ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

競争 (生物)

索引 競争 (生物)

生物学において競争(きょうそう)とは、生物の個体同士が生息域や食糧、配偶相手などを争うこと。同種個体間に見られる種内競争と、違う種間に見られる種間競争の二つがある。生存競争と表現されることもあるが、生物が行う競争は生存のためだけではないため、文脈によっては生存競争の語がふさわしくないこともある。.

39 関係: 二酸化炭素微分方程式地衣類化学物質ハイエナメダカライオンロトカ・ヴォルテラの方程式ロジスティック方程式ヴィト・ヴォルテラニッチアメリカ合衆国アレロパシーイタリアウニオーストリアカダヤシコンブコケ植物ゾウリムシ光合成個体群生態学競争競争排除則群集生態学環境収容力生物学生態学遷移 (生物学)草本資源造礁サンゴ植物性淘汰1925年1926年

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」と呼ばれる事もある。 地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸・炭酸水と呼ばれる。 多方面の産業で幅広く使われる(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。.

新しい!!: 競争 (生物)と二酸化炭素 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 競争 (生物)と微分方程式 · 続きを見る »

地衣類

地衣類が付き、独特な模様を持つブナ 地衣類(ちいるい)は、菌類(主に子嚢菌類)のうちで、藻類(シアノバクテリアあるいは緑藻)を共生させることで自活できるようになったものである。一見ではコケ類などにも似て見えるが、形態的にも異なり、構造は全く違うものである。.

新しい!!: 競争 (生物)と地衣類 · 続きを見る »

化学物質

化学物質(かがくぶっしつ、chemical substance)とは、分野や文脈に応じて以下のような様々な意味で用いられている言葉である。.

新しい!!: 競争 (生物)と化学物質 · 続きを見る »

ハイエナ

ハイエナ(Hyenas)は、食肉目ハイエナ科(Hyaenidae)に属する動物の総称である。長い鼻面と長い足を持ち、イヌに似た姿をしているが、ジャコウネコ科に近縁である。.

新しい!!: 競争 (生物)とハイエナ · 続きを見る »

メダカ

メダカ(目高、鱂(魚に将))またはニホンメダカは、ダツ目 メダカ科(アドリアニクチス科)に属する魚であるミナミメダカ と、キタノメダカ 2種の総称。体長 3.5 cm 程の淡水魚。ミナミメダカの学名である Oryzias latipes は『稲の周りにいる足(ヒレ)の広い』という意味である。また、キタノメダカの種小名である「sakaizumii」は、メダカの研究に貢献した酒泉満への献名である。また、ヒメダカなど観賞魚として品種改良されたメダカが広く流通している。本記事では広義のメダカについて記述する。 目が大きく、頭部の上端から飛び出していることが、名前の由来になっている。飼育が簡単なため、キンギョ同様、観賞魚として古くから日本人に親しまれてきたほか、様々な目的の科学研究用に用いられている。西欧世界には、江戸時代に来日したシーボルトによって、1823年に初めて報告された。.

新しい!!: 競争 (生物)とメダカ · 続きを見る »

ライオン

ライオン(Panthera leo) は、食肉目ネコ科ヒョウ属に分類される食肉類。 別名はシシ(獅子)。オスであれば体重は250キログラムを超えることもあり、ネコ科ではトラに次いで2番目に大きな種である。現在の主な生息地はサブサハラであるが、インドのジル国立公園のインドライオンは絶滅が危惧されている。北アフリカや西南アジアでは有史時代に姿を消している。更新世末期、約1万年前までライオンはヒトに次いで広く分布する大型陸上哺乳類だった。そのころよく見られた地域は順に、アフリカ、西ヨーロッパからインドにかけてのユーラシア、ユーコンからペルーまでのアメリカである。 飼育個体は20年以上生きることもあるが、野生のライオンの寿命はより短く、特にオスが10年以上生きることは稀である。縄張りをめぐって他のオスと常に争うために傷を負い、それが寿命を大きく縮める原因となる。典型的な生息地はサバンナや草原であるが、茂みや森などに棲む場合もある。ライオンは他のネコ科の動物にはあまり見られない社会性を持っている。メスと子ライオン、そして少数の成熟したオスがプライド(群れ)を形成する。狩りの特徴はメスの集団が連係することであり、おもに大型の有蹄類を襲う。ライオンは捕食者の頂点でありまた象徴的な存在であるが、屍肉も漁ることもある。賢く、性質が、他のネコ科よりも比較的穏和なため、ライオンがヒトを襲うことはほとんどないが、ライオンによる犠牲者がいることは知られている。 ライオンは危急種である。アフリカではこの20年間で30-50パーセントまで頭数が減っており、おそらく回復しないだろうとされている。保護区や国立公園に指定された地以外では生息が難しくなっている Database entry includes a lengthy justification of why this species is vulnerable.

新しい!!: 競争 (生物)とライオン · 続きを見る »

ロトカ・ヴォルテラの方程式

トカ・ヴォルテラの方程式(ロトカ・ヴォルテラのほうていしき、英語:Lotka-Volterra equations)とは、生物の捕食-被食関係による個体数の変動を表現する数理モデルの一種。2種の個体群が存在し、片方が捕食者、もう片方が被食者のとき、それぞれの個体数増殖速度を二元連立非線形常微分方程式系で表現する。ロトカ・ヴォルテラの捕食式やロトカ・ヴォルテラ捕食系、ロトカ-ヴォルテラの捕食者-被食者モデルなどとも呼ばれる。 具体的には以下の方程式で表される。 \frac &.

新しい!!: 競争 (生物)とロトカ・ヴォルテラの方程式 · 続きを見る »

ロジスティック方程式

ティック方程式(ロジスティックほうていしき、英語:logistic equation)は、生物の個体数の変化の様子を表す数理モデルの一種である。ある単一種の生物が一定環境内で増殖するようなときに、その生物の個体数(個体群サイズ)の変動を予測できる。人間の場合でいえば、人口の変動を表すモデルである。 1838年にベルギーの数学者ピエール=フランソワ・フェルフルスト(Pierre-François Verhulst)によって、ロジスティック方程式は最初に発案された。フェルフルストは、1798年に発表されて大きな反響を呼んだトマス・ロバート・マルサスの『人口論』の不自然な点を解消するために、このモデルを考案した。マルサスは『人口論』で、人口は原理的に指数関数的に増加することを指摘した。しかし、実際には環境や資源は限られているため、人口の増加にはいずれブレーキがかかると考えるのが自然である。人口が増えるに連れて人口増加率は低減し、人口はどこかで飽和すると考えられる。ロジスティック方程式はこの点を取り入れて、生物の個体数増殖をモデル化したものである。フェルフルスト以後には、アメリカの生物学者レイモンド・パール(Raymond Pearl)が式を普及させた。 具体的には、ロジスティック方程式は という微分方程式で表される。N は個体数、t は時間、dN/dt が個体数の増加率を意味する。r は内的自然増加率、K は環境収容力と呼ばれる定数である。個体数が増えて環境収容力に近づくほど、個体数増加率が減っていくというモデルになっている。 式の解(個体数と時間の関係)はS字型の曲線を描き、個体数は最終的には環境収容力の値に収束する。この曲線や解の関数はロジスティック曲線やロジスティック関数として知られる。方程式の名称は、ロジスティック式やロジスティックモデル、ロジスティック微分方程式と表記される場合もある。発案者の名からVerhulst方程式、発案者と普及者の名からVerhulst-Pearl方程式とも呼ばれる。 ロジスティック方程式は、個体群生態学あるいは個体群動態論における数理モデルとしては入門的なものとして位置づけられ、より複雑な現象に対応する基礎を与える。数学分野としては、微分方程式論や力学系理論の初等的な話題としても取り上げられる。.

新しい!!: 競争 (生物)とロジスティック方程式 · 続きを見る »

ヴィト・ヴォルテラ

ヴィト・ヴォルテラ(Vito Volterra、1860年5月3日 - 1940年10月11日) は、イタリアの数学者、物理学者である。数学の分野では解析学に多くの業績を残し積分方程式にヴォルテラ方程式の名が残っている他、結晶の転位の概念を導入し、生態学に数学の手法を用いて競争のある環境での生物の個体数を解析するロトカ=ヴォルテラの方程式などに名前を残している。 教皇領アンコーナの貧しい家に生まれた。数学の才能を示し、ピサ大学にエンリコ・ベッティ(Enrico Betti)のもとで学び、1883年力学の教授になった。積分方程式を研究し、1930年に"Theory of functionals and of Integral and Integro-Differential Equations"(英題)を著した。 1892年トリノ大学の力学の教授、1900年にローマ大学の数理物理学の教授になった。ヴォルテラはイタリア統一運動(リソルジメント)の完成時期に育ち、ベッティとともに統一運動の協調者となった。教皇領がイタリア王国に併合されると、1905年には王国の議員に選ばれた。同じ1905年、結晶中の転位の理論を初めて発表した。第一次世界大戦が始まると、50代になっていたにもかかわらずイタリア陸軍に参加し、ジュリオ・ドゥーエのもとで気球の開発を行い、可燃性の水素ではなく不活性なヘリウムを使うアイデアを出し、気球の製作を指導した。 戦後は生物学に数学的手法を用いる研究を始めた。非線形方程式をもちいて人口問題を解析したピエール=フランソワ・フェルフルストの仕事に次ぐもので、最も有名な成果は競争のある環境での生物の個体数を解析したロトカ=ヴォルテラの方程式である。 1922年にムッソリーニに反対する党派に属し、1931年に大学教授の座を追われた。その後、主に海外で暮らし、死の直前にローマに戻った。.

新しい!!: 競争 (生物)とヴィト・ヴォルテラ · 続きを見る »

ニッチ

ニッチ(niche、フランス語読み:ニーシュ)は、生物学では生態的地位を意味する。1つの種が利用する、あるまとまった範囲の環境要因のこと。.

新しい!!: 競争 (生物)とニッチ · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: 競争 (生物)とアメリカ合衆国 · 続きを見る »

アレロパシー

アレロパシー()とは、ある植物が他の植物の生長を抑える物質(アレロケミカル)を放出したり、あるいは動物や微生物を防いだり、あるいは引き寄せたりする効果の総称。邦訳では「他感作用」という。ギリシア語の αλληλων (allēlōn 互いに) + παθος (pathos 感受) からなる合成語である。1937年にドイツの植物学者であるハンス・モーリッシュにより提唱された。.

新しい!!: 競争 (生物)とアレロパシー · 続きを見る »

イタリア

イタリア共和国(イタリアきょうわこく, IPA:, Repubblica Italiana)、通称イタリアは南ヨーロッパにおける単一国家、議会制共和国である。総面積は301,338平方キロメートル (km2) で、イタリアではロスティバル(lo Stivale)と称されるブーツ状の国土をしており、国土の大部分は温帯に属する。地中海性気候が農業と歴史に大きく影響している。.

新しい!!: 競争 (生物)とイタリア · 続きを見る »

ウニ

ウニ(海胆、海栗、Sea urchin)は、ウニ綱に属する棘皮動物の総称。別名にガゼなど。なお、「雲丹」の字をあてるときはウニを加工した食品について指すフリーランス雑学ライダーズ編『あて字のおもしろ雑学』 p.49 1988年 永岡書店。春の季語。.

新しい!!: 競争 (生物)とウニ · 続きを見る »

オーストリア

ーストリア共和国(オーストリアきょうわこく、、バイエルン語: )、通称オーストリアは、ヨーロッパの連邦共和制国家。首都は音楽の都といわれたウィーン。 ドイツの南方、中部ヨーロッパの内陸に位置し、西側はリヒテンシュタイン、スイスと、南はイタリアとスロベニア、東はハンガリーとスロバキア、北はドイツとチェコと隣接する。基本的には中欧とされるが、歴史的には西欧や東欧に分類されたこともある。.

新しい!!: 競争 (生物)とオーストリア · 続きを見る »

カダヤシ

ダヤシ(蚊絶やし、学名:Gambusia affinis)は、カダヤシ目・カダヤシ亜目・カダヤシ科・カダヤシ亜科に分類される魚の一種。北アメリカ原産で、日本でも外来種として分布を広げている。 英名は Mosquitofish または Topminnow で、日本でもタップミノー、またはアメリカメダカといった別名がある。蚊の幼虫であるボウフラを捕食する(蚊絶やしする)ことが、和名や英名の由来となっている。.

新しい!!: 競争 (生物)とカダヤシ · 続きを見る »

コンブ

ンブ(昆布)は、不等毛植物門褐藻綱コンブ目コンブ科 (学名: )に属する数種の海藻の(一般的)名称である。生物学が生まれる以前からの名称であるため、厳密な定義はできないが、葉の長細い食用のものがコンブと呼ばれる傾向がある。コンブ科に属する海藻でも、オオウキモ(ジャイアントケルプ)は通常、コンブとは呼ばれない。 生物学ではカタカナ書きの「コンブ」が使われるが、単なる「コンブ」という種は存在せず、マコンブやリシリコンブ、ミツイシコンブなどのように、コンブ科植物の種の標準和名に用いる。他方、食品など日常的には昆布やこんぶ(こぶ)の表記も使われる。ウェブスター辞典などにもそのままkombuとして記載されている。.

新しい!!: 競争 (生物)とコンブ · 続きを見る »

コケ植物

植物(コケしょくぶつ、Bryophyte)とは、陸上植物かつ非維管束植物であるような植物の総称、もしくはそこに含まれる植物のこと。コケ類(コケるい)や蘚苔類(せんたいるい)、蘚苔植物(せんたいしょくぶつ)などともいう。世界中でおよそ2万種ほどが記録されている。多くは緑色であるが、赤色や褐色の種もある。大きな群として、蘚類・苔類・ツノゴケ類の3つを含む。それをまとめて一つの分類群との扱いを受けてきたが、現在では認められていない。 なお、日常用語にて「コケ」は、そのほかに地衣類なども含む。その他文化的側面については苔を参照されたい。.

新しい!!: 競争 (生物)とコケ植物 · 続きを見る »

ゾウリムシ

1:食胞、2:小核、3:細胞口、4:細胞咽頭、5:細胞肛門、6:収縮胞、7:大核、8:繊毛 Paramecium sp. の動画。細胞口がよく分かる ゾウリムシは、顕微鏡下では草履(ぞうり)のような形に見える繊毛虫の1種 Paramecium caudatum の和名、広義にはゾウリムシ属 に属する種を指す。単細胞生物としてはよく名を知られている。微生物自体の発見者であるオランダのレーウェンフックによって17世紀末に発見された。日本語名は、動物学者の川村多実二が1930年につけたものであり、英語名の「slipper animalcule」の「slipper」を「草履」と意訳したことに由来している。.

新しい!!: 競争 (生物)とゾウリムシ · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 競争 (生物)と光 · 続きを見る »

光合成

光合成では水を分解して酸素を放出し、二酸化炭素から糖を合成する。 光合成の主な舞台は植物の葉である。 光合成(こうごうせい、Photosynthese、photosynthèse、拉、英: photosynthesis)は、主に植物や植物プランクトン、藻類など光合成色素をもつ生物が行う、光エネルギーを化学エネルギーに変換する生化学反応のことである。光合成生物は光エネルギーを使って水と空気中の二酸化炭素から炭水化物(糖類:例えばショ糖やデンプン)を合成している。また、光合成は水を分解する過程で生じた酸素を大気中に供給している。年間に地球上で固定される二酸化炭素は約1014kg、貯蔵されるエネルギーは1018kJと見積もられている『ヴォート生化学 第3版』 DONALDO VOET・JUDITH G.VOET 田宮信雄他訳 東京化学同人 2005.2.28。 「光合成」という名称を初めて使ったのはアメリカの植物学者チャールズ・バーネス(1893年)である『Newton 2008年4月号』 水谷仁 ニュートンプレス 2008.4.7。 ひかりごうせいとも呼ばれることが多い。かつては炭酸同化作用(たんさんどうかさよう)とも言ったが現在はあまり使われない。.

新しい!!: 競争 (生物)と光合成 · 続きを見る »

個体群生態学

個体群生態学(こたいぐんせいたいがく、英語:population ecology)とは、個体群を研究対象とする生態学である。 一種類の生物を対象とすることで、種生態学と共通するが、種生態学が広くその種の性質や、分布や行動を研究対象にするのに対して、個体群生態学は特定地域の個体全体を対象に、個体数に絡んだ問題を対象に据える傾向がある。もちろん、両者を厳密に区別することは難しい。日本においては、森下正明と内田俊郎が創始者であるとされている。.

新しい!!: 競争 (生物)と個体群生態学 · 続きを見る »

競争

争(きょうそう)は英語の"competition"に由来し、福澤諭吉によって翻訳された単語である。.

新しい!!: 競争 (生物)と競争 · 続きを見る »

競争排除則

争排除則を示す実験に使われたゾウリムシ(''Paramecium aurelia'') 競争排除則(きょうそうはいじょそく、Competitive exclusion principle)は、群集生態学において、同じニッチ(生態的地位)にある複数の種は、安定的に共存できないという原則である。 ソ連の生態学者であるゲオルギー・ガウゼ(en)が提唱したため、ガウゼの法則(Gause's Law of competitive exclusion)とも呼ばれる。同じニッチを持つ複数の種が同所的に存在すると、必ず競争によって一方が排除されるため、他の環境要因などがない場合は安定的に共存することはないという考え方である。.

新しい!!: 競争 (生物)と競争排除則 · 続きを見る »

群集生態学

群集生態学(ぐんしゅうせいたいがく、)とは生態学の一分野。生物の群集における複数種の組み合わせの示す規則性などを理解することを目的とする学問。synecologyともいう。これに対し、単一種の個体数の変動などを研究する個体群生態学や個体の行動や生理について研究する行動生態学、生理生態学などをautecologyということもある。 群集生態学は、群集をその対象とする生態学の分野である。群集とは、同一地域の生息する他種類の生物のまとまりであるから、群集生態学は、同一地域に生息する生物間の関係(種間関係)を明らかにし、あるいはそのしくみや働き(群集構造)を知ることを目的とする。 なお、個々の種についての研究は個体群生態学の対象であるが、個々の種の間の関係も、その延長として個体群生態学の側から論じられる場合がある。その意味では種間関係論は両者の領域にまたがる。 群集生態学は、まず植物を対象として進んだ。植物群落は肉眼的にもまとまりとして捕らえやすく、その構造を直接に把握しやすい。この分野は一方では群集の型を分類して体系化するという、植物社会学へと発展した。また、植物群集の変遷から遷移の考えが生まれ、これに動物群集を結びつけたところから生態系の概念が生み出された。 動物の場合には、そのまとまりが見た目で把握しづらいこともあり、遅れて始まったが、チャールズ・エルトンが種間の関係において食う食われるの関係が重要であることを指摘し、食物連鎖を群集の構造の基本であると見なしたところから発展が始まった。 また、1959年に森下正明により論文発表がされたCλ指数は、群集生態学における指数で生物の群集の類似度を表す指数のひとつで、個体群における分布様式に関する指数であるIδ指数の研究を群集に応用したものである。.

新しい!!: 競争 (生物)と群集生態学 · 続きを見る »

環境収容力

境収容力(かんきょうしゅうようりょく、)とは、ある環境において、そこに継続的に存在できる生物の最大量。特定の生物群集の密度(個体群密度)が飽和に達したときの個体数である。通常は、特定のタクソンに属す生物に限定して、議論・計測される。英語"carrying capacity"は、「積載容量」を意味し、そこから生態学用語として現在の意味で使われるようになった。 環境学用語としては、「環境汚染物質の収容力を指し、その環境を損なうことなく、受け入れることのできる人間の活動または汚染物質の量」として用いられる。環境学用語の意味では、「環境容量」(かんきょうようりょう)との表記や、エコスペースの概念も用いられる。 以下、主に生態学用語の環境収容力について述べる。.

新しい!!: 競争 (生物)と環境収容力 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

新しい!!: 競争 (生物)と生物学 · 続きを見る »

生態学

生態学(せいたいがく、ecology)は、生物と環境の間の相互作用を扱う学問分野である。 生物は環境に影響を与え、環境は生物に影響を与える。生態学研究の主要な関心は、生物個体の分布や数にそしてこれらがいかに環境に影響されるかにある。ここでの「環境」とは、気候や地質など非生物的な環境と生物的環境を含んでいる。 なお、生物群の名前を付けて「○○の生態」という場合、その生物に関する生態学的特徴を意味する場合もあるが、単に「生きた姿」の意味で使われる場合もある。.

新しい!!: 競争 (生物)と生態学 · 続きを見る »

遷移 (生物学)

生物学分野での遷移(せんい)とは、ある環境条件下での生物群集の非周期的な変化を指す言葉である。 たとえば、野原に草が伸び、そのうちに木が生えてきて、いつの間にか森林になるような変化がそれに当たる。.

新しい!!: 競争 (生物)と遷移 (生物学) · 続きを見る »

草本

草 草本(そうほん)とは、一般に草(くさ)と呼ばれる、植物の生活の型の一つである。.

新しい!!: 競争 (生物)と草本 · 続きを見る »

資源

資源(しげん)は、人間の生活や産業等の諸活動の為に利用可能なものをいう。広義には人間が利用可能な領域全てであり、狭義には諸活動に利用される原材料である。 各種天然資源や観光資源のような物的資源と、人的資源とがある。さらに、経済上投入可能な資源として経済的資源という区分もある。 人間の活動に利用可能なものが資源とされるため、何が資源と認識されるかはその時代や社会によって異なり、これまでは単なるゴミなどとされていたものでも技術の発達に伴い資源とされたり、逆にこれまで利用され資源と認識されたものでも、社会の変化と共に資源でなくなったりする。.

新しい!!: 競争 (生物)と資源 · 続きを見る »

造礁サンゴ

イシサンゴ目ミドリイシ科のサンゴ イシサンゴ目キクメイシ科のサンゴ 造礁サンゴ(ぞうしょうサンゴ)は、サンゴ礁を形成するサンゴである。石灰質の大規模な骨格を形成する。.

新しい!!: 競争 (生物)と造礁サンゴ · 続きを見る »

植物

植物(しょくぶつ、plantae)とは、生物区分のひとつ。以下に見るように多義的である。.

新しい!!: 競争 (生物)と植物 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 競争 (生物)と水 · 続きを見る »

セコイアデンドロンの木 リュウケツジュ 木(き)とは、.

新しい!!: 競争 (生物)と木 · 続きを見る »

性淘汰

性淘汰(せいとうた)または性選択(せいせんたく、)とは、異性をめぐる競争を通じて起きる進化のこと。.

新しい!!: 競争 (生物)と性淘汰 · 続きを見る »

1925年

記載なし。

新しい!!: 競争 (生物)と1925年 · 続きを見る »

1926年

記載なし。

新しい!!: 競争 (生物)と1926年 · 続きを見る »

ここにリダイレクトされます:

種内競争種間競争生存競争

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »