラン)は、GNU Fortran compilerの名前であり、GNUコンパイラコレクション (GCC) の一部である。GCC version 4.0以前から開発がストップしていたg77 を置き換える形で開発された。Fortran 95をサポートしており、多くのケースでG77の代わりとなっている。Fortran 2003 と Fortran 2008 の一部もまた実装されている。実験バージョンの GFortranは、GCC versions 4.0.xに含まれていた。開発は、現在も他のGCCと一緒に継続している。GFortranは2003年1月にG95 から枝分かれした。そのG95の開発は2000年の始めに開始されている。GCCの開発者によれば、二つのコードベースは現在、全く異なっている。.

新しい!!: 誤差関数とGFortran · 続きを見る »

Mathematica

Mathematica(マセマティカ)は、スティーブン・ウルフラムが考案し広く使われている数式処理システム。ウルフラム・リサーチの、ウルフラムが率いる数学者とプログラマのチームが開発し、同社が販売している。Mathematicaは項書き換えを基本として、複数のパラダイムをエミュレートするプログラミング言語としても強力である。.

新しい!!: 誤差関数とMathematica · 続きを見る »

材料工学

材料工学(ざいりょうこうがく、英語:materials science and engineering)または材料科学(ざいりょうかがく)は、工学の一分野であり、物理学、化学等の知識を融合して新しい材料(素材)やデバイスの設計と開発、そして評価をおこなう学問である。 プロセス技術(結晶の成長、薄膜化、焼結、鋳造、圧延、溶接、イオン注入、ガラス形成など)、分析評価技術(電子顕微鏡、X線回折、熱量計測など)および産業上の材料生産での費用対利潤の評価などを扱う。.

新しい!!: 誤差関数と材料工学 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 誤差関数と極限 · 続きを見る »

標準偏差

標準偏差(ひょうじゅんへんさ、)は、日本工業規格では、分散の正の平方根と定義している。データや確率変数の散らばり具合(ばらつき)を表す数値のひとつ。物理学、経済学、社会学などでも使う。例えば、ある試験でクラス全員が同じ点数、すなわち全員が平均値の場合、データにはばらつきがないので、標準偏差は 0 になる。 母集団や確率変数の標準偏差を σ で、標本の標準偏差を s で表すことがある。二乗平均平方根 (RMS) と混同されることもある。両者の差異については、二乗平均平方根を参照。.

新しい!!: 誤差関数と標準偏差 · 続きを見る »

正 せい.

新しい!!: 誤差関数と正 · 続きを見る »

正の数と負の数

正の数(せいのすう、positive number)とは、0より大きい実数である。負の数(ふのすう、negative number)とは、0より小さい実数である。.

新しい!!: 誤差関数と正の数と負の数 · 続きを見る »

正規分布

率論や統計学で用いられる正規分布(せいきぶんぷ、normal distribution)またはガウス分布(Gaussian distribution)は、平均値の付近に集積するようなデータの分布を表した連続的な変数に関する確率分布である。中心極限定理により、独立な多数の因子の和として表される確率変数は正規分布に従う。このことにより正規分布は統計学や自然科学、社会科学の様々な場面で複雑な現象を簡単に表すモデルとして用いられている。たとえば実験における測定の誤差は正規分布に従って分布すると仮定され、不確かさの評価が計算されている。 また、正規分布の確率密度関数のフーリエ変換は再び正規分布の密度関数になることから、フーリエ解析および派生した様々な数学・物理の理論の体系において、正規分布は基本的な役割を果たしている。 確率変数 が1次元正規分布に従う場合、X \sim N(\mu, \sigma^) 、確率変数 が 次元正規分布に従う場合、X \sim N_n(\mu, \mathit) などと表記される。.

新しい!!: 誤差関数と正規分布 · 続きを見る »

比較

記載なし。

新しい!!: 誤差関数と比較 · 続きを見る »

測定

測定(そくてい、Messung、mesure physique、measurement)は、様々な対象の量を、決められた一定の基準と比較し、数値と符号で表すことを指すJIS Z8103「計測用語」今井(2007)、p1-3 はじめに。人間の五感では環境や体調また錯視など不正確さから免れられず、また限界があるが、測定は機器を使うことでこれらの問題を克服し、科学の基本となる現象の数値化を可能とする。ただし、得られた値には常に測定誤差がつきまとい、これを斟酌した対応が必要となる。 ルドルフ・カルナップは1966年の著書『物理学の哲学的基礎』にて科学における主要な概念として、分類概念・比較概念・量的概念の3つを提示した。このうち、量的概念 (quantitative concept) を「対象が数値を持つ概念」と規定し、その把握には規則と客観的な手続きに則った判断が求められるとした。そしてこの物理学的測定は、測定する対象の性質や状態のメカニズム理論に基づいた尺度構成が重要になる。測定に関する理論および実践についての科学は、計量学(metrology)と呼ばれる。 測定の対象は自然科学だけにとどまらない。会計学においても貨幣的尺度を用いた評価や、企業の財務会計と適切なモデルを対応づけることなどを「測定」とするAmey,L.R.,A.ConceptualApproachtoManagement.NewYork:Prager,1986, p.130.

新しい!!: 誤差関数と測定 · 続きを見る »

漸近展開

漸近展開(ぜんきんてんかい、Asymptotic expansion)とは、与えられた関数を、より簡単な形をした関数列の級数として近似することをいう。テイラー展開は漸近展開の特別な場合であるが、漸近展開で得られた級数の値は、必ずしも元の関数の値に収束するとは言えない。しかし、関数の性質を調べる際、元の関数の形では扱いが難しい場合、漸近展開によって元の関数を級数の形で近似することにより、関数の性質が得られることがある。漸近展開は解析学では重要な手法の一つであり、確率論の基礎として用いることがある。.

新しい!!: 誤差関数と漸近展開 · 続きを見る »

期待値

率論において、期待値(きたいち、expected value)または平均は、確率変数の実現値を, 確率の重みで平均した値である。 例えば、ギャンブルでは、掛け金に対して戻ってくる「見込み」の金額をあらわしたものである。ただし、期待値ぴったりに掛け金が戻ることを意味するのではなく、各試行で期待値に等しい掛け金が戻るわけでもない。.

新しい!!: 誤差関数と期待値 · 続きを見る »

代的な本 本(部分) 本(ほん)は、書籍(しょせき)または書物(しょもつ)とも呼ばれ、木、竹、絹布、紙等の軟質な素材に、文字、記号、図画等を筆写、印刷し、糸、糊等で装丁・製本したもの(銭存訓(1990)p.208)。狭義では、複数枚の紙が一方の端を綴じられた状態になっているもの。この状態で紙の片面をページという。本を読む場合はページをめくる事によって次々と情報を得る事が出来る。つまり、狭義の本には巻物は含まれない。端から順を追ってしかみられない巻物を伸ばして蛇腹に折り、任意のページを開ける体裁としたものを折り本といい、折本の背面(文字の書かれていない側)で綴じたものが狭義の「本」といえる。本文が縦書きなら右綴じ、本文が横書きなら左綴じにする。また、1964年のユネスコ総会で採択された国際的基準は、「本とは、表紙はページ数に入れず、本文が少なくとも49ページ以上から成る、印刷された非定期刊行物」と、定義している。5ページ以上49ページ未満は小冊子として分類している。 内容(コンテンツ)的にはほぼ従来の書籍のようなものでも、紙などに文字を書いたり印刷するのではなく、電磁的または光学的に記録・再生されるものやネットワークで流通させるものは、電子書籍という。.

新しい!!: 誤差関数と本 · 続きを見る »

浮動小数点数

浮動小数点数(ふどうしょうすうてんすう、英: floating point number)は、浮動小数点方式による数のことで、もっぱらコンピュータの数値表現において、それぞれ固定長の仮数部と指数部を持つ、数値の表現法により表現された数である。.

新しい!!: 誤差関数と浮動小数点数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 誤差関数と数学 · 続きを見る »

整関数

複素解析における整函数(せいかんすう、entire function)は、複素数平面の全域で定義される正則函数を言う。そのような函数の例として、特に複素指数函数や多項式函数およびそれらの和、積、合成を用いた組合せとしての三角函数および双曲線函数などを挙げることができる。 二つの整函数の商として有理型函数が与えられる。 解析函数論の特定の場合として考えれば「整函数の基本理論」は一般論からの単に帰結であり、それは本質的に複素素関数論の初歩(しばしばヴァイヤシュトラスの因数分解定理によって詳しく調べられる)である。しかしその研究は、19世紀半ばごろのコーシー,, ヴァイヤシュトラスらから始まり、ボレル, アダマール,, ピカール,, ら(そしてネヴァンリンナを忘れることはできない)によって著しく豊かに推し進められ、いまや堂々たる理論となった。 整函数の理論は、整函数をその増大度によって分類しようとするもので、整函数のテイラー係数と増大度の間の関係、取りうる零点と整函数の振る舞いの間の関係、整函数とその導函数の間の関係を特定する。 整函数の理論におけるこれらの側面は、有理型函数に対するものに拡張される。.

新しい!!: 誤差関数と整関数 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 誤差関数と整数 · 続きを見る »

曲線あてはめ

曲線あてはめ(きょくせんあてはめ)またはカーブフィッティング(curve fitting)本間 仁,春日屋 伸昌「次元解析・最小二乗法と実験式」コロナ社(1989)加川 幸雄,霜山 竜一「入門数値解析」朝倉書店(2000)John R. Taylor、林 茂雄、 馬場 凉「計測における誤差解析入門 」東京化学同人(2000)吉沢 康和「新しい誤差論―実験データ解析法 」共立出版 (1989/10) は、実験的に得られたデータまたは制約条件に最もよく当てはまるような曲線を求めること。最良あてはめ、曲線回帰とも。一般に内挿や回帰分析を用いる。場合によっては外挿も用いる。回帰分析で曲線を求める場合、その曲線はデータ点を必ず通るわけではなく、曲線とデータ点群の距離が最小になるようにする。曲線あてはめによって得られた曲線を、近似曲線という。特に回帰分析を用いた場合には回帰曲線という。現実の実験データは直線的ではないことが多いため散布図、近似曲線を求める必要性は高い。.

新しい!!: 誤差関数と曲線あてはめ · 続きを見る »

ここにリダイレクトされます:

ErfErfc相補誤差関数誤差函数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »