ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

符号付数値表現

索引 符号付数値表現

号付数値表現(ふごうつきすうちひょうげん)の記事では、コンピュータシステムにおける数の表現(コンピュータの数値表現)において、負の範囲も含んで(正の数と負の数の記事も参照)数を表現する方法を解説する。 コンピュータで負の数を表す方法は、用途などにあわせいくつかある。ここでは、二進記数法を拡張して負の数を表す方法を四種類説明する(符号-仮数部、1の補数、2の補数、エクセスN)。ほとんどの場合、最近のコンピュータでは2の補数表現を使うが、他の表現が全く使われないわけではない(おそらく、最も使われている2の補数以外の表現は、浮動小数点の表現内に含まれるエクセス1023であろう)。.

25 関係: 単精度浮動小数点数否定二進法チェックサムプラス記号とマイナス記号ドナルド・クヌース−0コンピュータの数値表現コンピュータシステム倍精度浮動小数点数算術オーバーフローIBM 7090IEEE 754IPv4PDP-1The Art of Computer ProgrammingUNIVAC正の数と負の数最上位ビット浮動小数点数数学整数型2の補数3増し符号

単精度浮動小数点数

情報処理において、単精度浮動小数点数 (Single precision floating point number) は、コンピュータの数値表現の一種である。 浮動小数点形式の標準であるIEEE 754では、単精度は32ビット(4オクテット)、倍精度は64ビット(8オクテット)である。IEEE 754-2008 では単精度の形式は正式には binary32 と呼ばれている。「単」や「倍」という表現は32ビットを1ワードとする32ビットアーキテクチャを基にしている。 単精度浮動小数点数は、同じ幅の固定小数点数に比べてより広範囲な数値を表せるようになっているが、同時に精度を犠牲にしている。 C言語、C++、C#、Java、Haskellでは単精度のデータ型を float と呼び、Pascal、MATLABなどでは single と呼ぶ。3.2以前のOctaveでは single という名前だが倍精度である。Pythonの float も倍精度である。.

新しい!!: 符号付数値表現と単精度浮動小数点数 · 続きを見る »

否定

数理論理学において否定 (ひてい、Negation) とは、命題の真と偽を反転する論理演算である。否定は英語で Not であるが、Invert とも言われ論理演算ではインバージョン(Inversion)、論理回路では Not回路やインバータ回路(Inverter)とも呼ばれ入力に対して出力が反転する。 命題 P に対する否定を ¬P, P, !P などと書いて、「P でない」とか「P の否定」、「P 以外の場合」などと読む。 ベン図による論理否定(NOT).

新しい!!: 符号付数値表現と否定 · 続きを見る »

二進法

二進法(にしんほう)とは、2 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。 英語でバイナリ (binary) という。binaryという語には「二進法」の他に「二個一組」「二個単位」といったような語義もある(例: バイナリ空間分割)。.

新しい!!: 符号付数値表現と二進法 · 続きを見る »

チェックサム

チェックサム (Check Sum)とは誤り検出符号の一種である。符号値そのものを指すこともある。他の誤り検出符号と比べて信頼性は低いが、それでも単純計算で99.5%以上(1オクテットのチェックサムの場合255/256、2オクテットなら65535/65536)の検出率がある上にアルゴリズムが簡単であることから、簡易な誤り検出に用いられる。 また、誤り検出その他データの検証のための符号として広く使われてきた経緯から、俗に誤り検出符号自体の代名詞としても用いられる場合がある。例えばCRCの符号値やMD5のハッシュ値を、それぞれ「CRCチェックサム」「MD5チェックサム」と呼ぶことがある。これらはアルゴリズムが異なりsumでもないため「チェックサム」と呼ぶことは、語義的には正確ではないものの、「(チェックサムよりも)信頼性の高い誤り検出符号」程度の意味で使われる。.

新しい!!: 符号付数値表現とチェックサム · 続きを見る »

プラス記号とマイナス記号

プラス記号 (+) とマイナス記号 (&minus) は、正負や加法および減法の表記に使われる数学記号である。これらの記号は多かれ少なかれ類似点のある他のいろいろな意味にも拡張されて使われてきた。プラス (plus) とマイナス (minus) は、それぞれ「より多い」と「より少ない」を意味するラテン語の表現である。日本語においては、プラス記号については、加算記号として用いる場合には足す(たす)と読み、マイナス記号については、減算記号として用いる場合には引く(ひく)と読む。プラスとマイナスを合わせて「プラスマイナス」「プラマイ」と呼ぶこともある。.

新しい!!: 符号付数値表現とプラス記号とマイナス記号 · 続きを見る »

ドナルド・クヌース

ドナルド・エルビン・クヌース(Donald Ervin Knuth, 1938年1月10日 -)は数学者、計算機科学者。スタンフォード大学名誉教授。 クヌースによるアルゴリズムに関する著作 The Art of Computer Programming のシリーズはプログラミングに携わるものの間では有名である。アルゴリズム解析と呼ばれる分野を開拓し、計算理論の発展に多大な貢献をしている。その過程で漸近記法で計算量を表すことを一般化させた。 理論計算機科学への貢献とは別に、コンピュータによる組版システム TeX とフォント設計システム METAFONT の開発者でもあり、Computer Modern という書体ファミリも開発した。 作家であり学者であるクヌースは、文芸的プログラミングのコンセプトを生み出し、そのためのプログラミングシステム WEB / CWEB を開発。また、MIX / MMIX 命令セットアーキテクチャを設計。.

新しい!!: 符号付数値表現とドナルド・クヌース · 続きを見る »

−0

-0(マイナスゼロ)、あるいは負のゼロとは、数値のゼロにマイナスの符号をつけたものである。 通常の算術では、負のゼロは単なるゼロ(及び正のゼロ、+0)と同じであるが、これらを分ける方が望ましい場合や、分けて扱わざるを得ない場合がある。 そのようなケースとして、以下のものがある.

新しい!!: 符号付数値表現と−0 · 続きを見る »

コンピュータの数値表現

ンピュータの数値表現の記事では、コンピュータシステムにおける数の表現法について解説する。数学的には「数」の概念は複素数など大きく広がっているわけであるが、この記事ではこの冒頭部を除くと、もっぱら固定長の整数の、しかもコンピュータの内部的な事情の話に偏っている(すなわち、数学的な議論は多くない)。実数の近似表現などについては浮動小数点数の記事や任意精度演算の記事を、代数的数のコンピュータでの扱いなどといった話題については、適切な参考文献を参照のこと。 コンピュータに詳しくない人は(実際の所、自称「詳しい人」でもたいがい正確ではないことも多いが)、コンピュータでの数値計算が無謬(誤りがない)であると誤解していることがある。例えば、3 \times \frac13 を計算すると正確に 1 が得られると期待するかもしれない。しかし、実際にはコンピュータや電卓では 0.9999999999999999 のような結果となり、場合によっては 0.99999999923475 のような値になることもある。「実数型」などという概念は、それ自体が誤謬であるとも言える。 後者の値はバグの存在を示しているわけではなく、二進法の浮動小数点数による近似の結果生じるのである。ある種の任意精度演算系や、何らかの数式処理システムでそういった演算に対応している場合は、1 や 0.9999999999999999... という結果が得られるものもある。なお十進法の浮動小数点数でも、本来なら 0.9999999999999999 のような数になるのであるが、電卓などでは特別扱いして、表示画面には出ない内部での計算の最後の3桁が「999」の場合だけは繰り上がりを掛ける、といったものがあるためか、十進法の浮動小数点数では誤差が発生しないという誤解をしている、自称「詳しい人」に注意が必要である。.

新しい!!: 符号付数値表現とコンピュータの数値表現 · 続きを見る »

コンピュータシステム

ンピュータシステム(computer system)は、コンピュータをその内に含むシステムであり、広くはコンピューティングと総称される、情報処理や数値計算やデータ処理を行う情報システムや、制御にコンピュータを利用・応用した制御システムのことである(しかし、この記事の残りの部分には、もっぱら企業等において「情シス」などと略されるいわゆる「情報システム」についての話題しかない)。.

新しい!!: 符号付数値表現とコンピュータシステム · 続きを見る »

倍精度浮動小数点数

倍精度浮動小数点数(ばいせいどふどうしょうすうてんすう、Double precision floating point number)は、64ビットの浮動小数点数表現である。 「倍」精度と言うのは、単精度に対してそのように言うわけだが、これは32ビットを1ワードとする32ビットアーキテクチャを基にしている。 昔のFORTRANでは、単精度(REAL型)よりも精度が高ければ倍精度(DOUBLE PRECISION型)を名乗ることができた(そもそもワードの長さも浮動小数点のフォーマットも機種ごとにまちまちだった)。IBMのSystem/360で採用され大型機の事実上の標準となった、指数の基数が16の浮動小数点形式は、32ビット単精度では最悪の場合の精度が十進で6桁程度となり、技術計算では倍精度以上を使わねばならないという問題があった。(注:FORTRANは、REAL型が1ワード、DOUBLE PRECISION型が2ワードという前提だった) 標準であるIEEE 754では、単精度は32ビット(4オクテット)、倍精度は64ビット(8オクテット)である。いずれにしろ、「倍」というのは、精度に関係する仮数部(後述)の長さが正確に2倍である、といったような意味ではなく、全体の長さが2倍である所から来ているので、実際の所「倍精度」というのはかなり大雑把な言い方に過ぎない。.

新しい!!: 符号付数値表現と倍精度浮動小数点数 · 続きを見る »

算術オーバーフロー

算術オーバーフロー(さんじゅつオーバーフロー、)あるいは単にオーバーフローは、デジタルコンピュータにおいて、演算結果がレジスタの表せる範囲や記憶装置上の格納域に記録できる範囲を超えてしまう現象、またはその結果レジスタ等に格納される値を意味する。オーバーフローは、本来演算結果を格納する場所とは違う場所に格納される場合がある。「溢れ」とも言う。 符号無し表現の加減算では、最上位桁より上の桁(存在しない桁)への繰り上がり(キャリー)や、おなじく存在しない桁からの繰り下がり(ボロー)が起きることが溢れである。フラグに保存され、キャリーフラグという名が付けられていることが多い。 加算器で2の補数を使って減算を行って(加算器#減算器)いて、加算器のキャリー入出力をそのままとしている場合、繰り下がり(ボロー)のなかった場合にフラグが立ち、繰り下がりがあった場合にはフラグが立たない、というロジックになる(6502・POWER・ARM・PICなど)。 符号付き表現の、特に2の補数表現では、加減算のビット操作は符号無し表現のそれと全く同じであるが、最上位桁より上の桁との繰り上がりや繰り下がりではなく、最上位桁への繰り上がりや繰り下がりが溢れであることがある。最上位桁への繰り上がりや繰り下がりと同時に最上位桁より上の桁への繰り上がりや繰り下がりがあったら溢れではない。これのフラグはオーバーフローフラグという名が付けられていることが多い。 3ビットで+1をくりかえした場合でそれぞれの例を示す。.

新しい!!: 符号付数値表現と算術オーバーフロー · 続きを見る »

IBM 7090

IBM 7090は、IBMの科学技術計算用第二世代トランジスタ版メインフレームであり、真空管ベースの IBM 709 の後継マシンである。最初の7090は1959年11月に稼動。1960年、典型的なシステム価格は290万ドルで、レンタルでは月額63,500ドルであった。 ワード長は36ビットで、アドレス空間は32Kワード。基本メモリサイクルは2.18μ秒。IBM 7030 (Stretch) プロジェクトから生じた IBM 7302 磁気コアメモリ記憶装置を流用している。 7090は709の6倍の性能で、レンタル料は半分だった。.

新しい!!: 符号付数値表現とIBM 7090 · 続きを見る »

IEEE 754

IEEE 754(あいとりぷるいー754、IEEE Standard for Floating-Point Arithmetic: 直訳すると「浮動小数点数算術標準」)は、浮動小数点数の計算で最も広く採用されている標準規格であり、多くのプロセッサなどのハードウェア、またソフトウェア(コンピュータ・プログラム)に実装されている。多くのコンピュータ・プログラミング言語ないしその処理系でも、浮動小数点数処理の一部または全部が IEEE 754 になっている。IEEE 754 が制定される前に成立したC言語などは、仕様上はIEEE 754 が必須となっていないものの、IEEE 754対応の演算命令を使える環境下では、それをそのまま利用して浮動小数点数演算を実装することが多い。一方で、JavaやC#など、言語仕様として IEEE 754 を必須としているものもある。 21世紀に入った後に改定され、2008年8月に制定された IEEE 754-2008 がある。これには、1985年の IEEE 754 制定当初の規格であるIEEE 754-1985、ならびに基数非依存の浮動小数点演算の標準規格 IEEE 854-1987 の両者がほぼすべて吸収されている。IEEE 754-2008 は正式に制定されるまでは、IEEE 754rと呼ばれた。 正式な規格名は、IEEE Standard for Floating-Point Arithmetic (ANSI/IEEE Std 754-2008)である。ISO/IEEEのPSDO(パートナー標準化機関)合意文書に基づき、JTC1/SC 25 を通して国際規格 ISO/IEC/IEEE 60559:2011 として採用され、公表されている。 この標準規格は以下のことを定義している。.

新しい!!: 符号付数値表現とIEEE 754 · 続きを見る »

IPv4

Internet Protocol version 4(インターネットプロトコルバージョン4)、IPv4(アイピーブイ4)は、Internet Protocolの一種で、OSI参照モデルにおいてネットワーク層に位置付けられるプロトコルである。 転送の単位であるパケットの経路選択と、その断片化と再構築を主な機能とする。TCP/IPの基本機能としてインターネットなどで世界中広く用いられている。.

新しい!!: 符号付数値表現とIPv4 · 続きを見る »

PDP-1

Steve Russell。大きな筐体がプロセッサを格納している。制御パネルが机の上の部分に見えている。その上に銀色の紙テープリーダーがある。さらにその上の縦のスロットが紙テープライターである。机の左に載っているのが Soroban 製コンソール・タイプライターで、ラッセルの背後に見えているのが Type 30 CRTディスプレイである。 PDP-1 (Programmed Data Processor-1) はDEC社のPDPシリーズの最初のコンピュータであり、1959年から開発が始まり、1960年に出荷を開始した。MITやBBNなどいたるところでハッカー文化を生み出した重要なコンピュータである。世界初のコンピュータゲームと言われるスペースウォー!が動作したことでも知られている。.

新しい!!: 符号付数値表現とPDP-1 · 続きを見る »

The Art of Computer Programming

『』は、コンピュータプログラミングに関する書籍である。様々なアルゴリズムについて、その背景や歴史まで踏み込んだ徹底的な解説を行っている。著者のドナルド・クヌース は、自身のライフワークと位置づけている。 その全体構想から見れば現在も未完であるが、十分な業績としてみなされていることは、3巻初版までが刊行されていた1974年に受賞したチューリング賞の受賞理由に功績として本シリーズが含まれていることからも分かる。また、1976年に2巻の第2版の準備をしていた際に、初版のような鉛版による組版 (en:Hot metal typesetting) が行われなくなっていたために仕上がりに納得せず、組版システムの TeX を(当初は1978年のサバティカルが終わるまでには完全に仕上げるつもりで)作り始めてしまったことなど、逸話も多い。 現在3巻までと4巻の分冊が刊行されている。今後の計画についてはwebページで確認できるが、おおむね執筆開始当初の構想と変わっておらず、5巻は構文的 (syntactic) アルゴリズムについてで、9章が字句スキャナ、10章が(文字列)解析の技術、6巻は文脈自由文法の理論、7巻がコンパイラ技術となっている。ただし位置付けとして、5巻までの内容は central core of computer programming for sequential machines であるのに対し、6・7巻の内容は important but more specialized である、としている(またドラゴンブック等、この40年の間に書籍が充実した分野でもある)。 近年では、アスキーから日本語訳が出版されていた。2007年9月現在で3巻までと改訂版分冊1巻、4巻の分冊2,3が刊行されていた。その後、KADOKAWAドワンゴに在籍する元アスキーの編集者が担当する「アスキードワンゴ」レーベルにより、2015年6月の1巻再刊から再開され、2017年3月に4巻の最初のまとまった分冊である4A巻が刊行されている。 サイエンス社から出版されていた旧日本語訳版は、原著2巻相当分の4巻までしか出ていない。また、出版時期が古いためもあるが、専門用語について可能な限りカタカナ語を使わず訳すという少々冒険的な方針のために独特の用語が多用されており、和訳における専門用語の扱いにおける歴史的な一例にもなっている。.

新しい!!: 符号付数値表現とThe Art of Computer Programming · 続きを見る »

UNIVAC

UNIVAC(ユニバック)は、アメリカのコンピュータ企業。 1950年、エッカート・モークリ社(ENIACを開発した2人の技術者が設立した会社)を買収したレミントンランド社が商用コンピュータ部門として発足させたのが始まりである。 UNIVACという名称は、UNIVersal Automatic Computer の略。.

新しい!!: 符号付数値表現とUNIVAC · 続きを見る »

正の数と負の数

正の数(せいのすう、positive number)とは、0より大きい実数である。負の数(ふのすう、negative number)とは、0より小さい実数である。.

新しい!!: 符号付数値表現と正の数と負の数 · 続きを見る »

最上位ビット

最上位ビット(さいじょういビット、most significant bitまたはhigh-order bit、MSBと略記)は、コンピュータにおいて二進数で最も大きな値を意味するビット位置のことである。MSBは左端ビットとも言われる。 二進数の特定のビットを示すために、各ビットにはゼロからn(その数値のビット数に依存)までのビット番号が割り当てられる。 従来、エンディアンによってゼロ番のビットがMSBに対応していたり、LSB(最下位ビット)に対応していたりしていたが、最近ではゼロ番はLSBとされていることが多い。(訳注:これが関係してくるのはビット番号を指定する形式のビット操作命令が存在する命令セットだけである。) 負の整数を2の補数で表すとMSBは必ず 1 になり、符号付正の整数では必ず 0 になるので、MSBは符号の判別に使われる。 これを拡張すると、MSBs(複数)はMSB側のいくつかのビットを意味する。 MSBが最上位バイトを意味する場合もある。この場合、MSB First はビックエンディアンを意味する。この曖昧さを回避するため、MSBit、MSByteと表記されることもある。.

新しい!!: 符号付数値表現と最上位ビット · 続きを見る »

浮動小数点数

浮動小数点数(ふどうしょうすうてんすう、英: floating point number)は、浮動小数点方式による数のことで、もっぱらコンピュータの数値表現において、それぞれ固定長の仮数部と指数部を持つ、数値の表現法により表現された数である。.

新しい!!: 符号付数値表現と浮動小数点数 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 符号付数値表現と数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 符号付数値表現と数学 · 続きを見る »

整数型

整数型(せいすうがた)は、コンピュータのプログラムなどのデータ型の1つまたは1群であり、整数を取り扱う。コンピュータで扱うもっとも単純な部類のデータ型のひとつである。C言語やJavaなどの多くのプログラミング言語では、整数型は固定長であり、その固定サイズで表現可能な範囲の、整数の有限な部分集合の要素を値とする型である。また多くの言語において、標準あるいは第三者によるライブラリにより、範囲に制限のない整数も扱うことができる。 パスカルによる機械式計算機などが数をその処理の対象としていたことを考えれば、計算機械の歴史において、整数を扱うことはコンピュータ以前からの存在である。.

新しい!!: 符号付数値表現と整数型 · 続きを見る »

2の補数

2の補数(にのほすう)は、2、ないし2のべき乗の補数、またそれによる負の値の表現法である。特に二進法で使われる。(数学的あるいは理論的には、三進法における減基数による補数、すなわち による補数も「2の補数」であるが、まず使われることはない) コンピュータの固定長整数型や、固定小数点数で、負の値を表現するためや加算器で減算をするために使われる。 頭の部分の1個以上の0を含む(正規化されていない)ある桁数の二進法で表現された数があるとき、その最上位ビット (MSB) よりひとつ上のビットが1で、残りが全て0であるような値(8ビットの整数であれば、100000000_.

新しい!!: 符号付数値表現と2の補数 · 続きを見る »

3増し符号

3増し符号(さんましふごう、3増しコード; excess-three code, excess-3, XS-3)は、二進化十進表現(BCD)の一種で、十進の各桁を、以下のようにその値に3を足した4ビットの2進で表現する方法をいう。 例えば、 である。ここで10は10進数を、excess-3は3増し符号を示す。 通常のBCDに対する3増し符号の利点は次のとおりである。.

新しい!!: 符号付数値表現と3増し符号 · 続きを見る »

ここにリダイレクトされます:

オフセット・バイナリ符号付整数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »