ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

緑色蛍光タンパク質

索引 緑色蛍光タンパク質

緑色蛍光タンパク質(りょくしょくけいこうタンパクしつ、green fluorescent protein、GFP)はオワンクラゲがもつ分子量約27 kDaの蛍光性をもつタンパク質である。1960年代に下村脩によってイクオリンとともに発見・分離精製された。下村はこの発見で2008年にノーベル化学賞を受賞した。.

30 関係: 励起状態基質 (化学)下村脩ナノメートルマーティン・チャルフィーリアルタイムレポーター遺伝子ロジャー・Y・チエンフォトルミネセンス分子量イクオリンオワンクラゲカルシウムクローニングシグナル伝達タンパク質タンパク質タグ細胞生物学統一原子質量単位生物発光発光発生生物学融合タンパク質遺伝子工学酵素蛍光蛍光共鳴エネルギー移動In situ1990年代

励起状態

励起状態(れいきじょうたい、excited state)とは、量子力学において系のハミルトニアンの固有状態のうち、基底状態でない状態のこと。.

新しい!!: 緑色蛍光タンパク質と励起状態 · 続きを見る »

基質 (化学)

基質(英語:substrate)とは、化学反応において他の試薬と反応して生成物を作る化学種の1つである。合成化学や有機化学においては、基質の化合物にわずかに修正を加えて目的の物質へと変換する。 生化学においては酵素と結合して酵素が働く場所となる物質を基質と呼ぶ。ルシャトリエの原理より、基質は濃度が変化する物質である。「基質」という言葉が指すものは文脈によって大きく異なる。 自発的反応.

新しい!!: 緑色蛍光タンパク質と基質 (化学) · 続きを見る »

下村脩

下村 脩(しもむら おさむ、1928年(昭和3年)8月27日 - )は、アメリカ合衆国の市民権を持つが、国籍は日本である。の←市民権ではなく永住権では?-->生物学者(有機化学・海洋生物学)。学位は理学博士(名古屋大学、1960年)。ボストン大学名誉教授、ウッズホール海洋生物学研究所特別上席研究員、名古屋大学特別教授。.

新しい!!: 緑色蛍光タンパク質と下村脩 · 続きを見る »

ナノメートル

ナノメートル(nanometre、記号: nm)は、国際単位系の長さの単位で、10−9メートル (m).

新しい!!: 緑色蛍光タンパク質とナノメートル · 続きを見る »

マーティン・チャルフィー

マーティン・チャルフィー(Martin Chalfie, 1947年2月1日 - )は、アメリカ合衆国の化学者。2008年に下村脩、ロジャー・Y・チエンとともにノーベル化学賞を受賞した。受賞理由は「緑色蛍光タンパク質(GFP)の発見と開発」である。 1947年にイリノイ州シカゴで生まれる。1977年にハーバード大学で神経生物学の博士号を取得した。1982年よりコロンビア大学生物学科教授を務める。夫人も同大学の教職に就いている。1992年に異種細胞へのGFPの導入と発現に成功し、GFPをレポーター遺伝子として普及させるのに貢献した。 2004年に National Academy of Sciences 会員に就任。2005年、ローゼンスティール賞を受賞した。.

新しい!!: 緑色蛍光タンパク質とマーティン・チャルフィー · 続きを見る »

リアルタイム

リアルタイム(Real time)とは、英語で「即時に」や「同時に」、「実時間」という意味の言葉である。.

新しい!!: 緑色蛍光タンパク質とリアルタイム · 続きを見る »

レポーター遺伝子

レポーター遺伝子(レポーターいでんし)とは、ある遺伝子が発現しているかどうかを容易に判別するために、その遺伝子に組換える別の遺伝子のこと。緑色蛍光タンパク質(GFP)が有名。 組換えDNA技術によって作成された組換え遺伝子が、いつどこでどのくらいできているのかを比較的簡単に確認できるようにレポーター遺伝子が使用される。 通常、レポーター遺伝子自体には可視化する以外の機能は想定されていないことになっている。様々な生物の遺伝子がプロモーターの活性や蛋白質の挙動を知るためのレポーター遺伝子として利用されている。.

新しい!!: 緑色蛍光タンパク質とレポーター遺伝子 · 続きを見る »

ロジャー・Y・チエン

ャー・ヨンジェン・チエン(Roger Yonchien Tsien, 錢永健, 1952年2月1日 - 2016年8月24日)は、アメリカ合衆国の生化学者。中国系アメリカ人。.

新しい!!: 緑色蛍光タンパク質とロジャー・Y・チエン · 続きを見る »

フォトルミネセンス

光ルミネセンス(Photoluminescence:PL)とは、物質が光(フォトン)を吸収した後、光を再放出する過程である(反射とは異なる)。 蛍光物質や蓄光(燐光)物質に紫外線など高いエネルギーを持つ光を照射すると吸光し、励起状態(不安定な状態)となる。その状態から基底状態(安定な状態)に戻ろうとする時に放出する光(可視光など)および現象をいう。すなわち、電磁波照射によるルミネセンス(光エネルギーを与えた場合に発光する現象)のことである。 一方、半導体においても条件によりPLが生じる。半導体は禁制帯よりも高いエネルギーを持つ光を照射すると、熱平衡状態よりも過剰の電子・正孔対が形成される。それらが平衡状態に戻ろうとするときの再結合過程において光を放出する現象をいう。 但し、半導体を用いたLEDは実用的にはエレクトロルミネセンスによる発光であり、また半導体を用いたpn接合型太陽電池はフォトダイオードが光を吸収して電力に変換するものである(光起電力効果)。半導体のPLは性能の評価手法(物質中の欠陥や不純物の程度)の1つである。.

新しい!!: 緑色蛍光タンパク質とフォトルミネセンス · 続きを見る »

分子量

分子量(ぶんしりょう、)または相対分子質量(そうたいぶんししつりょう、)とは、物質1分子の質量の統一原子質量単位(静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12)に対する比であり、分子中に含まれる原子量の総和に等しい。 本来、核種組成の値によって変化する無名数である。しかし、特に断らない限り、天然の核種組成を持つと了解され、その場合には、構成元素の天然の核種組成に基づいた相対原子質量(原子量)を用いて算出される。.

新しい!!: 緑色蛍光タンパク質と分子量 · 続きを見る »

イクオリン

イクオリン (aequorin) は、1962年、下村脩と Frank H. Johnson (当時プリンストン大学)らによってオワンクラゲ Aequorea victoria から発見・抽出・精製された発光タンパク質。なお、日本語表記としてエクオリンも用いられるが、下村はイクオリンが正しいとコメントしている。 イクオリンはクラゲの発光細胞内でカルシウムの濃度を感知して発光する。当時はカルシウム濃度をタンパク質が感受し発光する、という発想があまりに斬新だったため、イクオリンの発見は驚くべき反響をもって迎えられた。 また、その発光原理は充電したバッテリーにもたとえられる。イクオリンはセレンテラジンという物質を核にもち、高カルシウム濃度ではセレンテラジンのカルシウムイオン結合モチーフにカルシウムイオンが結合してセレンテラマイドへと分子構造が変化し、このとき発光する。ただし、カルシウム存在下でのイクオリンの発光は単体では青色であるにもかかわらず、オワンクラゲは緑色に発光する。これは、オワンクラゲの細胞内で、イクオリンが、別のタンパク質GFP(緑色蛍光タンパク質)と複合体をなしているためで、イクオリンの蛍光エネルギーがGFPに吸収され、蛍光共鳴エネルギー移動(FRET)によって緑色にシフトするためである。この発見も、イクオリンの発光原理と同様、下村脩によってなされたものであり、同時に、彼によってGFPも初めて分離・精製されている。 下村脩によるイクオリンの発見から 20余年を経て、1985年に井上敏、Douglas Prasherらのグループによって、イクオリンの遺伝子が同定・クローニングされた。また、イクオリンはカルシウムセンサーであるという理由から、レポーター遺伝子としても様々な生物学の研究に応用されている。.

新しい!!: 緑色蛍光タンパク質とイクオリン · 続きを見る »

オワンクラゲ

ワンクラゲ(御椀水母、御椀海月)は、ヒドロ虫綱に属するクラゲ様の無脊椎動物。日本各地の沿岸で見られる。傘は碗を逆さにしたような形をしており、透明で内側の放射管がはっきりと外側から見える。最大傘径は20cmにおよび、ヒドロ虫綱で最大。刺激を受けると生殖腺を青白く発光させる。 主に春から夏にかけて見られる。水面に浮き、ほとんど動かないが、他のクラゲや小魚などを大きな口を開けて丸呑みする。 クラゲの中では比較的生命力が強く、飼育も容易であるが、餌を工夫しないと人工繁殖の成体は発光しなくなる(→参照)。.

新しい!!: 緑色蛍光タンパク質とオワンクラゲ · 続きを見る »

カルシウム

ルシウム(calcium、calcium )は原子番号 20、原子量 40.08 の金属元素である。元素記号は Ca。第2族元素に属し、アルカリ土類金属の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)である。.

新しい!!: 緑色蛍光タンパク質とカルシウム · 続きを見る »

クローニング

ーニング(cloning)は、生物学用語で、クローン(同じ遺伝子型をもつ生物の集団)を作製すること。.

新しい!!: 緑色蛍光タンパク質とクローニング · 続きを見る »

シグナル伝達

本項においては、生体内におけるシグナル伝達(シグナルでんたつ; signal transduction)機構について記述する。 いかなる生命も周囲の環境に適応しなければならず、それは体内環境においても、個々の細胞においてすらも同様である。そしてその際には、何らかの形で情報を伝達しなければならない。この情報伝達機構をシグナル伝達機構と称し、通常、様々なシグナル分子によって担われる。それらへの応答として、細胞の運命や行動は決定される。.

新しい!!: 緑色蛍光タンパク質とシグナル伝達 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: 緑色蛍光タンパク質とタンパク質 · 続きを見る »

タンパク質タグ

タンパク質タグまたはプロテインタグ(Protein tag)とは、特定のタンパク質分子の目印(荷札、タグ)とするために遺伝子工学的に結合した部分のことをいい、単にタグと呼ぶことが多い。短いペプチドあるいは他種タンパク質の場合がある。様々な種類が開発されており、性質に応じてタンパク質の単離、固定化、タンパク質間相互作用の検出、タンパク分子の可視化などに利用されている。 タグは単独で発現させるレポーター遺伝子等と違い、目的とするタンパク質の生理的・物理化学的性質に影響を与えてはいけないので、目的タンパク質の末端につけるのが普通であり、またなるべく低分子量のものが望ましい。.

新しい!!: 緑色蛍光タンパク質とタンパク質タグ · 続きを見る »

細胞生物学

細胞生物学(さいぼうせいぶつがく、英語:cell biology)とは、細胞を研究対象とする生物学の一分野。全ての生物は細胞からできており、細胞生物学は生物学の基礎となっている。.

新しい!!: 緑色蛍光タンパク質と細胞生物学 · 続きを見る »

統一原子質量単位

統一原子質量単位(とういつげんししつりょうたんい、unified atomic mass unit、記号 u)およびダルトン、ドルトン(dalton、記号 Da)は、原子や分子のような微小な粒子の質量を表す単位である。かつては原子質量単位(記号 amu)とも言ったが、この名と記号は現在は非公式である。ダルトンと Da はかつて非公式だったが、2006年に国際度量衡局(BIPM) により承認された。 統一原子質量単位とダルトンの定義は全く同じで、静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12と定義されている。国際単位系 (SI) では共に、SI単位ではないがSIと併用できるSI併用単位のうち、「SI単位で表されるその数値が実験的に決定され、したがって不確かさが伴う単位」に位置付けられている。.

新しい!!: 緑色蛍光タンパク質と統一原子質量単位 · 続きを見る »

生物発光

生物発光(せいぶつはっこう)とは、生物が光を生成し放射する現象である。化学的エネルギーを光エネルギーに変換する化学反応の結果として発生する。ケミルミネセンスのうち生物によるものを指す。英語ではバイオルミネセンス(Bioluminescence)と言い、ギリシア語のbios(生物)とラテン語のlumen(光)との合成語である。生物発光はほとんどの場合、アデノシン三リン酸(ATP)が関係する。この化学反応は、細胞内・細胞外のどちらでも起こりうる。 バクテリアにおいては、生物発光と関係する遺伝子の発現はLuxオペロンと呼ばれるオペロンによってコントロールされる。 生物発光は、進化の過程で、何回も(およそ30回)独立に現れた。 生物発光は、海棲および陸生の無脊椎動物と魚類、また、原生生物、菌類などにも見られる。他の生物に共生する微生物が生物発光を起こすことも知られている(共生発光)。.

新しい!!: 緑色蛍光タンパク質と生物発光 · 続きを見る »

発光

光(はっこう)は、光を発すること。 主に、熱放射(黒体放射) (恒星、炎、白熱灯などの光)やルミネセンス(冷光)が知られる。その他、荷電粒子線の制動放射による発光、 チェレンコフ光などがある。.

新しい!!: 緑色蛍光タンパク質と発光 · 続きを見る »

発生生物学

生生物学(はっせいせいぶつがく, Developmental biology)とは多細胞生物の個体発生を研究対象とする生物学の一分野である。個体発生とは配偶子の融合(受精)から、配偶子形成を行う成熟した個体になるまでの過程のことである。広義には老化や再生も含む。.

新しい!!: 緑色蛍光タンパク質と発生生物学 · 続きを見る »

融合タンパク質

融合タンパク質(ゆうごうたんぱくしつ)とは主に人工的に(遺伝子工学によって)作られたタンパク質で、2個以上の遺伝子が一体となって転写・発現し、一個のタンパク質を形成している状態。 タンパク質をコードする遺伝子内の開始コドンや終止コドンの部分に、グルタチオン・S-トランスフェラーゼ(GST)やポリヒスチジン(Hisタグ)等の遺伝子をタグとして挿入することで、融合タンパク質が作られることも多い。.

新しい!!: 緑色蛍光タンパク質と融合タンパク質 · 続きを見る »

遺伝子工学

遺伝子工学(いでんしこうがく、英:genetic engineering)とは、遺伝子を人工的に操作する技術を指し、特に生物の自然な生育過程では起こらない人為的な型式で行うことを意味している。遺伝子導入や遺伝子組換え(いでんしくみかえ:組換えDNA(くみかえDNA))などの技術で生物に遺伝子操作(いでんしそうさ)を行う事を一般に指す。.

新しい!!: 緑色蛍光タンパク質と遺伝子工学 · 続きを見る »

青(あお、、蒼、碧)は基本色名のひとつで、晴れた日の海や瑠璃のような色の総称である。青は英語のblue、外来語のブルーに相当する。寒色のひとつ。また、光の三原色のひとつも青と呼ばれる。青色(セイショク、あおいろ)は同義語。 国際照明委員会 (CIE) は435.8nm の波長をRGB表色系において青 (B) と規定している。 「あお」は緑色などの寒色全体を指して用いられることがあり、このように青と緑が明確に分節されてこなかった言語は世界に例が多い。.

新しい!!: 緑色蛍光タンパク質と青 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: 緑色蛍光タンパク質と酵素 · 続きを見る »

蛍光

蛍光(けいこう、fluorescence)とは、発光現象の分類。.

新しい!!: 緑色蛍光タンパク質と蛍光 · 続きを見る »

蛍光共鳴エネルギー移動

蛍光共鳴エネルギー移動(けいこうきょうめいエネルギーいどう、Fluorescence resonance energy transfer:略称: FRET、またはフェルスター共鳴エネルギー移動)とは、近接した2個の色素分子(または発色団)の間で励起エネルギーが、電磁波にならず電子の共鳴により直接移動する現象。このため、一方の分子(供与体)で吸収された光のエネルギーによって他方の分子(受容体)にエネルギーが移動し、受容体が蛍光分子の場合は受容体から蛍光が放射される。 供与体の発光スペクトルと受容体の吸収スペクトルの重なり積分が大きいほどフェルスター距離が大きくなり、エネルギー移動が起こりやすくなる。FRETの観察手段の1つとして、供与体の吸収スペクトルに相当する光で供与体を励起し、受容体から放射される蛍光強度の増加を検出する方法がある。これ以外にも、供与体の蛍光強度や蛍光寿命の変化を測定したりする方法もある。 FRET効率は、両分子間の距離の6乗の関数として距離とともに急速に減少する。これを応用して、両分子間の距離をFRET効率から計算することができる。しかしFRET効率は、両分子の電気双極子の配向にも影響されるため、蛍光タンパク質のように蛍光寿命時間オーダーで等方的な蛍光の放射が起こらない場合には、正確な距離の計算が困難な場合もある。.

新しい!!: 緑色蛍光タンパク質と蛍光共鳴エネルギー移動 · 続きを見る »

In situ

in situ(イン・サイチュ)とは、ラテン語で「本来の場所で」という意味であり、現在は種々の学問「その場」という意味で用いられる。.

新しい!!: 緑色蛍光タンパク質とIn situ · 続きを見る »

1990年代

1990年代(せんきゅうひゃくきゅうじゅうねんだい)は、西暦(グレゴリオ暦)1990年から1999年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1990年代について記載する。.

新しい!!: 緑色蛍光タンパク質と1990年代 · 続きを見る »

ここにリダイレクトされます:

GFPGreen Fluorescent Protein緑色蛍光蛋白質

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »