ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

自己複製

索引 自己複製

自己複製(Self-replication)は、何らかの事物がそれ自身の複製を作る過程である。細胞は適当な条件が整うと、細胞分裂による複製を行う。細胞分裂において、DNAが複製され、生殖に際してはそれが子に転送される。ウイルスも複製されるが、細胞に感染して細胞の持つ生殖機構に指令を出すことでのみ複製可能である。コンピュータウイルスは、コンピュータに備わっているハードウェアやソフトウェアを使って複製を作る。ミームは人間の精神や文化を一種の生殖機構として利用して複製を作る。.

75 関係: 労働合同塩素太陽電池並列計算平面充填幾何学人工生命五角形代わりの生化学ナノナノメートルナノテクノロジーミームミーム学ノイマン型ハルマゲドンポリイアモンドモバイルエージェントラルフ・マークルリボソームレゴレゴリスロボットロボット工学ワーム (コンピュータ)ブートストラップ問題プレイ -獲物-プログラミング言語デオキシリボ核酸ダグラス・ホフスタッター分散コンピューティングアメリカ航空宇宙局アルミニウムアルゴリズムインテルウイルスオートポイエーシスオーブンクワイン (プログラミング)ゲノムゲーデル、エッシャー、バッハコンパイラコンピュータ・クラスターコンピュータウイルスコンピュータセキュリティジョン・フォン・ノイマンソロモン・ゴロムソースコード図形の相似...石膏突然変異細胞細胞分裂翻訳 (生物学)結晶生命生物学生物工学生殖独立栄養生物DNA複製遺伝子型表現型複雑系計算機科学資本自己複製機械鋳造電気K・エリック・ドレクスラーPentium 4Python流通1966年 インデックスを展開 (25 もっと) »

労働

ルイス・ハインの労働者の写真 労働(ろうどう、Labor)とは、.

新しい!!: 自己複製と労働 · 続きを見る »

合同

合同(ごうどう).

新しい!!: 自己複製と合同 · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: 自己複製と塩素 · 続きを見る »

太陽電池

単結晶シリコン型太陽電池 太陽電池(たいようでんち、Solar cell)は、光起電力効果を利用し、光エネルギーを電力に変換する電力機器である。光電池(こうでんち、ひかりでんち)とも呼ばれる。一般的な一次電池や二次電池のように電力を蓄える蓄電池ではなく、光起電力効果によって光を即時に電力に変換して出力する発電機である。タイプとしては、シリコン太陽電池の他、様々な化合物半導体などを素材にしたものが実用化されている。色素増感型(有機太陽電池)と呼ばれる太陽電池も研究されている。 太陽電池(セル)を複数枚直並列接続して必要な電圧と電流を得られるようにしたパネル状の製品単体は、ソーラーパネルまたはソーラーモジュールと呼ばれる。モジュールをさらに複数直並列接続して必要となる電力が得られるように設置したものは、ソーラーアレイと呼ばれる。.

新しい!!: 自己複製と太陽電池 · 続きを見る »

並列計算

並列計算(へいれつけいさん、parallel computing)は、コンピュータにおいて複数のプロセッサで1つのタスクを動作させること。並列コンピューティングや並列処理とも呼ばれる。問題を解く過程はより小さなタスクに分割できることが多い、という事実を利用して処理効率の向上を図る手法である。また、このために設計されたコンピュータを並列コンピュータという。ディープ・ブルーなどが有名。 関連する概念に並行計算(へいこうけいさん)があるが、並行計算は一つのタスクの計算を並列化することにとどまらず、複数の相互作用しうるタスクをスレッドなどをもちいて複数の計算資源にスケジューリングするといった、より汎用性の高い処理をさす。 特に、並列計算専用に設計されたコンピュータを用いずに、複数のパーソナルコンピュータやサーバ、スーパーコンピュータを接続することで並列計算を実現するものをコンピュータ・クラスターと呼ぶ。このクラスターをインターネットなどの広域ネットワーク上に分散させるものも、広義には並列計算に属すが、分散コンピューティングあるいはグリッド・コンピューティングと呼び、並列計算とは区別することが多い。.

新しい!!: 自己複製と並列計算 · 続きを見る »

平面充填

平面充填(へいめんじゅうてん)とは、平面内を有限種類の平面図形(タイル)で隙間なく敷き詰める操作である。敷き詰めたタイルからなる平面全体を平面充填形という。 平面敷き詰め、タイル貼り、タイリング (tiling) 、テセレーション (tessellation) ともいう。ただし「平面」を明言しない場合は、曲面充填や、場合によっては2次元以外の空間の充填を含む。広義のテセレーション等については、空間充填を参照。平面充填は広義の空間充填の一種で、2次元ユークリッド空間の充填である。 多面体は多角形による球面充填(曲面充填の一種)と考えることができる。そのため、多角形による平面充填は多面体と共通点が多く、便宜上多面体に含めて論じられることもある。.

新しい!!: 自己複製と平面充填 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 自己複製と幾何学 · 続きを見る »

人工生命

人工生命(じんこうせいめい)は、人間によって設計、作製された生命。生化学やコンピュータ上のモデルやロボットを使って、生命をシミュレーションすることで、生命に関するシステム(生命プロセスと進化)を研究する分野である。「人工生命」は1986年にアメリカの理論的生物学者、クリストファー・ラングトンによって命名された。人工生命は生物学的現象を「再現」しようと試みる点で生物学を補うものである。また、人工生命(Artificial Life)を ALife と呼ぶことがある。手段によってそれぞれ、「ソフトALife」(コンピュータ上のソフトウェア)、「ハードALife」(ロボット)、「ウェットALife」(生化学)と呼ばれる。.

新しい!!: 自己複製と人工生命 · 続きを見る »

五角形

正五角形 五角形(ごかくけい、ごかっけい、pentagon)は、5つの頂点と辺を持つ多角形の総称。.

新しい!!: 自己複製と五角形 · 続きを見る »

代わりの生化学

タイタンの北極地域。液体の炭化水素の湖には、地球とは全く異なる生命が存在する可能性もある。 代わりの生化学(かわりのせいかがく、Alternative biochemistry)では、炭素や水によらない生化学について解説する。地球外生命の生化学であるが、今日では未だSFの域を出ない。.

新しい!!: 自己複製と代わりの生化学 · 続きを見る »

ナノ

ナノ(nano, 記号: n)は国際単位系 (SI) における接頭辞の一つで、以下のように、基礎となる単位の 10−9倍(.

新しい!!: 自己複製とナノ · 続きを見る »

ナノメートル

ナノメートル(nanometre、記号: nm)は、国際単位系の長さの単位で、10−9メートル (m).

新しい!!: 自己複製とナノメートル · 続きを見る »

ナノテクノロジー

ナノテクノロジー (nanotechnology) は、物質をナノメートル (nm, 1 nm.

新しい!!: 自己複製とナノテクノロジー · 続きを見る »

ミーム

ミーム(meme)とは、人々の脳内で伝達、改変が繰り返される情報であり、人類の文化を形成する働きを持つものであるリチャード・ブロディ、森 弘之訳『ミーム―心を操るウイルス』講談社、1998年。。例えば習慣や技能、物語といった人々の間で伝達される様々な情報であり、それらを指す科学用語である。 ミームの日本語での訳語は模倣子、模伝子、意伝子がある。 文化の形成は、人々の間で受け継がれるミームが「進化」した結果である。社会的に共有される情報は会話、人々の振る舞い、本、儀式、教育、マスメディア等によって脳から脳へとコピーされていくが、そのプロセスを分析するため、それらの情報をミームとして定義し、進化のプロセスを分析することにこの概念・科学用語の意義がある(ただしミームとは何かという定義は論者によって幅がある)。ミームを研究する学問はミーム学(Memetics)と呼ばれる。 ミームは遺伝子との類推から生まれた概念である。それはミームが「進化」する仕組みを、遺伝子が進化する仕組みとの類推で考察できるということである。つまり遺伝子が生物を形成する情報であるように、ミームは文化を形成する情報であり、進化する。 さらに遺伝子の進化とミームの進化は無関係ではなく、相互に影響しあう。.

新しい!!: 自己複製とミーム · 続きを見る »

ミーム学

ミーム学(memetics)とは、ミームという心および文化を構成する情報を表す概念を用い、進化論的モデルによる情報伝達に関する研究手法である。.

新しい!!: 自己複製とミーム学 · 続きを見る »

ノイマン型

ノイマン型(-がた、von Neumann architecture)は、コンピュータの基本的な構成法のひとつである。今日では基本的なコンピュータ・アーキテクチャのひとつとされるが、そもそもコンピュータの要件とされることもあり、このあたりの定義は循環的である。 プログラム内蔵方式のディジタルコンピュータで、CPU(中心となるプロセッサ、今日では一つの部品としてまとめて考えることが多いが、オリジナルの報告書では制御装置と演算装置に分けている)とアドレス付けされた記憶装置とそれらをつなぐバスを要素に構成され、命令(プログラム)とデータを区別せず記憶装置に記憶する。 プログラムカウンタを構成要素に含め、またより抽象的なモデルにおける命令スケジューラの実装とみることがある。また、今日では、演算などの命令の実行は演算装置を含む実行ユニットで行われる、というように考えられることもある。 オリジナルの報告書では、入出力について特別に扱っているが、今日の視点からではメモリマップドI/Oを考えれば特に必要ない。また、バスは、報告書では明示的に数え上げてはいないが(言及はある)、今日ではフォン・ノイマン・ボトルネックのように明確に認識される存在である。 ノイマン型の名は、最初にこれを広めたEDVACに関する報告書 w:First Draft of a Report on the EDVAC(1945)の著者がジョン・フォン・ノイマン(ひとり)になっていることに由来する。誰がなんのためにそうしたかについては諸説ある。このアイディア、特にプログラム内蔵方式のアイディアは、ジョン・モークリーとジョン・エッカートによるENIACのプロジェクト中の検討にその芽があった。ノイマンは(理論的な、とされる)助言役として加わり、執筆者はノイマンであった。誰にどのような功績があったかは諸説ある。 この方式について、以後のコンピュータ研究開発に大きな影響を与えた1946年夏のムーアスクールで講義したのは、ノイマンではなくモークリーとエッカートであったし、ノイマン型という用語は不当だとして、使わない者もいる。一方で、EDSACの設計・建造者であるモーリス・ウィルクスは、ENIACが軍事機密の下にあった時に、ノイマンの草稿がその保護に入らず、多くの人がノイマンを発明者だとみなしたことは不公平な結果だったとし、ノイマンの参加以前に本質的な先進があった、としながらも、数値データと命令を同じ記憶装置の中に置くのは不自然である、とか、そのために必要な遅延記憶装置は信頼性に欠ける、といった、新規技術への疑念に対し、物理学者として、また数学者(計算理論)として、ノイマンが計算機の潜在能力を見抜き、信望と影響力を行使したことは重要だった、とも述べている。.

新しい!!: 自己複製とノイマン型 · 続きを見る »

ハルマゲドン

ハルマゲドン(アルマゲドン、ハーマゲドンと表記される場合もある、Ἁρμαγεδών、Armageddon、日本語では最終戦争)とは、アブラハムの宗教における、世界の終末における最終的な決戦の地を表す言葉の片仮名音写。ヘブライ語で「メギドの丘」を意味すると考えられている。世界の終末的な善と悪の戦争や世界の破滅そのものを指す言葉である(戦争を終わらせる最後の戦争。一説では大艱難の頂点がハルマゲドンとも言われている)。.

新しい!!: 自己複製とハルマゲドン · 続きを見る »

ポリイアモンド

ポリイアモンド(polyamond)または「n-iamond」は、同じ大きさの正三角形の辺同士を密着させて作った図形のことである。 n 個の正三角形をつなげた図形はn-イアモンドといい、n にはギリシア語でその数を意味する接頭辞が入る。 数学者オブライエンによって名づけられた。ポリフォームの一つである。 日本語ではn-iamondよりn-amondに近い発音および表記をする事もある。.

新しい!!: 自己複製とポリイアモンド · 続きを見る »

モバイルエージェント

モバイルエージェント(Mobile Agent)は、ネットワークを介した分散処理技術の一種であって、ネットワークに接続されたコンピュータ間をエージェントと称されるプログラムが移動しながら処理を行う。 エージェントは自律的なプログラムであり、自律的に移動先を選択可能であり、コードと状態を移動先に移動することにより、移動先では移動前の状態からの処理を継続可能である。エージェントが実行されるコンピュータでは、モバイルエージェントの実行環境が備えられている必要がある。実行環境が備えられていれば、パソコンや携帯電話、PDAなどあらゆる機器上で、エージェントは動作可能である。 ネットワークやCPUといった資源の効率的な利用や、障害時における柔軟な処理変更に対応するといった目的で開発されている。 また、エージェントのデータに対して盗聴・改竄するといったセキュリティ問題が発生しやすい。 主な製品としては東芝のなど。オープンソースではがある。.

新しい!!: 自己複製とモバイルエージェント · 続きを見る »

ラルフ・マークル

ラルフ・C・マークル(英: Ralph C. Merkle、1952年2月2日 - )は、公開鍵暗号の開発者の一人であり、最近では分子ナノテクノロジーと人体冷凍保存の研究者として知られている。SF小説『ダイヤモンド・エイジ』では、ナノテクノロジーが遍在する世界における伝説的英雄の1人となって言及されている。.

新しい!!: 自己複製とラルフ・マークル · 続きを見る »

リボソーム

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) '''リボソーム'''、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 リボソームまたはリボゾーム(; ライボソーム)は、あらゆる生物の細胞内に存在する構造であり、粗面小胞体 (rER) に付着している膜結合リボソームと細胞質中に存在する遊離リボソームがある。mRNAの遺伝情報を読み取ってタンパク質へと変換する機構である翻訳が行われる場である。大小2つのサブユニットから成り、これらはタンパク質(リボソームタンパク、ribosomal protein)とRNA(リボソームRNA、rRNA; ribosomal RNA)の複合体である。細胞小器官に分類される場合もある。2000年、X線構造解析により立体構造が決定された。.

新しい!!: 自己複製とリボソーム · 続きを見る »

レゴ

レゴ(LEGO)は、デンマークの玩具会社、およびプラスチック製の組み立てブロック玩具のブランドである。1934年に「よく遊べ」を意味するデンマーク語「Leg Godt」から社名をLEGOとした。創業当初は木製玩具を製造していたが、1949年からプラスチック製玩具の製造を開始した。非上場企業であり、創業者一族のクリスチャンセン家が運営する持株会社Kirkbi A/Sと財団法人LEGO Foundationが、レゴ社の全株式を保有している。.

新しい!!: 自己複製とレゴ · 続きを見る »

レゴリス

レゴリス()は、固体の岩石の表面をおおう軟らかい堆積層の総称。.

新しい!!: 自己複製とレゴリス · 続きを見る »

ロボット

ボット(robot)は、人の代わりに何等かの作業を自律的に行う装置、もしくは機械のこと。 主に以下に大別することが可能である。.

新しい!!: 自己複製とロボット · 続きを見る »

ロボット工学

ボット工学(ロボットこうがく、英語:robotics)は、ロボットに関する技術を研究する学問。ロボットの手足などを構成するためのアクチュエータや機構に関する分野、外界の情報を認識・知覚するためのセンサやセンシング手法に関する分野、ロボットの運動や行動ロボットの制御に関する分野、ロボットの知能など人工知能に関する分野などに大別される。 語源としてはアイザック・アシモフが自著の一連のロボットが登場するSF小説のために、robotに物理学(physics)などに使われている語尾「-ics」を付けることで作った造語である。アシモフの小説内に出てくる「ロボット工学三原則」は、以降のロボット物SFに大きな影響を与えたのみならず、現実のロボット工学においても研究上の倫理的指標のひとつとなっている。また、「ロボット工学の父」と呼ばれることもあるジョセフ・F・エンゲルバーガー博士はアシモフの小説に影響されていた。.

新しい!!: 自己複製とロボット工学 · 続きを見る »

ワーム (コンピュータ)

ワームとは、独立したプログラムであり、自身を複製して他のシステムに拡散する性質を持ったマルウェアである。宿主となるファイルを必要としない点で、狭義のコンピュータウイルスとは区別される。しかし、ネットワークを介して他のコンピュータに伝染していく点では共通しており、同一視されることもある。.

新しい!!: 自己複製とワーム (コンピュータ) · 続きを見る »

ブートストラップ問題

ブートストラップ問題 (Bootstrap problem) は、コンパイラをコンパイル対象のプログラミング言語で作成した際に、そのコンパイラの最初のコンパイルをどうするかといった場合を典型的な例とする、いわゆる「鶏と卵」の形をしたセルフホスティング環境の問題を指す。これを解決するための方式をブートストラップ方式といい、この問題を何とかして最初の完備した環境を作ることをブートストラッピングという。 名前についてはブートストラップの記事を参照。.

新しい!!: 自己複製とブートストラップ問題 · 続きを見る »

プレイ -獲物-

『プレイ-獲物-』(プレイ えもの、Prey)は、マイケル・クライトンが2002年に出版したSF小説。暴走するナノマシンと、人間との戦いを描く。映画化の企画が進行中である。.

新しい!!: 自己複製とプレイ -獲物- · 続きを見る »

プログラミング言語

プログラミング言語(プログラミングげんご、programming language)とは、コンピュータプログラムを記述するための形式言語である。なお、コンピュータ以外にもプログラマブルなものがあることを考慮するならば、この記事で扱っている内容については、「コンピュータプログラミング言語」(computer programming language)に限定されている。.

新しい!!: 自己複製とプログラミング言語 · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 自己複製とデオキシリボ核酸 · 続きを見る »

ダグラス・ホフスタッター

ダグラス・リチャード・ホフスタッター(Douglas Richard Hofstadter、1945年2月15日 - )はニューヨーク生まれのアメリカの学者。2014年現在、インディアナ大学ブルーミントン校教授。専門は認知科学および計算機科学。ホフスタッターは多くの一般書を執筆しており、その中でも特に有名なのが『ゲーデル、エッシャー、バッハ - あるいは不思議の環』(1979)。 ホフスタッターは1980年に同書でピュリッツァー賞の一般ノンフィクション部門を受賞した。この本は人工知能の問題を高エネルギー物理学、音楽、芸術、分子生物学、文学、といった多彩なテーマに絡めて記述し、多くの人々の興味を惹いた。この本がきっかけになって、人工知能分野へ進むことを決めた学生も大勢いると言われている。.

新しい!!: 自己複製とダグラス・ホフスタッター · 続きを見る »

分散コンピューティング

分散コンピューティング(ぶんさんコンピューティング、英: Distributed computing)とは、プログラムの個々の部分が同時並行的に複数のコンピュータ上で実行され、各々がネットワークを介して互いに通信を行いながら全体として処理が進行する計算手法のことである。複雑な計算などをネットワークを介して複数のコンピュータを利用して行うことで、一台のコンピュータで計算するよりスループットを上げようとする取り組み、またはそれを実現する為の仕組みである。分散処理(ぶんさんしょり)ともいう。並列コンピューティングの一形態に分類されるが、一般に並列コンピューティングと言えば、同時並行に実行する主体は同じコンピュータシステム内のCPU群である。ただし、どちらもプログラムの分割(同時に実行できる部分にプログラムを分けること)が必須である。分散コンピューティングではさらに、それぞれの部分が異なる環境でも動作できるようにしなければならない。例えば、2台の異なるハードウェアを使ったコンピュータで、それぞれ異なるファイルシステム構成であっても動作するよう配慮する必要がある。 問題を複数の部分問題に分けて各コンピュータに実行させるのが基本であり、素数探索や数多く試してみる以外に解決できない問題の対処として用いられているものが多い。分散コンピューティングの例としてBOINCがある。これは、大きな問題を多数の小さな問題に分割し、多数のコンピュータに分配するフレームワークである。その後、それぞれの結果を集めて大きな解を得る。一般的に処理を分散すると一台のコンピュータで計算する場合と比べ、問題データの分配、収集、集計するためのネットワークの負荷が増加し、問題解決の為のボトルネックとなるため、部分問題間の依存関係を減らすことが重要な課題となる。 分散コンピューティングは、コンピュータ同士をネットワーク接続し、効率的に通信できるよう努力した結果として自然に生まれた。しかし、分散コンピューティングはコンピュータネットワークと同義ではない。単にコンピュータネットワークと言った場合、複数のコンピュータが互いにやり取りするが、単一のプログラムの処理を共有することはない。World Wide Web はコンピュータネットワークの例であるが、分散コンピューティングの例ではない。 分散処理を構築するための様々な技術や標準が存在し、一部はその目的に特化して設計されている。例えば、遠隔手続き呼出し (RPC)、Java Remote Method Invocation (Java RMI)、.NET Remoting などがある。.

新しい!!: 自己複製と分散コンピューティング · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: 自己複製とアメリカ航空宇宙局 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: 自己複製とアルミニウム · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 自己複製とアルゴリズム · 続きを見る »

インテル

インテル(英:Intel Corporation)は、アメリカ合衆国カリフォルニア州に本社を置く半導体素子メーカーである。 社名の由来はIntegrated Electronics(集積されたエレクトロニクス)の意味である。.

新しい!!: 自己複製とインテル · 続きを見る »

ウイルス

ウイルス()は、他の生物の細胞を利用して、自己を複製させることのできる微小な構造体で、タンパク質の殻とその内部に入っている核酸からなる。生命の最小単位である細胞をもたないので、非生物とされることもある。 ヒト免疫不全ウイルスの模式図.

新しい!!: 自己複製とウイルス · 続きを見る »

オートポイエーシス

ートポイエーシス (autopoiesis) は、1970年代初頭、チリの生物学者ウンベルト・マトゥラーナとフランシスコ・バレーラにより、「生命の有機構成 (organization) とは何か」という本質的問いを見定めるものとして提唱された、最先端のシステム論である。主観世界すらも説明可能なシステム論であり、生命の自律性に対する言及が不可能な以前のシステム論の限界を突破することに成功している。 特に細胞の代謝系や神経系に注目した彼らは、物質の種類を越えたシステムそのものとしての本質的な特性を、円環的な構成と自己による境界決定に認めた。 現在では、このような自己言及的で自己決定的なシステムを表現しうる概念として、元来の生物学的対象を越えて、さまざまな分野へ応用されている。最先端で有るが故に、学術界では現在もオートポイエーシスに関する統一された見解は無く、多様な解釈に基づいて議論が展開されている。 なお、オートポイエーシスという語はギリシャ語で自己製作 (ギリシャ語で auto, αυτό は自己、poiēsis, ποίησις は製作・生産・創作) を意味する造語であり、日本語ではしばしば自己創出、自己産出とも書かれる。.

新しい!!: 自己複製とオートポイエーシス · 続きを見る »

オーブン

『パンを焼く女』(ジャン=フランソワ・ミレー画、1854年)に描かれたオーブン オーブン((、アヴン))は、熱した空気または壁面などから発する赤外線によって食品を加熱し、焼いて、または乾燥を行う閉じた空間の調理器具である。オーブンの最も一般的な用途は調理と陶芸であるが、調理用の大きなものや陶芸用を「窯」、(金属の)加熱や工業分野で使われるオーブンは「炉」や「工業用オーブン」という。近年は、世界中の数多くの家庭で調理および食品の加熱にオーブンが使われている。.

新しい!!: 自己複製とオーブン · 続きを見る »

クワイン (プログラミング)

ワイン(Quine)は、コンピュータプログラムの一種で、自身のソースコードと完全に同じ文字列を出力するプログラムである。娯楽として、プログラマが任意のプログラミング言語での最短クワインを書くことがある。プログラムを出力するプログラムだと見れば、クワインのプログラミングはメタプログラミングの一種である。 入力を受け付けるプログラムは、クワインとは見なされない。入力が許容されるなら、単にキーボードからソースコードを入力するだけで実現してしまうし、そのプログラムのソースファイルを入力とするなどしても実現できる。実行コードを含まないクワインも自明であるとして除外される。多くのプログラミング言語では、実行コードのないプログラムはコードを明らかに出力可能(何もないので、何も出力しないでもクワインと主張できる)である。そのような空のプログラムがIOCCCで「規則のはなはだしい悪用」賞を受賞したことがある。 クワインという名称は、自己参照の研究について業績を残した哲学者ウィラード・ヴァン・オーマン・クワイン(1908-2000)に由来し、命名したのはダグラス・ホフスタッターでそれほど古いことではないため、古い文献では自己複製・自己再生成などといった表現で呼ばれていることがある。(プログラミング言語ではない)言語的には次の一文で表されるクワインのパラドックスと、同様の構造を持っている。.

新しい!!: 自己複製とクワイン (プログラミング) · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

新しい!!: 自己複製とゲノム · 続きを見る »

ゲーデル、エッシャー、バッハ

『ゲーデル、エッシャー、バッハ - あるいは不思議の環』(ダグラス・ホフスタッター著、野崎昭弘、はやしはじめ、柳瀬尚紀 訳、原題は Gödel, Escher, Bach: an Eternal Golden Braid)は、1979年に米国で刊行された一般向けの科学書。単に GEB とも呼ばれる。(邦題では『ゲーデル,エッシャー,バッハ』と「,」が使われる) 1985年に白揚社から日本語訳が発行され、1980年代後半から90年代前半にかけて日本でも小ブームが起きた。1980年ピューリッツァー賞受賞。.

新しい!!: 自己複製とゲーデル、エッシャー、バッハ · 続きを見る »

コンパイラ

ンパイラ(英:compiler)とは、コンピュータ・プログラミング言語の処理系(言語処理系)の一種で、高水準言語によるソースコードから、機械語に(あるいは、元のプログラムよりも低い水準のコードに)変換するプログラムである。.

新しい!!: 自己複製とコンパイラ · 続きを見る »

コンピュータ・クラスター

ンピュータ・クラスターとは、複数のコンピュータを結合し、クラスター(葡萄の房)のようにひとまとまりとしたシステムのこと。単に「クラスター」または「クラスタリング」とも呼ばれる。1台のコンピュータでは得られないような、強力な計算性能や可用性を得ることができる。コンピュータ・クラスターは、クラスタリングを実現するためのハードウェアやソフトウェアなどにより構成される。但し、ネットワークを介してデータを入力して処理を開始するため、処理開始までの遅延が大きくなる欠点がある。.

新しい!!: 自己複製とコンピュータ・クラスター · 続きを見る »

コンピュータウイルス

ンピュータウイルス (computer virus) とは、マルウェア(コンピュータに被害をもたらすプログラム)の一種で、自立せず、動的に活動せず、プログラムファイルからプログラムファイルへと静的に感染するものを指す。.

新しい!!: 自己複製とコンピュータウイルス · 続きを見る »

コンピュータセキュリティ

ンピュータセキュリティ(英語:Computer Security)は、情報セキュリティの一部で、コンピュータシステムを災害、誤用および不正アクセスなどから守ることである。また、ハードウェア、ソフトウェア、データ、ネットワークのいずれについてもその機密性、完全性、可用性を維持することである。 不正な利用とは、第三者による秘密情報へのアクセス、許可されていない操作の実行、ネットを介した詐欺(架空請求、ワンクリック詐欺など)が含まれる。この語は、しばしばコンピュータセキュリティ(安全性)を保つための仕組みや技術を指すために用いられる。また、コンピュータセキュアとも呼ばれる場合もある。.

新しい!!: 自己複製とコンピュータセキュリティ · 続きを見る »

ジョン・フォン・ノイマン

ョン・フォン・ノイマン(ハンガリー名:Neumann János(ナイマン・ヤーノシュ、)、ドイツ名:ヨハネス・ルートヴィヒ・フォン・ノイマン、John von Neumann, Margittai Neumann János Lajos, Johannes Ludwig von Neumann, 1903年12月28日 - 1957年2月8日)はハンガリー出身のアメリカ合衆国の数学者。20世紀科学史における最重要人物の一人。数学・物理学・工学・計算機科学・経済学・気象学・心理学・政治学に影響を与えた。第二次世界大戦中の原子爆弾開発や、その後の核政策への関与でも知られる。.

新しい!!: 自己複製とジョン・フォン・ノイマン · 続きを見る »

ソロモン・ゴロム

モン・ウォルフ・ゴロム(Solomon Wolf Golomb、1932年5月30日 - 2016年5月1日 )は、アメリカ合衆国の数学者にして工学者であり、南カリフォルニア大学電気工学教授であった。専門は、組み合わせ数学、数論、符号理論、通信など。メリーランド州ボルチモア生まれ。.

新しい!!: 自己複製とソロモン・ゴロム · 続きを見る »

ソースコード

青で示されているのが有効なコードである。 ソースコード(source code)とは、コンピュータプログラミング言語で書かれた、コンピュータプログラムである文字列(テキストないしテキストファイル)のことである。.

新しい!!: 自己複製とソースコード · 続きを見る »

図形の相似

2つの図形 F と G が相似(そうじ、similar)であるとは、一方を適当に一様スケール変換(拡大 または縮小)して他方と合同になる(すなわち、有限回の平行移動、回転移動、対称移動により重なる)ことである。それらの「形」が等しいことであるとも言い換えられる。記号では、欧米では F ∽ G と表すが、日本では「∽」でなく S を横に倒したような記号で表すことが多い。G を r 倍に一様スケール変換して F と合同であるとき、r: 1 を F と G の相似比という。F と G の相似比は、対応する線分の長さの比(一定)に等しい。 相似な直線図形(多角形など)においては、対応する辺の長さの比は一定で相似比に等しくなり、対応する角はそれぞれ等しくなる。 特に r.

新しい!!: 自己複製と図形の相似 · 続きを見る »

石膏

石膏(せっこう、gypsum、ジプサム)とは硫酸カルシウム(CaSO4)を主成分とする鉱物である。4・2H2O、それ以上では無水和物が得られる。 また、水酸化カルシウムと硫酸の中和によっても得られる(沈殿)。 \rm Ca(OH)_2 + H_2SO_4 \longrightarrow 2H_2O + CaSO_4 天然には -->硫酸カルシウムの1/2水和物がバサニ石(CaSO4・0.5H2O)、2水和物が石膏(CaSO4・2H2O)、無水物が硬石膏(CaSO4)。これら硫酸カルシウムの各水和物および無水物を一纏めに「石膏」という場合もあるので注意を要する。 - 経済産業省。 -->.

新しい!!: 自己複製と石膏 · 続きを見る »

突然変異

突然変異(とつぜんへんい)とは、生物やウイルスがもつ遺伝物質の質的・量的変化。および、その変化によって生じる状態。 核・ミトコンドリア・葉緑体において、DNA、あるいはRNA上の塩基配列に物理的変化が生じることを遺伝子突然変異という。染色体の数や構造に変化が生じることを染色体突然変異という。 細胞や個体のレベルでは、突然変異により表現型が変化する場合があるが、必ずしも常に表現型に変化が現れるわけではない。 また、多細胞生物の場合、突然変異は生殖細胞で発生しなければ、次世代には遺伝しない。 表現型に変異が生じた細胞または個体は突然変異体(ミュータント)と呼ばれ、変異を起こす物理的・化学的な要因は変異原(ミュータゲン)という。 個体レベルでは、発ガンや機能不全などの原因となる場合がある。しかし、集団レベルでみれば、突然変異によって新しい機能をもった個体が生み出されるので、進化の原動力ともいえる。 英語やドイツ語ではそれぞれミューテーション、ムタチオン、と呼び、この語は「変化」を意味するラテン語に由来する。.

新しい!!: 自己複製と突然変異 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: 自己複製と細胞 · 続きを見る »

細胞分裂

細胞分裂(さいぼうぶんれつ)とは、1つの細胞が2個以上の娘細胞に分かれる生命現象。核分裂とそれに引き続く細胞質分裂に分けてそれぞれ研究が進む。単細胞生物では細胞分裂が個体の増殖となる。多細胞生物では、受精卵以後の発生に伴う細胞分裂によって細胞数が増える。それらは厳密な制御機構に裏打ちされており、その異常はたとえばガン化を引き起こす。ウィルヒョウは「細胞は細胞から生ず」と言ったと伝えられているが、これこそが細胞分裂を示している。.

新しい!!: 自己複製と細胞分裂 · 続きを見る »

翻訳 (生物学)

分子生物学などにおいては、翻訳(ほんやく、Translation)とは、mRNAの情報に基づいて、タンパク質を合成する反応を指す。本来は細胞内での反応を指すが、細胞によらずに同様の反応を引き起こす系(無細胞翻訳系)も開発されている。.

新しい!!: 自己複製と翻訳 (生物学) · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: 自己複製と結晶 · 続きを見る »

生命

ここでは生命(せいめい、、 ウィータ)について解説する。.

新しい!!: 自己複製と生命 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

新しい!!: 自己複製と生物学 · 続きを見る »

生物工学

生物工学(せいぶつこうがく)は、生物学の知見を元にし、実社会に有用な利用法をもたらす技術の総称である。ただし定義は明確ではなく、バイオテクノロジー(biotechnology)やバイオニクス(bionics)の訳語として使われる場合が多く、この両方を含んだ学問の領域と捉えることに矛盾しない。また、特に遺伝子操作をする場合には、遺伝子工学と呼ばれる場合もある。.

新しい!!: 自己複製と生物工学 · 続きを見る »

生殖

生殖(せいしょく、Reproduction)とは、生物が自らと同じ種に属する個体をつくることを言う生化学辞典第2版、p.717 【生殖】。作り出した生物は親、作られた個体は子という関係となり、この単位は世代という種の継続状態を形成する。生殖には、大きく分けて無性生殖 (Asexual reproduction) と有性生殖 (Sexual reproduction) がある。 生殖の基本は個体が持つ固有のDNAを継承することであり、それを端に発する細胞の各小器官(染色体・細胞核・ミトコンドリアなど)の複製が生じ、細胞分裂へと導かれる。そしてこれが積み重なり個体単位の発生に繋がる。.

新しい!!: 自己複製と生殖 · 続きを見る »

独立栄養生物

立栄養生物(どくりつえいようせいぶつ、autotroph)は、無機化合物(二酸化炭素、重炭酸塩など)だけを炭素源とし、無機化合物または光をエネルギー源として生育する生物をいう。食物連鎖では生産者に当たる。従属栄養生物(heterotroph)の逆。 独立栄養生物は、エネルギー源により2つに分けられる:.

新しい!!: 自己複製と独立栄養生物 · 続きを見る »

DNA複製

'''図1 DNA複製の模式図'''.青色の二本の帯が鋳型鎖(Template Strands)。2本が平行に並んでいる上部は二重らせん、斜めになって非平行になっている下部は二重らせんが解けて一本鎖となった領域である。上部と下部の境目が複製フォーク (Replication Fork) であり、二重らせん領域は時間とともに解けられていくので複製フォークは図の上側へと進行していく。下部の2本の一本鎖はそれぞれ異なる様式でDNAポリメラーゼ(DNA Polymerase、緑色)により複製され、上から見て5'から3'の左の鋳型鎖ではDNAポリメラーゼが複製フォークと同じ方向に進行し、一本のリーディング鎖 (Leading Strand) が合成される。上から見て3'から5'の右の鋳型鎖ではDNAポリメラーゼが複製フォークと逆の方向に進み、途切れ途切れにいくつもの岡崎フラグメント (Okazaki Fragments) が合成されていく。伸長が終わった岡崎フラグメントはDNAリガーゼ(DNA Ligase、ピンク)によりつなぎ合わせられ、ラギング鎖 (Lagging Strand) となる。 DNA複製(ディーエヌエイふくせい、DNA replication)は、細胞分裂における核分裂の前に、DNAが複製されてその数が2倍となる過程である。生物学ではしばしば複製 (replication) と略される。セントラルドグマの一員とされる。複製される一本鎖DNAを親鎖 (parent strand)、DNA複製によって新しく合成された一本鎖DNAを娘鎖 (daughter strand) という。また、DNA複製により生じた染色体の個々を姉妹染色分体 (sister chromatid) という。.

新しい!!: 自己複製とDNA複製 · 続きを見る »

遺伝子型

遺伝子型(いでんしがた、いでんしけい、、ジェノタイプ、ジーノタイプ)は、ある生物個体が持つ遺伝子の構成のこと。 ある遺伝子が存在しても、その形質が発現しない場合もあり、表出する形質(表現型)と遺伝子型は必ずしも 1:1 に対応しない。例えば、ヒトのABO式血液型ならば、A型というひとつの表現型に対してAAとAOという二つの遺伝子型があり得る。.

新しい!!: 自己複製と遺伝子型 · 続きを見る »

表現型

表現型(ひょうげんがた、ひょうげんけい、)とは、ある生物のもつ遺伝子型が形質として表現されたものである。その生物の形態、構造、行動、生理的性質などを含む。獲得形質は含まない。.

新しい!!: 自己複製と表現型 · 続きを見る »

複雑系

複雑系(ふくざつけい、complex system)とは、相互に関連する複数の要因が合わさって全体としてなんらかの性質(あるいはそういった性質から導かれる振る舞い)を見せる系であって、しかしその全体としての挙動は個々の要因や部分からは明らかでないようなものをいう。 これらは狭い範囲かつ短期の予測は経験的要素から不可能ではないが、その予測の裏付けをより基本的な法則に還元して理解する(還元主義)のは困難である。系の持つ複雑性には非組織的複雑性と組織的複雑性の二つの種類がある。これらの区別は本質的に、要因の多さに起因するものを「組織化されていない」(disorganized) といい、対象とする系が(場合によってはきわめて限定的な要因しか持たないかもしれないが)創発性を示すことを「組織化された」(organized) と言っているものである。 複雑系は決して珍しいシステムというわけではなく、実際に人間にとって興味深く有用な多くの系が複雑系である。系の複雑性を研究するモデルとしての複雑系には、蟻の巣、人間経済・社会、気象現象、神経系、細胞、人間を含む生物などや現代的なエネルギーインフラや通信インフラなどが挙げられる。 複雑系は自然科学、数学、社会科学などの多岐にわたる分野で研究されている。また、複雑系科学の記事も参照のこと。.

新しい!!: 自己複製と複雑系 · 続きを見る »

計算機科学

計算機科学(けいさんきかがく、computer science、コンピュータ科学)とは、情報と計算の理論的基礎、及びそのコンピュータ上への実装と応用に関する研究分野である。計算機科学には様々な下位領域がある。コンピュータグラフィックスのように特定の処理に集中する領域もあれば、計算理論のように数学的な理論に関する領域もある。またある領域は計算の実装を試みることに集中している。例えば、プログラミング言語理論は計算を記述する手法に関する学問領域であり、プログラミングは特定のプログラミング言語を使って問題を解決する領域である。.

新しい!!: 自己複製と計算機科学 · 続きを見る »

資本

資本(しほん、)とは、事業活動などの元手のことである。また、近代経済学における生産三要素のひとつ、マルクス経済学においては自己増殖する価値の運動体のこと、あるいは会計学や法学における用語である。.

新しい!!: 自己複製と資本 · 続きを見る »

自己複製機械

自己複製機械の概念 自己複製機械()または自己増殖機械は、自己複製によって増殖する能力を備える想像上の機械。.

新しい!!: 自己複製と自己複製機械 · 続きを見る »

鋳造

鋳造(ちゅうぞう、casting)は、材料(主に鉄・アルミ合金・銅・真鍮などの金属)を融点よりも高い温度で熱して液体にしたあと、型に流し込み、冷やして目的の形状に固める加工方法である。 鋳造に使用する型のことを鋳型(いがた)といい、鋳造でできた製品のことを鋳物(いもの)という。英語で casting といえば、鋳造と鋳物の双方を指す。.

新しい!!: 自己複製と鋳造 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

新しい!!: 自己複製と電気 · 続きを見る »

K・エリック・ドレクスラー

ム・エリック・ドレクスラー。2007年撮影。 キム・エリック・ドレクスラー(Kim Eric Drexler、1955年4月25日 - )は、アメリカ合衆国の工学者であり、1970年代から1980年代にかけて分子ナノテクノロジーの可能性を知らしめたことでよく知られている。1991年、マサチューセッツ工科大学で博士号(分子ナノテクノロジー)を取得した論文は、"Nanosystems: Molecular Machinery, Manufacturing and Computation"(1992年)として出版され、Association of American Publishers award の Best Computer Science Book of 1992 を受賞した。オークランド (カリフォルニア州)生まれ。.

新しい!!: 自己複製とK・エリック・ドレクスラー · 続きを見る »

Pentium 4

Pentium 4(ペンティアム・フォー)は、インテルが製造したNetBurstマイクロアーキテクチャに基づくx86アーキテクチャのマイクロプロセッサ(CPU)に付された商標である。集積トランジスタ数は4200万 - インテル公式サイト.2013年12月5日閲覧。。最初の製品は2000年11月20日に発表されその当初は単一の商品名と目されていたが、その後も後継のプロセスルールで製造および販売展開され、製品シリーズを指すブランドになった。そのため、同じくPentium 4を冠するCPUであってもプロセスルール(すなわち製品世代)によって性能が大きく異なる。それら製品世代を区別して指す場合には、自作パソコンユーザーは、インテルが用いた社内開発コードネームをそのまま用いることが多い。本項でも以降の節では開発コードネームを見出しに用いる。.

新しい!!: 自己複製とPentium 4 · 続きを見る »

Python

Python(パイソン)は、汎用のプログラミング言語である。コードがシンプルで扱いやすく設計されており、C言語などに比べて、さまざまなプログラムを分かりやすく、少ないコード行数で書けるといった特徴がある。.

新しい!!: 自己複製とPython · 続きを見る »

流通

流通(りゅうつう、英語:distribution)とは、もとは仏教で経典や教えを広めていく「流通分(るずう、るづう・ぶん)」を意味していたが、それが転用されるようになった。.

新しい!!: 自己複製と流通 · 続きを見る »

1966年

記載なし。

新しい!!: 自己複製と1966年 · 続きを見る »

ここにリダイレクトされます:

自己複製能

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »