ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

結晶成長

索引 結晶成長

結晶成長(けっしょうせいちょう、英語:crystal growth)とは、単結晶である支持結晶基板や種結晶を元にして、その結晶を増大させることである。結晶の原子の配列等を保ったまま結晶を増大させることを特にエピタキシャル成長という。多結晶等を付着させる場合は結晶成長ではなく堆積である。 大型の結晶を作成する手法として、チョクラルスキー法(Czochralski.

16 関係: 合金堆積チョクラルスキー法分子線エピタキシー法エピタキシャル成長カーダー・パリージ・ザン方程式ガラス転移点コロイド固溶体結晶転位鉱物学英語MBE有機金属気相成長法拡散律速凝集

合金

合金(ごうきん、alloy)とは、単一の金属元素からなる純金属に対して、複数の金属元素あるいは金属元素と非金属元素から成る金属様のものをいう。純金属に他の元素を添加し組成を調節することで、機械的強度、融点、磁性、耐食性、自己潤滑性といった性質を変化させ材料としての性能を向上させた合金が生産されて様々な用途に利用されている。 一言に合金といっても様々な状態があり、完全に溶け込んでいる固溶体、結晶レベルでは成分の金属がそれぞれ独立している共晶、原子のレベルで一定割合で結合した金属間化合物などがある。合金の作製方法には、単純に数種類の金属を溶かして混ぜ合わせる方法や、原料金属の粉末を混合して融点以下で加熱する焼結法、化学的手法による合金めっき、ボールミル装置を使用して機械的に混合するメカニカルアロイングなどがある。ただし、全ての金属が任意の割合で合金となるわけではなく、合金を得られる組成の範囲については、物理的・化学的に制限(あるいは最適点)が存在する。.

新しい!!: 結晶成長と合金 · 続きを見る »

堆積

堆積によってできた地層 氷河に運ばれる岩石 堆積(たいせき、sedimentation、deposition)とは、堆積物(地層)を形成するに至るまでの過程の総称をいう。 常温常圧のもとで、既存の岩石の風化・侵食によって生成された砕屑物(粘土・シルト・砂・礫)や、火山砕屑物、生物遺骸などが、流水・氷河・風、火山活動などの作用と重さによりふるい分けられて集積される過程、及び化学的作用により水溶液中から沈殿し集積される過程を示す。 集積した構成物が岩石の風化・侵食などから、分解、運搬、ふるい分けられて集積される作用を堆積作用という。この作用には機械的作用によるものの他、化学的作用(沈積)や、生物学的作用によるものを含み、それぞれ多様な堆積物の層(地層)を形成する。.

新しい!!: 結晶成長と堆積 · 続きを見る »

チョクラルスキー法

チョクラルスキー法(チョクラルスキーほう)とは半導体(シリコン、ゲルマニウム、ヒ化ガリウム)、金属(白金、金、銀)、塩類、人造宝石向けに使用される超高純度の単結晶を成長させる、結晶育成法のひとつである。.

新しい!!: 結晶成長とチョクラルスキー法 · 続きを見る »

分子線エピタキシー法

分子線エピタキシー法(ぶんしせんエピタキシーほう、 MBE; Molecular Beam Epitaxy)は現在、半導体の結晶成長に使われている手法の一つである。真空蒸着法に分類され、物理吸着を利用する。 高真空のために、原料供給機構より放たれた分子が他の気体分子にぶつかることなく直進し、ビーム状の分子線となるのが名称の由来である。.

新しい!!: 結晶成長と分子線エピタキシー法 · 続きを見る »

エピタキシャル成長

ピタキシャル成長(英語:epitaxial growth)とは、薄膜結晶成長技術のひとつである。基板となる結晶の上に結晶成長を行い、下地の基板の結晶面にそろえて配列する成長の様式である。基板と薄膜が同じ物質である場合をホモエピタキシャル、異なる物質である場合をヘテロエピタキシャルと呼ぶ。結晶成長の方法として分子線エピタキシー法や有機金属気相成長法、液相エピタキシー法などがある。 エピタキシャル成長が起こるには格子定数のほぼ等しい結晶を選ぶ必要があり、温度による膨張係数の近い物でなくてはならない。 なお、現在窒化ガリウム(GaN)はサファイア基板上に結晶成長をする方法が広く採られているが、両者の格子定数は大きく違うこと等があり、通常の方法ではエピタキシャル成長できない。これを解決するために赤崎勇が低温バッファー層を導入したことによりサファイア基板上にGaNをエピタキシャル成長することに成功した。GaNのエピタキシャル成長が成功したことにより窒化物系半導体を用いた発光ダイオード、レーザーダイオード、電子デバイス、受光素子の発展へとつながった。.

新しい!!: 結晶成長とエピタキシャル成長 · 続きを見る »

カーダー・パリージ・ザン方程式

ーダー・パリージ・ザン方程式(Kardar–Parisi–Zhang equation) は、、、イー・チャン・ジャン らによって提案された、ランジュバン型の非線形の確率偏微分方程式であり、結晶の界面成長を記述する。しばしば提案した三人の頭文字を取って、KPZ方程式と略記される。 \frac\left(\vec,t\right).

新しい!!: 結晶成長とカーダー・パリージ・ザン方程式 · 続きを見る »

ガラス転移点

ラス転移点(ガラスてんいてん)はガラス転移が起きる温度であり、通常 Tg と記される。.

新しい!!: 結晶成長とガラス転移点 · 続きを見る »

コロイド

イド(colloid)またはコロイド分散体(colloidal dispersion)は、一方が微小な液滴あるいは微粒子を形成し(分散相)、他方に分散した2組の相から構成された物質状態である。膠質(こうしつ)と呼ぶこともある。.

新しい!!: 結晶成長とコロイド · 続きを見る »

固溶体

固溶体(こようたい、solid solution)とは、2種類以上の元素(金属の場合も非金属の場合もある)が互いに溶け合い、全体が均一の固相となっているものをいう。非金属元素同士が互いに溶け合った場合は、混晶(こんしょう)ともいう(固溶体とほぼ同じ意味で使われる)。合金や鉱物に多く見られる。固溶体を作ることによって材料を強化することを固溶強化という。.

新しい!!: 結晶成長と固溶体 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: 結晶成長と結晶 · 続きを見る »

転位

転位(てんい、Dislocation)は、材料科学の用語で、結晶中に含まれる、線状の結晶欠陥のことである。外力等によって、転位近傍の原子が再配置されることによって転位の位置が移動し、材料が変形するため、変形に要する力は原子間の結合力から理論的に計算される力よりも小さく、金属の硬さ(変形のしにくさ)は、転位の動きやすさが決めている。転位が動くことによって、金属等は外力に対して、破壊せずに変形する塑性変形を起こす。このようなメカニズムをらが解明することによって結晶力学は飛躍的に進歩し塑性変形強度の基本原理となった。.

新しい!!: 結晶成長と転位 · 続きを見る »

鉱物学

鉱物学(こうぶつがく、)は、地球科学の一分野。鉱物の化学、結晶構造、物理的・光学的性質を追求する。また、鉱物の形成と崩壊のプロセスについても研究する。固体物理学・無機化学・結晶学・地球化学・固体惑星科学・岩石学・鉱床学・博物学・材料科学の学際領域に存在する学問分野であり、地味ながら多彩な分野にまたがる学問である。.

新しい!!: 結晶成長と鉱物学 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 結晶成長と英語 · 続きを見る »

MBE

MBE.

新しい!!: 結晶成長とMBE · 続きを見る »

有機金属気相成長法

有機金属気相成長法(ゆうききんぞくきそうせいちょうほう、英語:metal organic chemical vapor deposition、略称:MOCVD)は、原料として有機金属やガスを用いた結晶成長方法、及びその装置である。結晶成長という観点を重視してMOVPE (metal-organic vapor phase epitaxy) とも言う。 化合物半導体結晶を作製するのに用いられ、MOCVDでは原子層オーダで膜厚を制御することができるため、半導体レーザを初めとするナノテクノロジーといった数nmの設計が必要な分野で用いられる。代表的な半導体結晶成長装置である分子線エピタキシー法 (MBE) と比較し、面内での膜厚の偏差が少なく、高速成長が可能であるほか、超高真空を必要としないために装置の大型化が容易である為、大量生産用の結晶成長装置としてLEDや半導体レーザを初めとした光デバイスの商用製品の作製に多く用いられている。.

新しい!!: 結晶成長と有機金属気相成長法 · 続きを見る »

拡散律速凝集

拡散律速凝集(かくさんりっそくぎょうしゅう、Diffusion-limited aggregation; DLA)とは、ブラウン運動する粒子が核となるクラスタに取り込まれクラスタを成長させる過程のことをいう。英語の略称から DLA と呼称されることが多い。凝集とは粒子が結合し堆積物をなすことを指し、拡散律速とはクラスタの成長過程において粒子拡散の影響が支配的であることを指す。 DLA 過程の模型はとレオナルド・サンダーによって1981年に導入された。 DLA は様々な系に見出すことができる。代表的なものとして、電析、、鉱物の堆積、絶縁破壊などがある。 DLA によってできるクラスタはの集まりと見ることができる。DLAクラスタはフラクタルであり、二次元平面上のDLAクラスタのフラクタル次元は、拡散粒子の運動が格子上に制約されない場合およそ 1.71 となる。格子DLA模型のシミュレーションにおけるフラクタル次元は同じ埋め込み次元の非格子DLA模型とはわずかに異なる結果が得られている。 DLA模型はクラスタの核となる吸着層に関して様々なバリエーションが調べられている。代表的なものに、ある一点を核として放射状にクラスタが成長する模型や、ある平面や直線の吸着層からクラスタを成長させる模型がある。直線状の吸着層はたとえば結晶表面に生じたステップを理想化したものと捉えることができる。 計算機による DLA のシミュレーションは DLA の研究手段として非常に一般的である。DLA のシミュレーションには様々な方法が試みられている。具体的な計算手法のほか、対象とする模型についても様々な方法がある。たとえば適当な埋め込み次元の格子上を拡散粒子がランダムウォークする格子DLA模型や、DLA のシミュレーションは拡散粒子が自由な空間をブラウン運動する非格子DLA模型が研究の対象となり得る。格子DLA模型は拡散粒子の運動や吸着層への取り込みをモンテカルロ法によって表現する。非格子DLA模型では分子動力学によって拡散粒子の運動を扱い、拡散粒子がある一定の距離だけ吸着層に近づいたとき拡散粒子がクラスタに取り込まれる。また、いずれの模型についてもシミュレーションする空間の大きさ(格子模型の場合は格子点数)や拡散粒子の数、シミュレーション空間の端点における境界条件を決める必要があり、様々な条件の下でシミュレーションが行われている。 DLA模型はブラウン運動する粒子の数が非常に少なく、粒子拡散だけが頻繁に起こるような系を模したものと考えることができる。粒子濃度が小さいということは、拡散粒子同士の衝突によって新たなクラスタの核を生じる確率が(考える系の大きさに比べて)非常に小さく、また多数の粒子が結合し集団で運動することも無視できる。また吸着層からの粒子の脱離が起こらないということは、クラスタと表面粒子の結合エネルギーの大きさが、表面粒子に与えられる熱運動のエネルギーに比べてはるかに大きいということ、つまり結合エネルギーに比べて系の統計力学的な温度が極めて低いことを意味する。.

新しい!!: 結晶成長と拡散律速凝集 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »