ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

線維芽細胞増殖因子

索引 線維芽細胞増殖因子

FGF10とFGFR2bの細胞外ドメインの複合体の構造 線維芽細胞増殖因子(せんいがさいぼうぞうしょくいんし、、FGF)は、血管新生、創傷治癒、胚発生に関係する成長因子の一種。FGFはヘパリン結合性タンパク質で、細胞表面のプロテオグリカンの一種ヘパラン硫酸と相互作用を持つことがFGFのシグナル伝達に不可欠なことが明らかになっている。FGFは広範囲な細胞や組織の増殖や分化の過程において重要な役割を果たしている。.

51 関係: 同定塩基中胚葉形態形成バイオアッセイトロンボポエチンヘパリンプロテインキナーゼプロテオグリカンヒトビタミンD分泌傍分泌アフリカツメガエルインターロイキン-1エリスロポエチンキイロショウジョウバエシナプスシグナリング分子シグナル伝達創傷神経発生神経栄養因子細胞細胞外マトリックス細胞分化線維芽細胞結晶構造組織 (生物学)無脊椎動物選択的スプライシング顆粒球コロニー刺激因子血小板由来成長因子血管血管内皮血管内皮細胞増殖因子血管新生胚発生胆汁酸走化性肝細胞肉芽組織脊椎動物腎臓GM-CSF抗体恒常性成長因子海馬...日経サイエンス インデックスを展開 (1 もっと) »

同定

同定(どうてい)とは、ある対象について、そのものにかかわる既存の分類のなかからそれの帰属先をさがす行為である。分野によって様々な使い方がある。.

新しい!!: 線維芽細胞増殖因子と同定 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: 線維芽細胞増殖因子と塩基 · 続きを見る »

中胚葉

中胚葉(ちゅうはいよう 英:mesoderm)とは、動物の発生初期に区別される細胞群の名称である。外胚葉と内胚葉の間を埋めるように発達し、筋肉や体腔などを作る。中胚葉を持つ動物を三胚葉性動物という。.

新しい!!: 線維芽細胞増殖因子と中胚葉 · 続きを見る »

形態形成

形態形成(けいたいけいせい、Morphogenesis)は、生物の形態が形成される過程である。これは細胞の成長と分化と並ぶ、発生生物学の基礎的な三つの見方の一つに挙げられる。.

新しい!!: 線維芽細胞増殖因子と形態形成 · 続きを見る »

バイオアッセイ

バイオアッセイ(Bioassay)とは、生物材料を用いて生物学的な応答を分析するための方法のことである。単語はバイオ(生物)とアッセイ(分析、評価)を組み合わせて作られた。日本語では生物検定や生物学的(毒性)試験と訳す。バイオアッセイには、生体に対する影響を調べることに重点が置かれるマクロバイオアッセイと化学物質の濃度定量に資するマイクロバイオアッセイがある。.

新しい!!: 線維芽細胞増殖因子とバイオアッセイ · 続きを見る »

トロンボポエチン

トロンボポエチン(英:Thrombopoietin、TPO)は血小板の前駆細胞の増殖および分化に関与する造血因子である。血小板は造血幹細胞から巨核球を経て分化し、血液凝固において重要な役割を果たすと共に、種々の免疫反応にも関与している。巨核球や血小板の形成には種々のサイトカインが関与しており、インターロイキン(IL)-1、-3、-4、-6、-7、-11やGM-CSF、エリスロポエチン(EPO)、幹細胞因子(SCF)によって促進される。TPOは血小板の形成を促進する活性を有することが1958年から示唆されており、精製・同定を試みるも成功するには至らなかったが、1994年にはじめてTPOのクローニングが行われた。その後、TPOは巨核球コロニーの形成を抑制する機能を持つc-mplのリガンドであることが解明され、造血系細胞の産生に重要な因子であると考えられている。.

新しい!!: 線維芽細胞増殖因子とトロンボポエチン · 続きを見る »

ヘパリン

ヘパリンの分子模型 ヘパリン (heparin) は抗凝固薬の一つであり、血栓塞栓症や播種性血管内凝固症候群 (DIC) の治療、人工透析、体外循環での凝固防止などに用いられる。ヘパリンの原料は牛や豚の腸粘膜から採取されるが、牛海綿状脳症 (BSE) 発生後の現在は健康な豚から採取されたものがほとんどである。 肝細胞から発見されたため "heparin" と名付けられた(hepato- は「肝の」という意味)が、小腸、筋肉、肺、脾や肥満細胞など体内で幅広く存在する。化学的にはグリコサミノグリカンであるヘパラン硫酸の一種であり、β-D-グルクロン酸あるいは α-L-イズロン酸と D-グルコサミンが 1,4 結合により重合した高分子で、ヘパラン硫酸と比べて硫酸化の度合いが特に高いという特徴がある。この分子中に多数含まれる硫酸基が負に帯電しているため、種々の生理活性物質と相互作用する。 生体内において肝臓で生成される。ヘパリンは細胞表面に存在し、種々の細胞外マトリクスタンパク質と相互作用している。それらのタンパク質の中には、上記の抗凝固作用に関与する凝固系や線溶系のタンパク質の他に、種々の成長因子、脂質代謝関連タンパク質など100を超える種類のタンパク質が含まれ、細胞増殖や脂質代謝にも関与している。.

新しい!!: 線維芽細胞増殖因子とヘパリン · 続きを見る »

プロテインキナーゼ

プロテインキナーゼ (Protein kinase; プロテインカイネース) は、タンパク質分子にリン酸基を付加する(リン酸化する)酵素である。タンパク質キナーゼあるいは英語風にプロテインカイネースとも呼ぶ。キナーゼ(リン酸基転移酵素)の中でタンパク質をリン酸化するキナーゼをプロテインキナーゼと呼ぶが、このプロテインキナーゼのことを特にキナーゼと呼ぶことが多い(本記事では以後単にキナーゼという)。.

新しい!!: 線維芽細胞増殖因子とプロテインキナーゼ · 続きを見る »

プロテオグリカン

プロテオグリカン(Proteoglycan)は、特殊な構造をもつ糖とタンパク質の複合体で、複合糖質の一種である。「プロテオ」はプロテインつまりタンパク質、「グリカン」は多糖類を意味する。 動物学におけるプロテオグリカンは、動物特有の成分であるグリコサミノグリカン(多糖類)とコアタンパク質(糖鎖が結合する “芯”となるタンパク質)が一定の様式で結合したものを指し、グリコサミノグリカンとしてはヒアルロン酸やコンドロイチン硫酸が有名である。臓器、脳、皮膚を始めとした体全体の組織中の細胞外マトリックスや細胞表面に存在するほか、軟骨の主成分としても存在している。 植物学におけるプロテオグリカンは、植物特有の成分であるアラビノガラクタン(多糖類)とコアタンパク質が一定の様式で結合したものを指し、正式にはアラビノガラクタン-プロテイン(AGP)と呼ばれている。細胞壁や樹液に細胞外マトリックスとして存在する。.

新しい!!: 線維芽細胞増殖因子とプロテオグリカン · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

新しい!!: 線維芽細胞増殖因子とヒト · 続きを見る »

ビタミンD

ビタミンD (vitamin D) は、ビタミンの一種であり、脂溶性ビタミンに分類される。ビタミンDはさらにビタミンD2(エルゴカルシフェロール、Ergocalciferol)とビタミンD3(コレカルシフェロール、Cholecalciferol)に分けられる。ビタミンD2は大部分の植物性食品には含まれず、キノコ類に含まれているのみであり、ビタミンD3は動物に多く含まれ、ヒトではビタミンD3が重要な働きを果たしている。ちなみにビタミンD1はビタミンD2を主成分とする混合物に対して誤って与えられた名称であるため、現在は用いられない。.

新しい!!: 線維芽細胞増殖因子とビタミンD · 続きを見る »

分泌

分泌(ぶんぴ、ぶんぴつ)とは、一般に細胞が代謝産物を排出すること。 また狭義には、分泌活動を専門的に行う腺細胞が集まって腺を形成し、分泌物を排出することをいうこともある。この意味では特に動物個体のレベルで、体外または体腔に出す外分泌(exocrine)と、体液に出す内分泌(endocrine)に分類される。 外分泌には体表への汗、皮脂、乳など、消化管への唾液、胃液、胆汁などの分泌がある。内分泌はホルモンなどのシグナル物質の分泌である。内分泌は必ずしも腺によるものではなく単独の細胞によるものもある。.

新しい!!: 線維芽細胞増殖因子と分泌 · 続きを見る »

傍分泌

傍分泌(ぼうぶんぴ・ぼうぶんぴつ、、パラクリンシグナリング)とは、細胞間におけるシグナル伝達のひとつ。特定の細胞から分泌される物質が、血液中を通らず組織液などを介してその細胞の周辺で局所的な作用を発揮することである。.

新しい!!: 線維芽細胞増殖因子と傍分泌 · 続きを見る »

アフリカツメガエル

アフリカツメガエル(Xenopus laevis)は、無尾目ピパ科ツメガエル属に分類されるカエル。単にツメガエルとも呼ばれる。 。属名Xenopus は「風変わりな足」を意味する。 実験動物として著名である。また、実験には、X.

新しい!!: 線維芽細胞増殖因子とアフリカツメガエル · 続きを見る »

インターロイキン-1

インターロイキン-1 (英:Interleukin-1、IL-1) はサイトカインと呼ばれる生理活性物質の一種であるインターロイキンの中でも最初に同定された分子である。炎症反応に深く関与し、炎症性サイトカインと呼ばれるグループに含まれる。IL-1には現在IL-1αとIL-1βの2種類が同定されている。IL-1はもともと内因性発熱物質やリンパ球活性化因子などとして発見された。その後1984年-1985年にIL-1α及びβの2種類が存在することが明らかになり、これらが同一のインターロイキン-1受容体に結合して生理作用を発現することも分かった。2種類のIL-1の間に生理作用の差はないものと考えられている。また、近年ではIL-18もIL-1ファミリーに含まれると考えられている。.

新しい!!: 線維芽細胞増殖因子とインターロイキン-1 · 続きを見る »

エリスロポエチン

リスロポエチン(Erythropoietin; 略称: EPO)とは、赤血球の産生を促進する造血因子の一つ(ホルモンともサイトカインとも)。分子量は約34000、165個のアミノ酸から構成されている。血液中のエリスロポエチン濃度は、貧血、赤血球増加症などの鑑別診断に用いられる。腎性貧血の治療に主に使用されているが、ドーピングにも使用され問題となっている。.

新しい!!: 線維芽細胞増殖因子とエリスロポエチン · 続きを見る »

キイロショウジョウバエ

イロショウジョウバエ(黄色猩々蝿)は、ハエ目(双翅目)・ショウジョウバエ科の昆虫である。生物学のさまざまな分野でモデル生物として用いられ、多くの発見がなされた。特に遺伝学的解析に優れた性質をもつ。単にショウジョウバエといえば本種を指すことも多い。.

新しい!!: 線維芽細胞増殖因子とキイロショウジョウバエ · 続きを見る »

シナプス

ナプス(synapse)は、神経細胞間あるいは筋繊維(筋線維)、神経細胞と他種細胞間に形成される、シグナル伝達などの神経活動に関わる接合部位とその構造である。化学シナプス(小胞シナプス)と電気シナプス(無小胞シナプス)、および両者が混在する混合シナプスに分類される。シグナルを伝える方の細胞をシナプス前細胞、伝えられる方の細胞をシナプス後細胞という。又は日本のインディーズバンドを指す。.

新しい!!: 線維芽細胞増殖因子とシナプス · 続きを見る »

シグナリング分子

ナリング分子(シグナリングぶんし、)とは細胞間の情報伝達機能を持つ化学物質。ある種の分子はシグナルとして細胞から放出され、細胞間隙を通過し、他の細胞の受容体に影響を与え、細胞の反応の引き金となる。.

新しい!!: 線維芽細胞増殖因子とシグナリング分子 · 続きを見る »

シグナル伝達

本項においては、生体内におけるシグナル伝達(シグナルでんたつ; signal transduction)機構について記述する。 いかなる生命も周囲の環境に適応しなければならず、それは体内環境においても、個々の細胞においてすらも同様である。そしてその際には、何らかの形で情報を伝達しなければならない。この情報伝達機構をシグナル伝達機構と称し、通常、様々なシグナル分子によって担われる。それらへの応答として、細胞の運命や行動は決定される。.

新しい!!: 線維芽細胞増殖因子とシグナル伝達 · 続きを見る »

創傷

創傷(そうしょう、trauma, wounds, burns)は、外的、内的要因によって起こる体表組織の物理的な損傷を指す。創(そう)と傷(しょう)という異なるタイプの損傷をまとめて指す総称である。日常語では傷(きず)と呼ばれる。 その形状や原因(機転)などによって擦過傷、切創、裂創、刺創 等々に分類している。 応急処置の止血は圧迫による。創傷からの回復を促すために創傷環境調整が提唱されており、壊死組織の除去(デブリードマン)、感染や炎症への対処、乾燥の防止、滲出液の管理などがある。軽い傷は水道水や、生理食塩水によって洗浄され、外用薬、適切な湿潤環境を維持するための薄い創傷被覆材(ドレッシング材)が用いられる。目的なく漫然と消毒などは行わず、感染しつつある段階から消毒や抗生物質などによる対処が考慮され、壊死組織がある場合には除去され、滲出液を吸収するためのドレッシング材が選択される。.

新しい!!: 線維芽細胞増殖因子と創傷 · 続きを見る »

神経発生

経発生(ニューロン新生、神経新生、神経形成、英:neurogenesis)とは、神経幹細胞や前駆細胞から新たな神経細胞が分化する生理現象。胚や胎児期に最も活性化し、脳の形成や発達に重要な役割を果たす。成長するにつれて神経発生量は減少していくが、海馬や脳室下帯では成熟後も続くことが確認されている。.

新しい!!: 線維芽細胞増殖因子と神経発生 · 続きを見る »

神経栄養因子

神経栄養因子(しんけいえいよういんし)は、神経細胞の生存、発生、機能に必要とされる因子。 生体内には、固有の組織が分化する途中、または分化終了後もその組織に存在する細胞の増殖維持に働く分子が作られ、影響を与える可能性が想定されてきた。1986年にノーベル賞を受賞したリータ・レーヴィ=モンタルチーニは、神経細胞の増殖維持に特異的に作用する物質を発見し、これが神経栄養(成長)因子の第一号となった。彼女は鶏胚の発生過程で大量に死滅するニューロンに強い関心を寄せ、以前にある研究者によって行われた肉腫による鶏胚ニューロンへの刺激作用を推し進め、培養系において肉腫産物が交感神経節、脊髄神経節に存在するニューロンに目覚ましい増殖効果を及ぼす事を確認した。そして生化学者スタンリー・コーエンと共に肉腫由来の有効物質を同定し、これを Nerve Growth Factor (NGF) と名付けた。彼らの仕事ではNGFはマウス雄顎下腺から抽出されているが、なぜ神経とほど遠い外分泌腺に神経成長因子が高濃度に含まれているかは今日も疑問のままである。その後ブタ脳から神経に対して増殖刺激作用を持つ物質 Brain-derived Neurotrophic Factor (BDNF) が発見され、更にこれらの成長因子との遺伝子相同性に基づいて、第三の因子Neurotrophin 3 が発見されるに及んで、最初発見されたNGFはNeurotrophin 1 (NT-1)、BDNFはNT-2と呼ばれることになった。現在ではNT-4,5 まで発見されている。 Category:神経科学 *.

新しい!!: 線維芽細胞増殖因子と神経栄養因子 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: 線維芽細胞増殖因子と細胞 · 続きを見る »

細胞外マトリックス

細胞外マトリックス(さいぼうがいマトリックス、Extracellular Matrix)とは生物において、細胞の外に存在する超分子構造体である。通常ECMと略され細胞外基質、細胞間マトリックスともいう。.

新しい!!: 線維芽細胞増殖因子と細胞外マトリックス · 続きを見る »

細胞分化

細胞分化(さいぼうぶんか、)とは、発生生物学では、特殊化していない細胞がより特殊化したタイプの細胞に変化するプロセスのことをいう。.

新しい!!: 線維芽細胞増殖因子と細胞分化 · 続きを見る »

線維芽細胞

線維芽細胞(せんいがさいぼう、fibroblast)は、結合組織を構成する細胞の1つ。コラーゲン・エラスチン・ヒアルロン酸といった真皮の成分を作り出す。 細胞小器官が豊富であり、核小体が明瞭な楕円形の核を有し、細胞質は塩基好性を示す。 また、線維芽細胞は比較的分裂周期が早い為、特別に処理をしないで同じ容器の中で複数の細胞と共に長期間培養すると他の細胞より大量に増殖する。.

新しい!!: 線維芽細胞増殖因子と線維芽細胞 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

新しい!!: 線維芽細胞増殖因子と結晶構造 · 続きを見る »

組織 (生物学)

生物学における組織(そしき、ドイツ語: Gewebe、フランス語: tissu、英語:tissue)とは、何種類かの決まった細胞が一定のパターンで集合した構造の単位のことで、全体としてひとつのまとまった役割をもつ。生体内の各器官(臓器)は、何種類かの組織が決まったパターンで集まって構成されている。.

新しい!!: 線維芽細胞増殖因子と組織 (生物学) · 続きを見る »

無脊椎動物

Invertebrata 無脊椎動物(むせきついどうぶつ)とは、脊椎動物以外の動物のことである。すなわち背骨、あるいは脊椎を持たない動物をまとめて指すもので、ジャン=バティスト・ラマルクが命名したInvertebrataの訳語である(Vertebrataは脊椎動物)。脊椎動物以外の後生動物(多細胞動物)のみを指して使われることもあるが、伝統的には原生動物をも含むこともある。 詳しく言えば無顎類、魚類、両生類、爬虫類、鳥類、哺乳類以外の動物といってもよい。また、より日常的な言い方をするなら、獣、鳥、両生爬虫類、そして魚を除いた動物で、日本でかつて「蟲」と呼ばれたもののうち両生爬虫類を除いたすべてのものと言ってもよく、ホヤ、カニ、昆虫、貝類、イカ、線虫その他諸々の動物が含まれる。.

新しい!!: 線維芽細胞増殖因子と無脊椎動物 · 続きを見る »

選択的スプライシング

選択的スプライシング(せんたくてき-,Alternative Splicing)とはDNAからの転写過程において特定のエクソンをとばしてスプライシングを行うことである。択一的スプライシングとも呼ばれる。 遺伝子にはアミノ酸配列に関する情報を含む核酸塩基配列(エクソン)が遺伝情報を含まない配列(イントロン)によっていくつかに分断されている。通常、DNAからmRNAへの転写が行われる際にはこれらのすべてが順に転写されていく。その後、転写生成物(mRNA前駆体)からイントロン部分の切り捨てが行われてエキソン部分が連結し成熟mRNAが出来上がるが、この不要な部分の切り捨ての過程をスプライシングと呼んでいる。 しかし、時にスプライシングを行う部位・組み合わせが変化し、複数種の成熟mRNAが生成することがある。これを選択的スプライシングと呼び、ひとつの遺伝子から多数の生成物が生じてくることになる。選択的スプライシングによってスプライスバリアント(splice variant)と呼ばれる変異タンパク質が生成される。.

新しい!!: 線維芽細胞増殖因子と選択的スプライシング · 続きを見る »

顆粒球コロニー刺激因子

顆粒球コロニー刺激因子(かりゅうきゅうコロニーしげきいんし、granulocyte-colony stimulating factor)とは、サイトカインの一種で顆粒球産出の促進、好中球の機能を高める作用がある。英語の略号でG-CSFと表記することが多い。.

新しい!!: 線維芽細胞増殖因子と顆粒球コロニー刺激因子 · 続きを見る »

血小板由来成長因子

血小板由来成長因子(けっしょうばんゆらいせいちょういんし、英:Platelet-Derived Growth Factor、PDGF)とは主に間葉系細胞(線維芽細胞、平滑筋細胞、グリア細胞等)の遊走および増殖などの調節に関与する増殖因子であり、PDGF/VEGFファミリーに属する。主に巨核球によって産生されるほか、血小板のα顆粒中にも含まれる。後の研究により、PDGFは上皮細胞や内皮細胞など様々な細胞によって産生されることが分かっている。PDGFにはPDGF-A、B、CおよびDの少なくとも4種類が存在するが、A鎖およびB鎖はジスルフィド結合を形成することによりホモあるいはヘテロ2量体構造をとり3種類のアイソフォーム(PDGF-AA、AB、BB)を有している。PDGFはチロシンキナーゼ関連型であるPDGF受容体(PDGFR)を介してその生理作用を発現することが知られている。.

新しい!!: 線維芽細胞増殖因子と血小板由来成長因子 · 続きを見る »

血管

血管(けっかん、blood vessel)は、血液を身体の各所に送るための通路となる管。全身へ酸素や栄養分、老廃物、体温(恒温動物の場合)、水分を運ぶ。血管中の血液を規則的に送るための筋肉に富む構造がある場合、これを心臓という。血管中の血液の流れる方向は普通一定している。脊椎動物の血管は心臓から出る血液を送る動脈と心臓へ戻る血液を送る静脈、そしてそれぞれの末端(細動脈と細静脈)をつなぐ毛細血管からなる。.

新しい!!: 線維芽細胞増殖因子と血管 · 続きを見る »

血管内皮

血管内皮(けっかんないひ、endothelium)とは血管の内表面を構成する扁平で薄い細胞の層で、血液の循環する内腔と接している。 これらの細胞は心臓から毛細血管まで全ての循環器系の内壁に並んでいる。 小さな血管と毛細血管では内皮細胞は専ら1種類の細胞しかみられない。内皮細胞は血管生物学の様々な側面と関係がある。 例.

新しい!!: 線維芽細胞増殖因子と血管内皮 · 続きを見る »

血管内皮細胞増殖因子

血管内皮細胞増殖因子(けっかんないひさいぼうぞうしょくいんし)は、脈管形成(胚形成期に、血管がないところに新たに血管がつくられること)および血管新生(既存の血管から分枝伸長して血管を形成すること)に関与する一群の糖タンパク。英語の vascular endothelial growth factor から VEGF(ブイイージーエフ)と呼ばれることが多い。その他、血管内皮細胞成長因子、血管内皮増殖因子、血管内皮成長因子などと呼ばれることもある。VEGFは主に血管内皮細胞表面にある血管内皮細胞増殖因子受容体 (VEGFR) にリガンドとして結合し、細胞分裂や遊走、分化を刺激したり、微小血管の血管透過性を亢進させたりする働きをもつが、その他単球・マクロファージの活性化にも関与する。正常な体の血管新生に関わる他、腫瘍の血管形成や転移など、悪性化の過程にも関与している。 1983年マウス腹水から血管透過性を亢進させる物質として発見され、1989年ウシ濾胞星状細胞の培養液から45 kDa(キロダルトン)の糖タンパクとしてVEGF-Aが単離、クローニングされた。.

新しい!!: 線維芽細胞増殖因子と血管内皮細胞増殖因子 · 続きを見る »

血管新生

血管新生(けっかんしんせい、Angiogenesis)は、既存の血管から新たな血管枝が分岐して血管網を構築する生理的現象である。広義では胚形成期において新たに血管が作られる脈管形成(Vasculogenesis)も含めて血管新生と呼ぶが、厳密にはこれらは区別される(本稿では狭義の血管新生について述べる)。創傷治癒の過程では血管新生が生じることが知られているほか、血管新生は慢性炎症や悪性腫瘍の進展においても重要な役割を担っている。.

新しい!!: 線維芽細胞増殖因子と血管新生 · 続きを見る »

胚発生

胚発生(はいはっせい、英語:embryogenesis)または生物学における発生(はっせい)とは、多細胞生物が受精卵(単為発生の場合もある)から成体になるまでの過程を指す。広義には老化や再生も含まれる。発生生物学において研究がなされる。.

新しい!!: 線維芽細胞増殖因子と胚発生 · 続きを見る »

胆汁酸

胆汁酸(たんじゅうさん、bile acid)は、哺乳類の胆汁に広範に認められるステロイド誘導体でコラン酸骨格を持つ化合物の総称である。胆汁酸の主な役割は、消化管内でミセルの形成を促進し、食物脂肪を吸収しやすくするものである。 肝臓で生合成されたものを一次胆汁酸という。また一部は腸管で微生物による変換を受け、その代謝物は二次胆汁酸と言う。 胆汁酸は通常グリシンやタウリンと結び付いており、これらは抱合胆汁酸(胆汁酸塩)と呼ばれる。 ヒトでの代表的な2つの胆汁酸は、コール酸とケノデオキシコール酸である。ヒトの胆汁酸の比率は、一次胆汁酸であるコール酸(80%)、ケノデオキシコール酸(2%)、腸内細菌の胆汁酸-7α-デヒドロキシラーゼにより7-α-デヒドロキシ化された二次胆汁酸である、デオキシコール酸(15%)、リトコール酸(微量)である。胆汁酸、グリシン又はタウリンとの抱合胆汁酸、7-α-デヒドロキシ(脱水酸)誘導体(デオキシコール酸及びリトコール酸)は、人の腸内での胆汁から発見されたものである。 肝臓の疾病によって血液中に放出されるので、肝臓病の検査に用いられることがある。 検出法としてはマックス・フォン・ペッテンコーファーが発見したペッテンコーファー反応がある。これは試料にグルコース加えて硫酸を添加すると、試料が赤色になるという反応である。.

新しい!!: 線維芽細胞増殖因子と胆汁酸 · 続きを見る »

走化性

走化性(そうかせい、英:chemotaxis)とは、生物体(単一の細胞や多細胞の生物体を問わず、細胞や細菌など)の周囲に存在する特定の化学物質の濃度勾配に対して方向性を持った行動を起こす現象のことであり、化学走性(かがくそうせい)ともいう。 この現象はたとえば細菌がブドウ糖のような栄養分子の濃度勾配のもっとも大きな方向に向かって移動するために、あるいはフェノールのような毒性物質から逃げるために重要である。多細胞生物でも走化性は通常の生命活動においてだけでなく、その生命の初期(たとえば受精の際の精子の卵への運動)やそれに続く諸段階(神経細胞やリンパ球の遊走など)にも必須の性質である。しかしがんの転移では、動物の走化性を起こす機構がくずれることもわかっている。 対象となる化学物質の濃度勾配に対し、それが高い方向へ運動することを「正の走化性」とよび、その逆への運動は「負の走化性」とよばれる。.

新しい!!: 線維芽細胞増殖因子と走化性 · 続きを見る »

肝細胞

肝細胞(かんさいぼう、Hepatocyte)は、肝臓を構成する70-80%を構成する約20μm大の細胞。肝細胞はタンパク質の合成と貯蔵、炭水化物の変換、コレステロール、胆汁酸、リン脂質の合成、並びに、内生および外生物質の解毒、変性、排出に関与する。また胆汁の生成と分泌を促進する働きも持つ。.

新しい!!: 線維芽細胞増殖因子と肝細胞 · 続きを見る »

肉芽組織

肉芽組織(にくげそしき(慣用)、にくがそしき、)とは創傷治癒におけるフィブリン凝固物に置換する滲出性の線維性結合組織。肉芽組織は基本的には創傷を基にして創傷を治癒するのに充分な大きさに増殖する。慢性の増殖性炎でみられる肉芽組織を肉芽腫性炎といい、代表的なものに類上皮細胞や巨細胞を伴う特異性炎がある。肉芽腫は慢性炎症反応に対する特異な組織表現型の一つでその原因はさまざまである。病理組織学的には結節状の単核食細胞(マクロファージ、類上皮細胞など)の集簇して形成された結節性病変である。.

新しい!!: 線維芽細胞増殖因子と肉芽組織 · 続きを見る »

脊椎動物

脊椎動物(せきついどうぶつ、Vertebrata)は、動物の分類のひとつ。現在主流の説では脊索動物門に属するとされ、脊索と置き換わった脊椎をもつ。魚類、鳥類、両生類、爬虫類、哺乳類の5類からなり、無脊椎動物に比べて(脊椎動物である)人間にとって類縁関係が近く、なじみの深い生物によって構成されているグループである。.

新しい!!: 線維芽細胞増殖因子と脊椎動物 · 続きを見る »

腎臓

腎臓(じんぞう、ren、kidney)は、泌尿器系の器官の一つ。血液からの老廃物や余分な水分の濾過及び排出を行って尿を生成するという、体液の恒常性の維持を主な役割とする。.

新しい!!: 線維芽細胞増殖因子と腎臓 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: 線維芽細胞増殖因子と酸 · 続きを見る »

GM-CSF

GM-CSF(Granulocyte Macrophage colony-stimulating Factor:顆粒球単球コロニー刺激因子)は、多能性造血幹細胞に分化を促すサイトカインの一種。 IL(インターロイキン)-3,5などと協力し、多能性造血幹細胞を骨髄系前駆細胞(CFU-GEMM)に分化させ、これを前期赤芽球系前駆細胞(BFU-E)、顆粒球単球コロニー形成細胞(CFU-GM)、好酸球コロニー形成細胞(CFU-Eo)、好塩基球コロニー形成細胞(CFU-Ba)らに分化させる。更に、CFU-GMを好中球と単球に、CFU-Eoを好酸球に分化させる働きを持つ。(CFU-BaはIL-3,5により好塩基球に誘導される) このように主に細胞性免疫の主役である白血球(顆粒球、単球)の分化誘導作用をもつため、免疫賦活や骨髄刺激に用いられることもある。 Th細胞等が産生していることがわかっている。.

新しい!!: 線維芽細胞増殖因子とGM-CSF · 続きを見る »

抗体

免疫グロブリン(抗体)。色の薄い部分が軽鎖、先端の黒い部分が可変部。適合する抗原が可変部に特異的に結合する。 抗体(こうたい、antibody)とは、リンパ球のうちB細胞の産生する糖タンパク分子で、特定のタンパク質などの分子(抗原)を認識して結合する働きをもつ。抗体は主に血液中や体液中に存在し、例えば、体内に侵入してきた細菌やウイルス、微生物に感染した細胞を抗原として認識して結合する。抗体が抗原へ結合すると、その抗原と抗体の複合体を白血球やマクロファージといった食細胞が認識・貪食して体内から除去するように働いたり、リンパ球などの免疫細胞が結合して免疫反応を引き起こしたりする。これらの働きを通じ、脊椎動物の感染防御機構において重要な役割を担っている(無脊椎動物は抗体を産生しない)。1種類のB細胞は1種類の抗体しか作れないうえ、1種類の抗体は1種類の抗原しか認識できないため、ヒト体内では数百万〜数億種類といった単位のB細胞がそれぞれ異なる抗体を作り出し、あらゆる抗原に対処しようとしている。 「抗体」の名は、抗原に結合するという機能を重視した名称で、物質としては免疫グロブリン(めんえきグロブリン、immunoglobulin)と呼ばれ、「Ig(アイジー)」と略される。 全ての抗体は免疫グロブリンであり、血漿中のγ(ガンマ)ーグロブリンにあたる。.

新しい!!: 線維芽細胞増殖因子と抗体 · 続きを見る »

恒常性

恒常性(こうじょうせい)ないしはホメオスタシス(ὅμοιοστάσις、homeostasis)とは、生物および鉱物において、その内部環境を一定の状態に保ちつづけようとする傾向のことである。.

新しい!!: 線維芽細胞増殖因子と恒常性 · 続きを見る »

成長因子

成長因子(せいちょういんし、Growth factor)とは、動物体内において、特定の細胞の増殖や分化を促進する内因性のタンパク質の総称である。増殖因子、細胞増殖因子(さいぼうぞうしょくいんし)などともいう。様々な細胞学的・生理学的過程の調節に働いており、標的細胞の表面の受容体タンパク質に特異的に結合することにより、細胞間のシグナル伝達物質として働く。 歴史的には種々の生物や組織に対して成長を促進する物質を指し、ビタミンなども含んだが、現代ではほとんどの場合、上記の意味で用いられる。.

新しい!!: 線維芽細胞増殖因子と成長因子 · 続きを見る »

海馬

海馬(かいば、うみうま、とど、あしか、ハイマ).

新しい!!: 線維芽細胞増殖因子と海馬 · 続きを見る »

日経サイエンス

日本経済新聞社 内 |設立.

新しい!!: 線維芽細胞増殖因子と日経サイエンス · 続きを見る »

ここにリダイレクトされます:

FGFFGFR線維芽細胞成長因子繊維芽細胞増殖因子繊維芽細胞成長因子

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »