ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

等エントロピー過程

索引 等エントロピー過程

等エントロピー過程(isentropic process)とは、系のエントロピーが一定な熱力学過程。任意の可逆断熱過程は等エントロピー過程であることを証明できる。.

16 関係: 可逆体積圧力エントロピーエンタルピー等温過程熱力学熱力学第二法則恒温槽比熱比気体定数温度流れ断熱過程摩擦散逸

可逆

ある系の状態が別の状態に変化したとき、外部と系との間でやり取りした熱と仕事を元に戻して、外部に何ら変化を残さずに系を元の状態に戻すことができることを可逆(reversible)と言い、このような変化(過程)を可逆過程(reversible process)と言う。系および外部が元の状態に戻りさえすれば、元に戻す変化の経路は問わない。 可逆過程であるためには、変化の途中において、系内および系と周囲との間で熱平衡、力学的平衡、化学的平衡が保たれていることが必要であり、このような理想化した状態変化を準静的過程と言う。可逆過程は常に準静的だが、準静的過程であっても可逆でないものは存在する.

新しい!!: 等エントロピー過程と可逆 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: 等エントロピー過程と体積 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 等エントロピー過程と圧力 · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: 等エントロピー過程とエントロピー · 続きを見る »

エンタルピー

ンタルピー()とは、熱力学における示量性状態量のひとつである。熱含量()とも。エンタルピーはエネルギーの次元をもち、物質の発熱・吸熱挙動にかかわる状態量である。等圧条件下にある系が発熱して外部に熱を出すとエンタルピーが下がり、吸熱して外部より熱を受け取るとエンタルピーが上がる。 名称が似ているエントロピー()とは全く異なる物理量である。.

新しい!!: 等エントロピー過程とエンタルピー · 続きを見る »

等温過程

等温過程()とは、温度一定の環境下で、系をある状態から別の状態へと変化させる熱力学的な過程のことである。等温変化とも呼ばれる。 系の温度は等温過程の前後で変化しない。特に理想気体の場合は、系の内部エネルギーも等温過程の前後で変化しない。.

新しい!!: 等エントロピー過程と等温過程 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: 等エントロピー過程と熱力学 · 続きを見る »

熱力学第二法則

熱力学第二法則(ねつりきがくだいにほうそく、)は、エネルギーの移動の方向とエネルギーの質に関する法則である。またエントロピーという概念に密接に関係するものである。この法則は科学者ごとにさまざまな言葉で表現されているが、どの表現もほぼ同じことを示している。 例えば、電気エネルギーが電熱線を使って熱エネルギーに変換するが、電熱線に熱エネルギーを与えても、電気エネルギーには変換しないことは経験上知られている。つまり、電気エネルギーは質の高いエネルギーであるが、熱エネルギーの質は低い。.

新しい!!: 等エントロピー過程と熱力学第二法則 · 続きを見る »

恒温槽

恒温槽(こうおんそう)とは、科学実験で用いられる器具の一種。長時間一定温度に保つことができるような制御を施した容器である。主に、槽内部の温度を一定に保つため、周囲環境からの温度変化の影響を防ぐことができる構造になっている。.

新しい!!: 等エントロピー過程と恒温槽 · 続きを見る »

比熱比

比熱比(ひねつひ、heat capacity ratio)は定圧熱容量と定積熱容量の比である。熱力学の解析に用いるのは、それぞれ1モルあたりの定圧熱容量(定圧比熱)、定積熱容量(定積比熱)の比であり、通常 \gamma または \kappa と表示される。 ただし工業的には、MKS系に単位換算された値を用いるのが一般的である。モルと kg の換算には、炭素12を基準とした炭素スケールが用いられる。 断熱圧縮膨張時の圧力P と体積V の関係は、比熱比を用いて次のように表される(ポアソンの法則)。 下表に示すように、気体の比熱容量、比熱比は、分子の構造によって決まる(エントロピーにおける分子の運動エネルギーには回転運動も含むためその差が比熱比の差になり現れる)。.

新しい!!: 等エントロピー過程と比熱比 · 続きを見る »

気体定数

気体定数(きたいていすう、)は、理想気体の状態方程式における係数として導入される物理定数であるアトキンス『物理化学』 p.20。理想気体だけでなく、実在気体や液体における量を表すときにも用いられる。 気体定数の測定法としては、低圧の領域で状態方程式から計算する方法もあるが、低圧で音速測定を行い、そこから求めるほうが正確に得られる。 モル気体定数(モルきたいていすう、)の値は である(2014CODATA推奨値)。 気体定数は、ボルツマン定数 のアボガドロ定数 倍である。したがって、2019年5月20日に施行予定の国際単位系(SI)の改定(新しいSIの定義)によって、ボルツマン定数もアボガドロ定数も定義定数となるので、気体定数も定義定数となり となる。.

新しい!!: 等エントロピー過程と気体定数 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 等エントロピー過程と温度 · 続きを見る »

流れ

流れ(ながれ)は.

新しい!!: 等エントロピー過程と流れ · 続きを見る »

断熱過程

断熱過程(だんねつかてい、)とは、外部との熱のやりとり(熱接触)がない状況で、系をある状態から別の状態へと変化させる熱力学的な過程である。.

新しい!!: 等エントロピー過程と断熱過程 · 続きを見る »

摩擦

フラクタル的な粗い表面を持つ面どうしが重なり、静止摩擦がはたらいている様子のシミュレーション。 摩擦(まさつ、friction)とは、固体表面が互いに接しているとき、それらの間に相対運動を妨げる力(摩擦力)がはたらく現象をいう。物体が相対的に静止している場合の静止摩擦と、運動を行っている場合の動摩擦に分けられる。多くの状況では、摩擦力の強さは接触面の面積や運動速度によらず、荷重のみで決まる。この経験則はアモントン=クーロンの法則と呼ばれ、初等的な物理教育の一部となっている。 摩擦力は様々な場所で有用なはたらきをしている。ボルトや釘が抜けないのも、結び目や織物がほどけないのも摩擦の作用である。マッチに点火する際には、マッチ棒の頭とマッチ箱の側面との間の摩擦熱が利用される。自動車や列車の車輪が駆動力を得るのも、地面との間にはたらく摩擦力(トラクション)の作用である。 摩擦力は基本的な相互作用ではなく、多くの要因が関わっている。巨視的な物体間の摩擦は、物体表面の微細な突出部()がもう一方の表面と接することによって起きる。接触部では、界面凝着、表面粗さ、表面の変形、表面状態(汚れ、吸着分子層、酸化層)が複合的に作用する。これらの相互作用が複雑であるため、第一原理から摩擦を計算することは非現実的であり、実証研究的な研究手法が取られる。 動摩擦には相対運動の種類によって滑り摩擦と転がり摩擦の区別があり、一般に前者の方が後者より大きな摩擦力を生む。また、摩擦面が流体(潤滑剤)を介して接している場合を潤滑摩擦といい、流体がない場合を乾燥摩擦という。一般に潤滑によって摩擦や摩耗は低減される。そのほか、流体内で運動する物体が受けるせん断抵抗(粘性)を流体摩擦もしくは摩擦抵抗ということがあり、また固体が変形を受けるとき内部の構成要素間にはたらく抵抗を内部摩擦というが、固体界面以外で起きる現象は摩擦の概念の拡張であり、本項の主題からは離れる。 摩擦力は非保存力である。すなわち、摩擦力に抗して行う仕事は運動経路に依存する。そのような場合には、必ず運動エネルギーの一部が熱エネルギーに変換され、力学的エネルギーとしては失われる。たとえば木切れをこすり合わせて火を起こすような場合にこの性質が顕著な役割を果たす。流体摩擦(粘性)を受ける液体の攪拌など、摩擦が介在する運動では一般に熱が発生する。摩擦熱以外にも、多くのタイプの摩擦では摩耗という重要な現象がともなう。摩耗は機械の性能劣化や損傷の原因となる。摩擦や摩耗はトライボロジーという科学の分野の一領域である。.

新しい!!: 等エントロピー過程と摩擦 · 続きを見る »

散逸

散逸(さんいつ)とは、物理学においては運動などによるエネルギーが、抵抗力によって熱エネルギーに不可逆的に変化する過程をいい、熱力学においては自由エネルギーの減少に相当する。 例としては、運動エネルギーが摩擦、粘性や乱流によって、また電流エネルギーが電気抵抗によって熱に変化するなどがある。.

新しい!!: 等エントロピー過程と散逸 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »