ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

突然変異

索引 突然変異

突然変異(とつぜんへんい)とは、生物やウイルスがもつ遺伝物質の質的・量的変化。および、その変化によって生じる状態。 核・ミトコンドリア・葉緑体において、DNA、あるいはRNA上の塩基配列に物理的変化が生じることを遺伝子突然変異という。染色体の数や構造に変化が生じることを染色体突然変異という。 細胞や個体のレベルでは、突然変異により表現型が変化する場合があるが、必ずしも常に表現型に変化が現れるわけではない。 また、多細胞生物の場合、突然変異は生殖細胞で発生しなければ、次世代には遺伝しない。 表現型に変異が生じた細胞または個体は突然変異体(ミュータント)と呼ばれ、変異を起こす物理的・化学的な要因は変異原(ミュータゲン)という。 個体レベルでは、発ガンや機能不全などの原因となる場合がある。しかし、集団レベルでみれば、突然変異によって新しい機能をもった個体が生み出されるので、進化の原動力ともいえる。 英語やドイツ語ではそれぞれミューテーション、ムタチオン、と呼び、この語は「変化」を意味するラテン語に由来する。.

63 関係: 塩基塩基配列多細胞生物変異原変異導入中立進化説人為突然変異体細胞化学物質ナンセンス変異依存mRNA分解機構ナンセンス突然変異ペプチドミュータントミスセンス突然変異ハーマン・J・マラーモグラユーゴー・ド・フリースラブラドール・レトリバーリボ核酸ワクチンヌクレオチドトランスポゾンデオキシリボ核酸フレームシフト突然変異ダウン症候群分子時計アミノ酸イントロンウイルスオープンリーディングフレームカラスゲノムコドンショウジョウバエスイカサプレッサ突然変異倍数性突然変異突然変異説翻訳 (生物学)真正細菌終止コドン点突然変異生殖細胞DNA修復DNA複製適応的突然変異遺伝子遺伝学非表現突然変異...表現型転写 (生物学)転移RNA自然選択説腫瘍進化X線染色体染色体異常欠失放射線整数21番染色体 (ヒト) インデックスを展開 (13 もっと) »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: 突然変異と塩基 · 続きを見る »

塩基配列

生物学における塩基配列(えんきはいれつ)とは、DNA、RNAなどの核酸において、それを構成しているヌクレオチドの結合順を、ヌクレオチドの一部をなす有機塩基類の種類に注目して記述する方法、あるいは記述したもののこと。 核酸の塩基配列のことを、単にシークエンスと呼ぶことも多い。ある核酸の塩基配列を調べて明らかにする操作・作業のことを、塩基配列決定、あるいはシークエンシングと呼ぶ。.

新しい!!: 突然変異と塩基配列 · 続きを見る »

多細胞生物

多細胞生物(たさいぼうせいぶつ、、)とは、複数の細胞で体が構成されている生物のこと。一つの細胞のみで体が構成されている生物は単細胞生物と呼ばれる。動物界や植物界に所属するものは、すべて多細胞生物である。菌界のものには多細胞生物と若干の単細胞生物が含まれている。肉眼で確認できる大部分の生物は多細胞生物である。 細かく見れば、原核生物にも簡単な多細胞構造を持つものがあり、真核の単細胞生物が多い原生生物界にも、ある程度発達した多細胞体制を持つものが含まれる。 多細胞体制の進化は、その分類群により様々な形を取る。おおざっぱに見れば、その生物の生活と深く関わりがあるので、動物的なもの・植物的なもの・菌類的なものそれぞれに特徴的な発達が見られる。 最も少ない細胞数で構成されている生物は、シアワセモ (Tetrabaena socialis) の4個である。.

新しい!!: 突然変異と多細胞生物 · 続きを見る »

変異原

変異原(へんいげん、mutagen)とは、生物の遺伝情報(DNAあるいは染色体)に変化をひき起こす作用を有する物質または物理的作用(放射線など)をいう。GHSの定義では、「変異原性物質(Mutagen)とは、細胞の集団または生物体に突然変異を発生する頻度を増大させる物質」であり、「突然変異(Mutation)とは、細胞内の遺伝物質の量または構造における恒久的な変化」である。 変異原としての性質あるいは作用の強さを変異原性(へんいげんせい、mutagenicity)もしくは遺伝子毒性(いでんしどくせい)と呼ぶ。 また遺伝毒性(いでんどくせい、genotoxicity)を持つ物質の一部はその原因として変異原性を有する。つまり変異原性を原因とする遺伝形質の変化(発がん、催奇形性)は毒性として認識されれば遺伝毒性と呼ばれる。また、変異原性を原因とする形質の変化が生殖機能に影響する場合や次世代の形質転換に及ぶ場合は生殖毒性と呼ばれる。 特に、発がんにおけるイニシエーター(initiator。発がん性物質で、遺伝情報に異常を起こしてがんの原因を作るもの)のほとんどは変異原性物質でもあることが実験的に知られている。 日本においては、医薬品(医薬品医療機器等法)、食品添加物(食品衛生法)、農薬(農薬取締法)、新規化学物質(化学物質の審査及び製造等の規制に関する法律)および労働環境検査(労働安全衛生法)についてサンプルの変異原性試験が求められている。主要な物質については変異原性試験と併せて遺伝毒性や生殖毒性の評価も行われる。 つまり、変異原性を調べることは遺伝毒性、発がん性の可能性がある物質を見つけ出すのにも役立つと考えられ、変異原性試験は発がん性物質のスクリーニング試験(候補の絞り込み)としての意味も持つ。.

新しい!!: 突然変異と変異原 · 続きを見る »

変異導入

変異導入(へんいどうにゅう)とは、塩基配列やアミノ酸配列を現状とは異なる配列に人為的に置き換えること。 ゲノムへの導入の場合、ニトロソグアニジンや紫外線などを用いてランダムに突然変異を導入する方法と、組み換えなどを利用して任意の位置に任意の配列を導入する方法に大別できる。これらの変異導入により遺伝子から生産されるタンパク質のアミノ酸配列を改変することで、その性質を調べたり改良したりするのに用いられることが多い。 Category:生物学の研究技術.

新しい!!: 突然変異と変異導入 · 続きを見る »

中立進化説

中立進化説(ちゅうりつしんかせつ、)とは、分子レベルでの遺伝子の変化は大部分が自然淘汰に対して有利でも不利でもなく(中立的)、突然変異と遺伝的浮動が進化の主因であるとする説。分子進化の中立説、あるいは単に中立説ともいう。国立遺伝学研究所の木村資生 (きむらもとお) によって1960年代後半および1970年代前半に発表されて、センセーションを巻き起こした説である。中立説は自然選択説との間で論争を引き起こした。.

新しい!!: 突然変異と中立進化説 · 続きを見る »

人為突然変異

人為突然変異(じんいとつぜんへんい)とは、人為的な刺激を与えることで引き起こされた突然変異のことである。遺伝学の発展において大きな役割を果たし、また実用上も利用されている。.

新しい!!: 突然変異と人為突然変異 · 続きを見る »

体細胞

体細胞(たいさいぼう、英語:somatic cell)とは、多細胞生物を構成する細胞のうち生殖細胞以外の細胞のことを言う。有性生殖においては次世代へは受け継がれない。ある目的に特化してしまいそれ以外の細胞にならない分化した細胞と、何種類かの異なった機能を持つ細胞に分化する能力を持った細胞がある。後者は幹細胞と呼ばれ、その種類や多能性によって様々なものがある。.

新しい!!: 突然変異と体細胞 · 続きを見る »

化学物質

化学物質(かがくぶっしつ、chemical substance)とは、分野や文脈に応じて以下のような様々な意味で用いられている言葉である。.

新しい!!: 突然変異と化学物質 · 続きを見る »

ナンセンス変異依存mRNA分解機構

ナンセンス変異依存mRNA分解機構(ナンセンスへんいいぞんエムアールエヌエーぶんかいきこう、英:Nonsense-mediated mRNA decay、以下NMD)は、すべての真核生物に存在するmRNAの品質監視機構である。その主要な機能は、何らかの原因により本来よりDNA上の上流に出現した終止コドンを含むmRNAを分解・除去することにより、最終産物であるタンパク質の異常を未然に減少させることである。このような異常なmRNAがタンパク質まで翻訳された場合、最終的に合成されたタンパク質が有害な機能獲得性変異を生じたり、ドミナントネガティブ作用を引き起こしたりする可能性がある。 NMDという現象は、1979年に初めて、ヒトの細胞と酵母菌においてほぼ同時に記述されている。これは、この興味深い機構が系統発生学的に種をまたいで、また時間的にも広く保存されており、生物学的に重要な役割を持つことを示唆している。 NMDは、細胞においてナンセンス突然変異を持つアレルから転写されたmRNAの量が予想に反して少ないことがしばしばある、ということが観察されたことで発見された。ナンセンス突然変異は、塩基対の挿入や欠失により本来の終止コドンではない場所に終止コドンをコードするような変異である。本来アミノ酸をコードしていたコドンが終止コドンに置換されることで、mRNAは本来より短くなり、最終産物であるタンパク質も短くなる。タンパク質のどの程度が失われるかで、その変異タンパク質がまだ機能できるかどうかが決定される。この現象は異常なタンパク質の翻訳を抑制するだけでなく、ある特定の遺伝子変異の臨床像に対する影響を決定づける可能性がある。.

新しい!!: 突然変異とナンセンス変異依存mRNA分解機構 · 続きを見る »

ナンセンス突然変異

ナンセンス突然変異(ナンセンスとつぜんへんい、英:Nonsense mutation.)は、終止変異とも言われ、アミノ酸のコドンを終止コドンに変える変異を言い、非常に影響の大きい変異である。ポリペプチド鎖の長さは、終止コドンが表れた場所によって決まり、遺伝子のはじめに近い位置に終止コドンが出た場合は、短いポリペプチド鎖になる。真核生物の場合、非常に早い段階に終止コドンを持つmRNAは、ナンセンスであるためmRNA分解によって、分解される。 ただ、サプレッサー変異で、変異tRNAを持つ場合、このナンセンス突然変異を抑えることがあるということが知られている。.

新しい!!: 突然変異とナンセンス突然変異 · 続きを見る »

ペプチド

ペプチド(Peptid、peptide:ペプタイド, ギリシャ語の πεπτος (消化できる)に由来する)は、決まった順番で様々なアミノ酸がつながってできた分子の系統群である。1つのアミノ酸残基と次のそれの間の繋がりはアミド結合またはペプチド結合と呼ばれる。アミド結合は典型的な炭素・窒素単結合よりもいくらか短い、そして部分的に二重結合の性質をもつ。なぜならその炭素原子は酸素原子と二重結合し、窒素は一つの非共有電子対を結合へ利用できるからである。 生体内で産生されるペプチドはリボソームペプチド、非リボソームペプチド、消化ペプチドの3つに大別される。.

新しい!!: 突然変異とペプチド · 続きを見る »

ミュータント

ミュータント()とは、突然変異体の事を指す英語である。 日本語で外来語として用いられる場合は、人為的、天変地異などの超自然現象によって引き起こされた突然変異体を指す場合が多く、サイエンス・フィクションでしばしば用いられる言葉となっている。 コトバン.

新しい!!: 突然変異とミュータント · 続きを見る »

ミスセンス突然変異

ミスセンス突然変異(みすせんすとつぜんへんい)とはコドン内の塩基の置換によって異なったアミノ酸残基が合成中のポリペプチド鎖に入り、異常蛋白質が産生されること。点突然変異の一種である。 鎌状赤血球貧血症がその例である。.

新しい!!: 突然変異とミスセンス突然変異 · 続きを見る »

ハーマン・J・マラー

ハーマン・ジョーゼフ・マラー(Hermann Joseph Muller、1890年12月21日 - 1967年4月5日)はアメリカの遺伝学者。ショウジョウバエに対するX線照射の実験で人為突然変異を誘発できることを発見した。この業績により1946年にノーベル生理学・医学賞を受賞している。精子バンクの提唱者でもある。.

新しい!!: 突然変異とハーマン・J・マラー · 続きを見る »

モグラ

モグラ(土竜)は、トガリネズミ形目に含まれるモグラ科(モグラか、Talpidae)の構成種の総称。.

新しい!!: 突然変異とモグラ · 続きを見る »

ユーゴー・ド・フリース

1890年当時の肖像 1907年当時の肖像 ユーゴー・マリー・ド・フリースまたはヒューゴー・マリー・デ・ヴリース(、 1848年2月16日 - 1935年5月21日)は、オランダの植物学者・遺伝学者。なお、ドフリスと呼称している日本の理科の教科書もある。オオマツヨイグサの栽培実験によって、1900年にカール・エーリヒ・コレンスやエーリヒ・フォン・チェルマクらと独立にメンデルの法則を再発見した。さらにその後も研究を続け、1901年には突然変異を発見した。この成果に基づいて、進化は突然変異によって起こるという「突然変異説」を提唱した。.

新しい!!: 突然変異とユーゴー・ド・フリース · 続きを見る »

ラブラドール・レトリバー

ラブラドール・レトリーバー(ラブラドール・レトリバー、あるいはラブラドール・リトリーバーとも。Labrador Retriever)は、大型犬に分類される犬種。元来、レトリーバー(獲物を回収 (Retrieve) する犬)と呼ばれる狩猟犬の一種であるが、現在はその多くが家庭犬として、あるいは盲導犬や警察犬などの使役犬として飼育されている。 ラブラドール・レトリーバーの特徴として、本来の使役用途である網にかかった魚の回収に適した、水かきのついた足があげられる。カナダ、イギリスで登録頭数第1位で、アメリカでも1991年以来登録頭数第1位の人気犬種である。また、洞察力、作業力に優れ、オーストラリア、カナダ、イギリス、アメリカなど世界各国で、身体障害者補助犬、警察犬など様々な用途に最適な犬種として使役されている。ラブラドール・レトリーバーは活発で泳ぐことを好み、幼児から高齢者までよき遊び相手であるとともに保護者の役割も果たす犬種である。.

新しい!!: 突然変異とラブラドール・レトリバー · 続きを見る »

リボ核酸

リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

新しい!!: 突然変異とリボ核酸 · 続きを見る »

ワクチン

ワクチン(Vakzin、vaccine)は、感染症の予防に用いる医薬品。病原体から作られた無毒化あるいは弱毒カ化された抗原を投与することで、体内に病原体に対する抗体産生を促し、感染症に対する免疫を獲得する。 18世紀末、一度罹患したら再び罹患しない事実からエドワード・ジェンナーが天然痘のワクチンを発見し、その後にルイ・パスツールがこれを弱毒化した。弱毒生ワクチン、あるいは生ワクチンと呼ばれる。これに対して、不活化ワクチンは抗原のみを培養したもので、複数回の摂取が必要となったりする。.

新しい!!: 突然変異とワクチン · 続きを見る »

ヌクレオチド

ヌクレオチド (nucleotide) とは、ヌクレオシドにリン酸基が結合した物質である。語源は“nucleo(核の)tide(結ばれた)”と言う意味である。英語では「ニュークリオタイド」と発音する。ヌクレオシドは五単糖の1位にプリン塩基またはピリミジン塩基がグリコシド結合したもの。DNAやRNAを構成する単位でもある。 ヌクレオチドが鎖のように連なりポリヌクレオチドになる。またアデノシン三リン酸はリン酸供与体としても機能し、加えてセカンドメッセンジャーの機能を持つcAMPなども知られる。遺伝暗号のコドンでは、ヌクレオチド3個でアミノ酸一つをコードしている。.

新しい!!: 突然変異とヌクレオチド · 続きを見る »

トランスポゾン

トランスポゾン (transposon) は細胞内においてゲノム上の位置を転移 (transposition) することのできる塩基配列である。動く遺伝子、転移因子 (transposable element) とも呼ばれる。DNA断片が直接転移するDNA型と、転写と逆転写の過程を経るRNA型がある。トランスポゾンという語は狭義には前者のみを指し、後者はレトロポゾン (retroposon) と呼ばれる。レトロポゾンはレトロウイルスの起源である可能性も示唆されている。レトロポゾンのコードする逆転写酵素はテロメアを複製するテロメラーゼと進化的に近い。 転移はゲノムのDNA配列を変化させることで突然変異の原因と成り得、多様性を増幅することで生物の進化を促進してきたと考えられている。トランスポゾンは遺伝子導入のベクターや変異原として有用であり、遺伝学や分子生物学において様々な生物で応用されている。.

新しい!!: 突然変異とトランスポゾン · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 突然変異とデオキシリボ核酸 · 続きを見る »

フレームシフト突然変異

フレームシフト突然変異(フレームシフトとつぜんへんい)とは、塩基の欠失または挿入が起こり、三つ組みの読み枠がずれた時に生じる突然変異である。これは、塩基対置換よりも影響が非常に大きい。というのも、大幅に遺伝暗号がずれ、アミノ酸が変わるだけでなく、終止コドンなどもずれてしまうためである。本来止まるべき終止コドンを読めなくなったり、より手前で終止コドンが現れたりする(フレームシフトの大半はこれ)ためである。以下の例で変異を考える。 このように変異箇所から後の配列は大幅に異なる。このように、終止コドンが最後の辺りで無くなると、リボソームはポリA配列を読む羽目になって立ち往生する。だから真核細胞においては、終止コドンがないための分解 nonstop mediated decayによってmRNAは翻訳完了前に分解されてしまう。 3個の塩基がバラバラに導入された場合は、1個や2個の場合と比べ、影響は小さくなる。3カ所にAが入ることで考える。 となって、3つ目に新たに挿入されたA以降のリーディングフレームが元通りとなり、影響は小さくなる。ただし、3つ組で入る場合はフレームがずれないので、単に挿入と言いフレームシフトとは言わない。 次に、フレームシフトによって終止コドンが来る場合を以下の例で説明する。大半のフレームシフト変異はこれに属する。 本来作られるべきポリペプチドよりも、大幅に小さいものが出来上がる。このような場合、真核生物においてはタンパク質は機能しないので、ナンセンス変異依存mRNA分解機構 nonsense mediated mRNA decayによって細胞内で破壊されることになる。.

新しい!!: 突然変異とフレームシフト突然変異 · 続きを見る »

ダウン症候群

ダウン症患者の染色体。22対の常染色体のうち21番染色体だけは3本の組(トリソミー)になっており、これがダウン症候群を引き起こす原因である。右下に見えるXとYは性染色体。 ダウン症候群(ダウンしょうこうぐん、Down syndrome)は、体細胞の21番染色体が通常より1本多く存在し、計3本(トリソミー症)になることで発症する先天性疾患群である。多くは第1減数分裂時の不分離によって生じる他、減数第二分裂に起こる。新生児に最も多い遺伝子疾患である。 症状としては、身体的発達の遅延、特徴的な顔つき、軽度の知的障害が特徴である。平均して8-9歳の精神年齢に対応する軽度から中度の知的障害であるが、それぞれのばらつきは大きく、現時点で治療法は存在しない。教育と早期ケアによりQOLが改善されることが見込まれる。 ダウン症は、ヒトにおいて最も一般的な遺伝子疾患であり、年間1,000出生あたり1人に現れる 。.

新しい!!: 突然変異とダウン症候群 · 続きを見る »

分子時計

分子時計(ぶんしどけい、Molecular clock)とは、生物間の分子的な違いを比較し、進化過程で分岐した年代を推定したものの仮説。分子進化時計とも呼ばれることがある。.

新しい!!: 突然変異と分子時計 · 続きを見る »

アミノ酸

リシンの構造式。最も構造が単純なアミノ酸 トリプトファンの構造式。最も構造が複雑なアミノ酸の1つ。 アミノ酸(アミノさん、amino acid)とは、広義には(特に化学の分野では)、アミノ基とカルボキシル基の両方の官能基を持つ有機化合物の総称である。一方、狭義には(特に生化学の分野やその他より一般的な場合には)、生体のタンパク質の構成ユニットとなる「α-アミノ酸」を指す。分子生物学など、生体分子をあつかう生命科学分野においては、遺伝暗号表に含まれるプロリン(イミノ酸に分類される)を、便宜上アミノ酸に含めることが多い。 タンパク質を構成するアミノ酸のうち、動物が体内で合成できないアミノ酸を、その種にとっての必須アミノ酸と呼ぶ。必須アミノ酸は動物種によって異なる。.

新しい!!: 突然変異とアミノ酸 · 続きを見る »

イントロン

イントロン(intron)は、転写はされるが最終的に機能する転写産物からスプライシング反応によって除去される塩基配列。つまり、アミノ酸配列には翻訳されない。スプライシングによって除去されず、最終的にアミノ酸配列に翻訳される部位をエキソンと呼ぶ。 イントロンは一見無駄に見えるが、選択的スプライシングや、エキソンシャッフリングを可能にし、また、mRNAを核から運び出す過程や、翻訳効率などに関わっていることがわかってきた。.

新しい!!: 突然変異とイントロン · 続きを見る »

ウイルス

ウイルス()は、他の生物の細胞を利用して、自己を複製させることのできる微小な構造体で、タンパク質の殻とその内部に入っている核酸からなる。生命の最小単位である細胞をもたないので、非生物とされることもある。 ヒト免疫不全ウイルスの模式図.

新しい!!: 突然変異とウイルス · 続きを見る »

オープンリーディングフレーム

ープンリーディングフレーム (Open Reading Frame; ORF) とは、DNA またはRNA 配列をアミノ酸に翻訳した場合に終了コード配列(termination codon; 終止コドン)を含まない読み取り枠(Reading Frame)がオープンな(Open)状態にある(タンパク質に翻訳される可能性がある)塩基配列を指す。 遺伝子予測アルゴリズムを用いてDNA の断片配列から遺伝子の場所を探索する場合、ORF の長さが長いと遺伝子が存在している良い指標となる。ただ長いORF が存在しても必ずタンパク質に翻訳されているとは限らないので、長いORF が遺伝子であるかは実際にそのタンパク質が合成されているかを調べる必要がある。.

新しい!!: 突然変異とオープンリーディングフレーム · 続きを見る »

カラス

ラス(烏、鴉、鵶、雅)は、鳥類カラス科の1グループ。カラス属 または近縁な数属を含む。 多くは全身が黒く、黒い鳥の代表とみなされ、諺などではよく白いサギと対比させられる。ただし、実際は、白黒2色のコクマルガラス、暗褐色に白斑のホシガラスなどもおり、必ずしも真っ黒のものだけではない。.

新しい!!: 突然変異とカラス · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

新しい!!: 突然変異とゲノム · 続きを見る »

コドン

mRNA分子に沿って一連のコドンを示している。各コドンは3ヌクレオチドからなり、一つのアミノ酸を指定している。 コドン(英: codon)とは、核酸の塩基配列が、タンパク質を構成するアミノ酸配列へと生体内で翻訳されるときの、各アミノ酸に対応する3つの塩基配列のことで、特に、mRNAの塩基配列を指す。DNAの配列において、ヌクレオチド3個の塩基の組み合わせであるトリプレットが、1個のアミノ酸を指定する対応関係が存在する。この関係は、遺伝暗号、遺伝コード(genetic code)等と呼ばれる。 ほぼ全ての遺伝子は厳密に同じコードを用いるから(#RNAコドン表を参照)、このコードは、しばしば基準遺伝コード(canonical genetic code)とか、標準遺伝コード(standard genetic code)、あるいは単に遺伝コードと呼ばれる。ただし、実際は変形コードは多い。つまり、基準遺伝コードは普遍的なものではない。例えば、ヒトではミトコンドリア内のタンパク質合成は基準遺伝コードの変形したものを用いている。 遺伝情報の全てが遺伝コードとして保存されているわけではないということを知ることは重要である。全ての生物のDNAは調節性塩基配列、遺伝子間断片、染色体の構造領域を含んでおり、これらは表現型の発現に寄与するが、異なった規則のセットを用いて作用する。これらの規則は、すでに十分に解明された遺伝コードの根底にあるコドン対アミノ酸パラダイムのように明解なものかも知れないし、それほど明解なものではないかも知れない。.

新しい!!: 突然変異とコドン · 続きを見る »

ショウジョウバエ

ョウジョウバエ(猩猩蠅)は、ハエ目(双翅目)・ショウジョウバエ科 (Drosophilidae) に属するハエの総称である。科学の分野では、その一種であるキイロショウジョウバエ (Drosophila melanogaster) のことをこう呼ぶことが多い。この種に関しては非常に多くの分野での研究が行われているが、それらに関してはキイロショウジョウバエの項を参照。本項ではこの科全般を扱う。.

新しい!!: 突然変異とショウジョウバエ · 続きを見る »

スイカ

イカの花 スイカ(西瓜、学名: Citrullus lanatus)は、果実を食用にするために栽培されるウリ科のつる性一年草。また、その果実のこと。 原産は、熱帯アフリカのサバンナ地帯や砂漠地帯。日本に伝わった時期は定かでないが、室町時代以降とされる。西瓜の漢字は中国語の西瓜(北京語:シーグァ xīguā)に由来する。日本語のスイカは「西瓜」の唐音である。中国の西方(中央アジア)から伝来した瓜とされるためこの名称が付いた。 夏に球形または楕円形の甘味を持つ果実を付ける。果実は園芸分野では果菜(野菜)とされるが、青果市場での取り扱いや、栄養学上の分類では果実的野菜に分類される。.

新しい!!: 突然変異とスイカ · 続きを見る »

サプレッサ突然変異

プレッサー突然変異(サプレッサーとつぜんへんい)とは、1か所の突然変異の効果が第2の突然変異によって、遮蔽される遺伝子変異。 例えば、物質Aの産生に関する酵素の一つが不活性化されたとすると、その後のサプレッサ変異で,再び活性をもつこの酵素の合成回復させ、物質Aが産生出来るようにする。サプレッサ突然変異は2つに分類することができる。.

新しい!!: 突然変異とサプレッサ突然変異 · 続きを見る »

倍数性

倍数性(ばいすうせい、 または )とは、生物あるいはその生活環の一時期において、生存に必要な最小限の染色体の1組(ゲノム)を何セット持つかを示す概念。.

新しい!!: 突然変異と倍数性 · 続きを見る »

突然変異

突然変異(とつぜんへんい)とは、生物やウイルスがもつ遺伝物質の質的・量的変化。および、その変化によって生じる状態。 核・ミトコンドリア・葉緑体において、DNA、あるいはRNA上の塩基配列に物理的変化が生じることを遺伝子突然変異という。染色体の数や構造に変化が生じることを染色体突然変異という。 細胞や個体のレベルでは、突然変異により表現型が変化する場合があるが、必ずしも常に表現型に変化が現れるわけではない。 また、多細胞生物の場合、突然変異は生殖細胞で発生しなければ、次世代には遺伝しない。 表現型に変異が生じた細胞または個体は突然変異体(ミュータント)と呼ばれ、変異を起こす物理的・化学的な要因は変異原(ミュータゲン)という。 個体レベルでは、発ガンや機能不全などの原因となる場合がある。しかし、集団レベルでみれば、突然変異によって新しい機能をもった個体が生み出されるので、進化の原動力ともいえる。 英語やドイツ語ではそれぞれミューテーション、ムタチオン、と呼び、この語は「変化」を意味するラテン語に由来する。.

新しい!!: 突然変異と突然変異 · 続きを見る »

突然変異説

突然変異説(とつぜんへんいせつ)とは、劇的な突然変異が進化の主原動力だとする進化論の学説の一つ。1901年にオオマツヨイグサの変異の観察からユーゴー・ド・フリースが提唱した。 19世紀にはすでに、観察される個体変異には量的な変異と質的な変異があることが広く知られていた。またこの時代には遺伝的変異と表現型の変異が明確に区別されていなかった。初期のメンデル遺伝学者は変異の不連続性を取り上げ、劇的な質的突然変異が進化の主要な原動力でありダーウィンの自然選択説は補助的な役割しか果たさないと見なした。この立場は進化の漸進性を強調するダーウィン主義者(ウォレス、ヴァイスマン、ポールトン)や、量的変異に注目していたイギリスの生物統計学者たち(ゴルトン、ピアソン、ウェルドン)との間に激しい対立を引き起こした。特に生物統計学派との論争は長く続いたが、ヘルマン・ニルソン=エーレが1909年に遺伝子型と表現型の区別を提唱し、1910年代以降量的形質と断片的な突然変異の一貫性が集団遺伝学者によって示され、その後進化の総合学説に統合された。.

新しい!!: 突然変異と突然変異説 · 続きを見る »

翻訳 (生物学)

分子生物学などにおいては、翻訳(ほんやく、Translation)とは、mRNAの情報に基づいて、タンパク質を合成する反応を指す。本来は細胞内での反応を指すが、細胞によらずに同様の反応を引き起こす系(無細胞翻訳系)も開発されている。.

新しい!!: 突然変異と翻訳 (生物学) · 続きを見る »

真正細菌

真正細菌(しんせいさいきん、bacterium、複数形 bacteria バクテリア)あるいは単に細菌(さいきん)とは、分類学上のドメインの一つ、あるいはそこに含まれる生物のことである。sn-グリセロール3-リン酸の脂肪酸エステルより構成される細胞膜を持つ原核生物と定義される。古細菌ドメイン、真核生物ドメインとともに、全生物界を三分する。 真核生物と比較した場合、構造は非常に単純である。しかしながら、はるかに多様な代謝系や栄養要求性を示し、生息環境も生物圏と考えられる全ての環境に広がっている。その生物量は膨大である。腸内細菌や発酵細菌、あるいは病原細菌として人との関わりも深い。語源はギリシャ語の「小さな杖」(βακτήριον)に由来している。.

新しい!!: 突然変異と真正細菌 · 続きを見る »

終止コドン

終止コドンとは、遺伝暗号を構成する64種のコドンのうち、対応するアミノ酸(とtRNA)がなく、最終産物である蛋白質の生合成を停止させるために使われているコドン。終結コドンあるいはアミノ酸を指定しないことから、ナンセンスコドンとも呼ばれる。 一般に核ゲノムから転写されるmRNA上のコードでは、UAA(オーカー)・UAG(アンバー)・UGA(オパール)の3種がある。.

新しい!!: 突然変異と終止コドン · 続きを見る »

点突然変異

点突然変異あるいは1塩基置換は、遺伝物質DNAあるいはRNAの1ヌクレオチド塩基を別のヌクレオチド塩基に置換わる、つまりDNAやRNAのG、A、T、Cのうち一つ(一塩基)が別の塩基に置き換わってしまう突然変異のこと。 1塩基の欠失あるいは付加(挿入)はコドン(codon)の読み枠をそれ以降のDNAやRNA上で変更するフレームシフト変異を起こす、この場合、合成されたタンパク質はそのヌクレオチド上で異なる読み枠でトリプレットが読まれるため、もっと深刻な帰結をもたらす。これはフレームシフト突然変異と呼ばれる。.

新しい!!: 突然変異と点突然変異 · 続きを見る »

生殖細胞

生殖細胞(せいしょくさいぼう)とは生殖において遺伝情報を次世代へ伝える役割をもつ細胞である。胚細胞ともいう。.

新しい!!: 突然変異と生殖細胞 · 続きを見る »

DNA修復

DNA修復(DNAしゅうふく、)とは、生物細胞において行われている、様々な原因で発生するDNA分子の損傷を修復するプロセスのことである。DNA分子の損傷は、細胞の持つ遺伝情報の変化あるいは損失をもたらすだけでなく、その構造を劇的に変化させることでそこにコード化されている遺伝情報の読み取りに重大な影響を与えることがあり、DNA修復は細胞が生存しつづけるために必要な、重要なプロセスである。生物細胞にはDNA修復を行う機構が備わっており、これらをDNA修復機構、あるいはDNA修復系と呼ぶ。.

新しい!!: 突然変異とDNA修復 · 続きを見る »

DNA複製

'''図1 DNA複製の模式図'''.青色の二本の帯が鋳型鎖(Template Strands)。2本が平行に並んでいる上部は二重らせん、斜めになって非平行になっている下部は二重らせんが解けて一本鎖となった領域である。上部と下部の境目が複製フォーク (Replication Fork) であり、二重らせん領域は時間とともに解けられていくので複製フォークは図の上側へと進行していく。下部の2本の一本鎖はそれぞれ異なる様式でDNAポリメラーゼ(DNA Polymerase、緑色)により複製され、上から見て5'から3'の左の鋳型鎖ではDNAポリメラーゼが複製フォークと同じ方向に進行し、一本のリーディング鎖 (Leading Strand) が合成される。上から見て3'から5'の右の鋳型鎖ではDNAポリメラーゼが複製フォークと逆の方向に進み、途切れ途切れにいくつもの岡崎フラグメント (Okazaki Fragments) が合成されていく。伸長が終わった岡崎フラグメントはDNAリガーゼ(DNA Ligase、ピンク)によりつなぎ合わせられ、ラギング鎖 (Lagging Strand) となる。 DNA複製(ディーエヌエイふくせい、DNA replication)は、細胞分裂における核分裂の前に、DNAが複製されてその数が2倍となる過程である。生物学ではしばしば複製 (replication) と略される。セントラルドグマの一員とされる。複製される一本鎖DNAを親鎖 (parent strand)、DNA複製によって新しく合成された一本鎖DNAを娘鎖 (daughter strand) という。また、DNA複製により生じた染色体の個々を姉妹染色分体 (sister chromatid) という。.

新しい!!: 突然変異とDNA複製 · 続きを見る »

適応的突然変異

適応的突然変異(てきおうてきとつぜんへんい)Adaptive mutationとは、周りの環境に適応していく突然変異。 変異は無作為的に発生し、その中から、環境に適したものが生き残り、淘汰されて行くと考えられていた。 しかしこの適応的変異の場合は、作為的な変異となる。例えば、生物が飢餓状態におかれた場合、それまで利用できなかったものを栄養物として利用できるようになる。これは「獲得形質の遺伝」ということができ、ダーウィニズムに対する重大な反証となる可能性がある。 これは、1988年にケアンズらの研究によって最初に示された。Lacにフレームシフト突然変異を起こしたE.Coli(大腸菌)を用いた。これを、炭素源が乳糖のみである培地で培養した。もう一度変異が起こり、乳糖を炭素源として利用できるようになる場合だけ、増殖できる。つまり、ナンセンス突然変異の逆の効果によって、Lac分解酵素が合成できるようになる場合においてのみ増殖できるということである。この効果が予測を上回って好発し、また、E.Coliの他の遺伝子領域と比較しても好発していることが示された。 しかしこの結論は、現在では誤りであることがHendrickson Hら によって示されている。導入された遺伝子は、プラスミド上にあり、染色体上ではない。このため、大腸菌は、乳糖がなくて、染色体を増幅出来ないものの、プラスミドを増幅することが出来る。このため、プラスミド上では、突然変異が高確率で起こる。Lac突然変異は、不安定ではあるものの、Lacを利用できるようになった大腸菌は、そうでない大腸菌と違い、成長をすることが出来る。この間に、安定した変異が生じ、自然選択的にLac分解能を獲得した大腸菌が高頻度で生じることとなる。.

新しい!!: 突然変異と適応的突然変異 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: 突然変異と遺伝子 · 続きを見る »

遺伝学

遺伝学(いでんがく、)は、生物の遺伝現象を研究する生物学の一分野である。遺伝とは世代を超えて形質が伝わっていくことであるが、遺伝子が生物の設計図的なものであることが判明し、現在では生物学のあらゆる分野に深く関わるものとなっている。.

新しい!!: 突然変異と遺伝学 · 続きを見る »

非表現突然変異

非表現突然変異(ひひょうげんとつぜんへんい)は、DNAの突然変異で、タンパク質のアミノ酸の配列には影響を及ぼさないものである。DNAの非コード部位(遺伝子の外側部分または、イントロンの部位)の変異、もしくはエキソンにおける最終的なアミノ酸配列には関与しない範囲での変異である。サイレント突然変異 (silent mutation) ともいう。 タンパク質の機能に影響しないので、進化的中立であるかのようにしばしば扱われる。しかしながら、多くの生命体でコドン使用の種による多様性が知られているので、コドンの使用は翻訳の安定性を目的とする自然選択であることを示唆している。よって、非表現突然変異はスプライシングや翻訳のコントロールに影響を及ぼすかもしれない。 分子クローニング実験において、目的の遺伝子に非表現突然変異を導入することは、制限酵素のために認識部位を作成、または取り除くために役に立つ。外部リンクで認識部位を作成する変異可能な目的の配列を分析することができるオンラインツールを紹介する。 最近の研究結果では、非表現突然変異は、タンパク質の構造や挙行に影響を及ぼしうる可能性を示唆している。,.

新しい!!: 突然変異と非表現突然変異 · 続きを見る »

表現型

表現型(ひょうげんがた、ひょうげんけい、)とは、ある生物のもつ遺伝子型が形質として表現されたものである。その生物の形態、構造、行動、生理的性質などを含む。獲得形質は含まない。.

新しい!!: 突然変異と表現型 · 続きを見る »

転写 (生物学)

転写中のDNAとRNAの電子顕微鏡写真。DNAの周りに薄く広がるのが合成途中のRNA(多数のRNAが同時に転写されているため帯状に見える)。RNAポリメラーゼはDNA上をBeginからEndにかけて移動しながらDNAの情報をRNAに写し取っていく。Beginではまだ転写が開始された直後なため個々のRNA鎖が短く、帯の幅が狭く見えるが、End付近では転写がかなり進行しているため個々のRNA鎖が長く(帯の幅が広く)なっている 転写(てんしゃ、Transcription)とは、一般に染色体またはオルガネラのDNAの塩基配列(遺伝子)を元に、RNA(転写産物transcription product)が合成されることをいう。遺伝子が機能するための過程(遺伝子発現)の一つであり、セントラルドグマの最初の段階にあたる。.

新しい!!: 突然変異と転写 (生物学) · 続きを見る »

転移RNA

転移RNA(てんい-、transfer RNA)は73〜93塩基の長さの小さなRNAである。リボソームのタンパク質合成部位でmRNA上の塩基配列(コドン)を認識し、対応するアミノ酸を合成中のポリペプチド鎖に転移させるためのアダプター分子である。運搬RNA、トランスファーRNAなどとも呼ぶが、通常tRNAと略記される。.

新しい!!: 突然変異と転移RNA · 続きを見る »

自然選択説

自然選択説(しぜんせんたくせつ、)とは、進化を説明するうえでの根幹をなす理論。厳しい自然環境が、生物に無目的に起きる変異(突然変異)を選別し、進化に方向性を与えるという説。1859年にチャールズ・ダーウィンとアルフレッド・ウォレスによってはじめて体系化された。自然淘汰説(しぜんとうたせつ)ともいう。日本では時間の流れで自然と淘汰されていくという意味の「自然淘汰」が一般的であるが、本項では原語に従って「自然選択」で統一する。.

新しい!!: 突然変異と自然選択説 · 続きを見る »

腫瘍

腫瘍(しゅよう、Tumor)とは、組織、細胞が生体内の制御に反して自律的に過剰に増殖することによってできる組織塊のこと。腫瘍ができたことにより、身体に影響を及ぼすことがある。 病理学的には、新生物(しんせいぶつ、Neoplasm)と同義である。なお、Neoplasmはギリシャ語のNeoplasia(新形成)からできた単語である。.

新しい!!: 突然変異と腫瘍 · 続きを見る »

進化

生物は共通祖先から進化し、多様化してきた。 進化(しんか、evolutio、evolution)は、生物の形質が世代を経る中で変化していく現象のことであるRidley(2004) p.4Futuyma(2005) p.2。.

新しい!!: 突然変異と進化 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: 突然変異とX線 · 続きを見る »

染色体

染色体(せんしょくたい)は遺伝情報の発現と伝達を担う生体物質である。塩基性の色素でよく染色されることから、1888年にヴィルヘルム・フォン・ヴァルデヤー(Heinrich Wilhelm Gottfried von Waldeyer-Hartz)によって Chromosome と名付けられた。Chromo- はギリシャ語 (chroma) 「色のついた」に、-some は同じく (soma) 「体」に由来する。.

新しい!!: 突然変異と染色体 · 続きを見る »

染色体異常

染色体異常(せんしょくたいいじょう)とは、染色体の構造異常のこと。またはそれに伴う障がい。この記事では主に医学的な観点からヒトの染色体異常について解説する。.

新しい!!: 突然変異と染色体異常 · 続きを見る »

欠失

欠失(けっしつ 英語でDeletion)とは、染色体または、DNAの塩基配列の一部が失われること。多くの遺伝病の原因の一つであり、また、原癌遺伝子や癌抑制遺伝子に起きれば、異常たんぱくが多量に産生され、癌となる。欠失部分のため、減数分裂において、完全に対合することが出来なく、はみ出したループをつくり、対合する。.

新しい!!: 突然変異と欠失 · 続きを見る »

放射線

放射線(ほうしゃせん、radiation、radial rays)とは、高い運動エネルギーをもって流れる物質粒子(アルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などの粒子放射線)と高エネルギーの電磁波(ガンマ線とX線のような電磁放射線)の総称をいう。「放射線」に全ての電磁波を含め、電離を起こすエネルギーの高いものを電離放射線、そうでないものを非電離放射線とに分けることもあるが、一般に「放射線」とだけいうと、高エネルギーの電離放射線の方を指していることが多い 。 なお、広辞苑には「放射性元素の放射性崩壊に伴い放出される粒子放射線と電磁放射線(主にアルファ線、ベータ線、ガンマ線)を指す」広辞苑第五版 p.2432【放射線】、とあるが、これは放射性物質の放射能を問題とする文脈ではそれを指す、というくらいの意味である。.

新しい!!: 突然変異と放射線 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 突然変異と整数 · 続きを見る »

21番染色体 (ヒト)

ヒト21番染色体(ひと にじゅういちばんせんしょくたい)は、常染色体の1つ。21番染色体は22種類ある常染色体のうち最も小さく、270の遺伝子が含まれる。含まれる遺伝子が少ないため、他の染色体にくらべ染色体異常の影響が小さく、染色体数に異常が生じた場合でも生存が可能であり、その症状はダウン症として現れる。 染色体は大きい順から順番をつけるのが慣わしであったのだが22番染色体より前にこちらが発見されたため、21番染色体と22番染色体は大きさと番号が逆転してしまっている。.

新しい!!: 突然変異と21番染色体 (ヒト) · 続きを見る »

ここにリダイレクトされます:

ミューテイション変異突然変異体遺伝子変異遺伝子突然変異

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »