ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

確率変数の収束

索引 確率変数の収束

数学の確率論の分野において、確率変数の収束(かくりつへんすうのしゅうそく、)に関しては、いくつかの異なる概念がある。確率変数列のある極限への収束は、確率論や、その応用としての統計学や確率過程の研究における重要な概念の一つである。より一般的な数学において同様の概念は確率収束(stochastic convergence)として知られ、その概念は、本質的にランダムあるいは予測不可能な事象の列は、その列から十分離れているアイテムを研究する場合において、しばしば、本質的に不変な挙動へと落ち着くことが予想されることがある、という考えを定式化するものである。異なる収束の概念とは、そのような挙動の特徴づけに関連するものである:すぐに分かる二つの挙動とは、その列が最終的に定数となるか、あるいはその列に含まれる値は変動を続けるがある不変な確率分布によってその変動が表現される、というようなものである。.

48 関係: 偏りほとんど (数学)半連続各点収束大数の法則実解析射的中心極限定理一様可積分性一様分布平均二項分布位相幾何学マルコフの不等式チャリティーリプシッツ連続レヴィ–プロホロフ計量ベルヌーイ分布列 (数学)分散 (確率論)スコロホッドの表現定理優収束定理確率変数確率密度関数確率分布確率空間確率過程確率要素確率論統計学経験過程特性関数 (確率論)独立同分布距離化定理距離函数距離空間閉集合開集合連続 (数学)退化分布Lp空間推定量極限標本空間正規分布期待値有界函数数学

偏り

偏り(かたより)、またはバイアスという用語は、統計学で2つの異なる意味に用いられる。.

新しい!!: 確率変数の収束と偏り · 続きを見る »

ほとんど (数学)

数学において、ほとんど (almost) という語は、ある厳密な意味で用いられる専門用語のひとつである。主に「測度 0 の集合を除いて」という意味であるが、それ単体で用いることはあまりなく、「ほとんど至るところで(almost everywhere)」「ほとんど全ての(almost all)」などの決まり文句でひとつの意味を形成する。.

新しい!!: 確率変数の収束とほとんど (数学) · 続きを見る »

半連続

解析学における半連続性(semi-continuity)とは、拡張実数値関数(値として ±∞ を取り得る)に対して定義される「連続性」よりも弱い性質である。概略的に言うと、拡張実数値関数 f が点 x0 で上(下)半連続であるとは、x0 の十分近くで函数の値が f(x0) に近いかもしくは f(x0) よりも小さい(大きい)ことを言う。.

新しい!!: 確率変数の収束と半連続 · 続きを見る »

各点収束

数学において、各点収束 (pointwise convergence) は関数列の収束の概念の1つである。.

新しい!!: 確率変数の収束と各点収束 · 続きを見る »

大数の法則

大数の法則(たいすうのほうそく、law of large numbers)は、確率論・統計学における極限定理のひとつで、「経験的確率と理論的確率が一致する」 という、素朴な意味での確率を意味付け、定義付ける法則である。 厳密には、ヤコブ・ベルヌーイによる大数の弱法則 と、エミール・ボレルやアンドレイ・コルモゴロフによる大数の強法則 とがある。単に「大数の法則」と言った場合、どちらを指しているのかは文脈により判断する必要がある。.

新しい!!: 確率変数の収束と大数の法則 · 続きを見る »

実解析

数学において実解析(じつかいせき、Real analysis)あるいは実関数論(じつかんすうろん、theory of functions of a real variable)は(ユークリッド空間(の部分集合)上または(抽象的な)集合上の関数)について研究する解析学の一分野である。現代の実解析では、関数として一般に複素数値関数や複素数値写像あるいは複素数値関数に値をとる写像も含む。 実解析は、元々は実1変数実数値関数あるいは実多変数実数値およびベクトルに対する初等的な微分積分を意味していた。しかし現代の実解析は、積分論のいちぶとして測度論とルベーグ積分、関数空間((超)関数の成す線型位相空間)の理論、関数不等式、特異積分作用素などを扱う。関数解析におけるバナッハ空間の理論や作用素論・調和解析のフーリエ解析などの初歩的または部分的な理論も含むとされている。 関数空間の例には、L^p空間・数列空間・ソボレフ空間・緩増加超関数の空間・ベゾフ空間・トリーベル-リゾルキン空間・実解析版ハーディー空間・実補間空間がある。関数不等式の例には、作用素の実補間または複素補間による作用素または関数の有界性の調整・関数方程式について、初期値または非斉次項(非線型項)と未知関数の、有界性や可積分性または可微分性の関係を表すL^p-L^q評価と時空分散評価および時空消散評価・時間の経過に対する、関数の可微分性または可積分性を保存する意味を持つエネルギー(不)等式などの(解の存在を前提とした)評価式(アプリオリ評価)・別々の作用素を施された関数のノルムの関係、などがある。特異積分作用素には、「積分と微分を同時にする」リース変換や、流体力学と発展方程式の理論で現れるヒルベルト変換がある。 超関数とフーリエ変換は、実解析に入るのか関数解析に入るのか数学者の間でも扱いが分かれている。さらに今ではユークリッド空間だけではなく抽象的な集合(群または位相空間あるいは関数空間など)で定義された複素数値の写像(複素数値測度、複素数値線型汎関数)も取り扱う。そして特異積分作用素を扱う理論は「関数解析」における作用素論ではなく「実解析」として扱われている。複素解析の実解析への応用は(留数定理による実関数の積分の計算が)有名だが、実解析の複素解析への応用(その計算にルベーグの収束定理を適用することによる簡易化;フーリエ変換による複素解析版ハーディー空間とL^p関数の関係など)もある。現代数学では「実解析」の範囲は明確ではなく「複素解析」とは対をなす分野ではなくなっている。 また、実解析による偏微分微分方程式の解法は、主に関数空間と関数不等式およびフーリエ変換や特異積分作用素によるもので、解が具体的に表示できることも多いが計算が多くなる場面も多い。関数解析の作用素により論理を重ねる方法(例えば、リースの表現定理・変分法・半群理論・リース-シャウダーの理論・スペクトル分解などを使う解の存在証明)とは異なるが、高等的には両者を巧みに合わせて(関連しながら)解かれている。.

新しい!!: 確率変数の収束と実解析 · 続きを見る »

射的

射的(しゃてき)とは対象物(標的・的など)の目標に対し投射物を当てる行為。一般的には射撃や弓矢で的を射抜く行為。 ここでは、対象物と投射物が規格としてある程度決められていて、遊びや競技として確立している射的や、現在は射的ではないが、狩を起源とする遊びや競技として確立されたものも記載する。 銃でおこなう射的について詳しくは「射撃」を参照。.

新しい!!: 確率変数の収束と射的 · 続きを見る »

中心極限定理

中心極限定理(ちゅうしんきょくげんていり、central limit theorem)は、確率論・統計学における極限定理の一つ。 大数の法則によると、ある母集団から無作為抽出された標本平均はサンプルのサイズを大きくすると真の平均に近づく。これに対し中心極限定理は標本平均と真の平均との誤差を論ずるものである。多くの場合、母集団の分布がどんな分布であっても、その誤差はサンプルのサイズを大きくしたとき近似的に正規分布に従う。 なお、標本の分布に分散が存在しないときには、極限が正規分布と異なる場合もある。 統計学における基本定理であり、例えば世論調査における必要サンプルのサイズの算出等に用いられる。.

新しい!!: 確率変数の収束と中心極限定理 · 続きを見る »

一様可積分性

一様可積分性(いちようかせきぶんせい、)とは、数学の実解析、関数解析学および測度論の分野における重要な概念で、ルベーグ可積分性の概念を拡張し、条件付期待値やマルチンゲールの理論の発展のために重要な役割を担うものである。確率変数の収束において、この性質は、確率の意味において収束する確率変数が \mathbb^p の意味において収束するための必要十分条件を与える。.

新しい!!: 確率変数の収束と一様可積分性 · 続きを見る »

一様分布

一様分布(いちようぶんぷ)は、離散型あるいは連続型の確率分布である。 サイコロを振ったときの、それぞれの目の出る確率など、すべての事象の起こる確率が等しい現象のモデルである。 生態学の場合、一様分布とは個体間がほぼ等距離の分布を指す。分布様式を参照。.

新しい!!: 確率変数の収束と一様分布 · 続きを見る »

平均

平均(へいきん、mean, Mittelwert, moyenne)または平均値(へいきんち、mean value)は、観測値の総和を観測値の個数で割ったものである。 例えば A、B、C という3人の体重がそれぞれ 55 kg、60 kg、80 kg であったとすると、3人の体重の平均値は (55 kg + 60 kg + 80 kg)/3.

新しい!!: 確率変数の収束と平均 · 続きを見る »

二項分布

数学において、二項分布(にこうぶんぷ、binomial distribution)は、結果が成功か失敗のいずれかである 回の独立な試行を行ったときの成功数で表される離散確率分布である。各試行における成功確率 は一定であり、このような試行をベルヌーイ試行と呼ぶ。二項分布に基づく統計的有意性の検定は、二項検定と呼ばれている。.

新しい!!: 確率変数の収束と二項分布 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 確率変数の収束と位相幾何学 · 続きを見る »

マルコフの不等式

マルコフの不等式は確率論で、確率変数の非負値関数の値が、ある正の定数以上になる確率の上限を与える不等式である。アンドレイ・マルコフが証明した。 マルコフの不等式は確率と期待値の関係を述べたもので、ランダム変数の累積分布関数に関して大まかではあるが有用な限界を与える。.

新しい!!: 確率変数の収束とマルコフの不等式 · 続きを見る »

チャリティー

チャリティー(charity)とは、慈愛・博愛・同胞愛または慈善の精神に基づいて行われる公益的な活動・行為もしくはそれを行う組織のこと。世界各地でチャリティーの活動・組織が見られ、それらの多くは宗教的な背景を持つ。チャリティーはしばしば身体障害者や高齢者などに対する社会福祉、貧困地域の飢餓救済、紛争地域の難民救済、または災害・事故などの犠牲者や遺族に対する支援活動などといった形態をとるが、本来的には以上の活動にとどまらず、社会に対する貢献全般がチャリティーであると言える。また、チャリティーに係る費用は寄付・寄進によって支弁されることが多い。.

新しい!!: 確率変数の収束とチャリティー · 続きを見る »

リプシッツ連続

解析学におけるリプシッツ連続性(リプシッツれんぞくせい、Lipschitz continuity)は、に名を因む、函数のより強い形の一様連続性である。直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」(あるいは)と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである。 微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するの中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。 実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている: また、 も成り立つ。.

新しい!!: 確率変数の収束とリプシッツ連続 · 続きを見る »

レヴィ–プロホロフ計量

数学の分野におけるレヴィ–プロホロフ計量(レヴィ–プロホロフけいりょう、)とは、与えられた距離空間上の確率測度の系の上の計量のことを言う(すなわち、間隔の定義である)。フランスの数学者ポール・レヴィと、ソヴィエトの数学者の名にちなむ。レヴィ計量の一般化として、1956年にプロホロフによって導入された。.

新しい!!: 確率変数の収束とレヴィ–プロホロフ計量 · 続きを見る »

ベルヌーイ分布

ベルヌーイ分布(Bernoulli distribution)とは、数学において、確率 p で 1 を、確率 q.

新しい!!: 確率変数の収束とベルヌーイ分布 · 続きを見る »

列 (数学)

数学において列(れつ、sequence)とは、粗く言えば、対象あるいは事象からなる集まりを「順序だてて並べる」ことで、例えば「A,B,C」は3つのものからなる列である。狭義にはこの例のように一列に並べるものを列と呼ぶが、広義にはそうでない場合(すなわち半順序に並べる場合)も列という場合がある(例:有向点列)。集合との違いは順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列を「○○列」という言い方をするが、異なる種類のものを並べた列も許容されている。 列の構成要素は、列の要素あるいは項(こう、term)と呼ばれ、例えば「A,B,C」には3つの項がある。項の個数をその列の項数あるいは長さ (length, size) という。項数が有限である列を有限列(ゆうげんれつ、finite sequence)と、そうでないものを無限列(むげんれつ、infinite sequence)と呼ぶ。(例えば正の偶数全体の成す列 (2, 4, 6,...) )。.

新しい!!: 確率変数の収束と列 (数学) · 続きを見る »

分散 (確率論)

率論および統計学において、分散(ぶんさん、variance)は、確率変数の2次の中心化モーメントのこと。これは確率変数の分布が期待値からどれだけ散らばっているかを示す非負の値である。 記述統計学においては標本が標本平均からどれだけ散らばっているかを示す指標として標本分散(ひょうほんぶんさん、sample variance)を、推測統計学においては不偏分散(ふへんぶんさん、unbiased (sample) variance)を用いる。 に近いほど散らばりは小さい。 日本工業規格では、「確率変数 からその母平均を引いた変数の二乗の期待値。 である。」と定義している。 英語の variance(バリアンス)という語はロナルド・フィッシャーが1918年に導入した。.

新しい!!: 確率変数の収束と分散 (確率論) · 続きを見る »

スコロホッドの表現定理

数学および統計学の分野におけるスコロホッドの表現定理(スコロホッドのひょうげんていり、)とは、極限測度が十分に良い振る舞い(well-behaved)をする確率測度の列は、共通の確率空間上で定義される確率変数の各点収束列の分布/法則として表現される、ということを述べた定理である。ウクライナの数学者の名にちなむ。.

新しい!!: 確率変数の収束とスコロホッドの表現定理 · 続きを見る »

優収束定理

数学の測度論の分野におけるルベーグの優収束定理(ゆうしゅうそくていり、)あるいは単にルベーグの収束定理とは、ある関数列に対して、そのルベーグ積分と、ほとんど至る所での収束という二つの極限操作が可換となるための十分条件について述べた定理である。 リーマン積分に対しては、優収束定理は成立しない。なぜならば、リーマン可積分関数の列の極限は多くの場合、リーマン可積分とはならないからである。優収束定理の持つ威力と有用性は、リーマン積分よりもルベーグ積分が理論的に優れているということを示すものである。 この定理は、確率変数の期待値の収束のための十分条件を与えるため、確率論の分野において広く利用されている。.

新しい!!: 確率変数の収束と優収束定理 · 続きを見る »

確率変数

率変数(かくりつへんすう、random variable, aleatory variable, stochastic variable)とは、確率論ならびに統計学において、ランダムな実験により得られ得る全ての結果を指す変数である。 数学で言う変数は関数により一義的に決まるのに対し、確率変数は確率に従って定義域内の様々な値を取ることができる。.

新しい!!: 確率変数の収束と確率変数 · 続きを見る »

確率密度関数

率論において、確率密度関数(かくりつみつどかんすう、probability density function、PDF)とは連続確率変数がある値をとるという事象の相対尤度を記述する関数である。確率変数がある範囲の値をとる確率を、その範囲にわたって確率密度関数を積分することにより得ることができるよう定義される。例えば単変数の確率分布を平面上のグラフに表現して、x軸に“ある値”を、y軸に“相対尤度”を採った場合、求めたい範囲(x値)の下限値と上限値での垂直線と、変数グラフ曲線とy.

新しい!!: 確率変数の収束と確率密度関数 · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: 確率変数の収束と確率分布 · 続きを見る »

確率空間

率空間(かくりつくうかん、probability space)とは、可測空間 に確率測度 を入れた測度空間 を言う。アンドレイ・コルモゴロフによる確率論の公理的構成から、現代においては、確率論は確率空間における確率測度の理論として展開される。.

新しい!!: 確率変数の収束と確率空間 · 続きを見る »

確率過程

率論において、確率過程(かくりつかてい、stochastic process)は、時間とともに変化する確率変数のことである。 株価や為替の変動、ブラウン運動などの粒子のランダムな運動を数学的に記述する模型(モデル)として利用している。不規則過程(random process)とも言う。.

新しい!!: 確率変数の収束と確率過程 · 続きを見る »

確率要素

数学の確率論における確率要素(かくりつようそ、)とは、単純な実数直線からより複雑な空間への、確率変数の概念の一般化である。この概念は、「確率論の発展とその応用分野の拡張は、経験の(ランダムな)結果が数や有限の集合によって表現される方法から、経験の結果が例えばベクトル、関数、過程、体、級数、変換や集合あるいは集合族を表すような方法へと移行される必要性を導いている。」という意見を残したモーリス・ルネ・フレシェによって導入された。 昨今の慣例で「確率要素」を扱う際のその値の空間は位相線型空間であることが多いが、しばしば部分集合の特別な σ-代数を備えるバナッハ空間やヒルベルト空間であるとされることもある。.

新しい!!: 確率変数の収束と確率要素 · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: 確率変数の収束と確率論 · 続きを見る »

統計学

統計学(とうけいがく、statistics、Statistik)とは、統計に関する研究を行う学問である。 統計学は、経験的に得られたバラツキのあるデータから、応用数学の手法を用いて数値上の性質や規則性あるいは不規則性を見いだす。統計的手法は、実験計画、データの要約や解釈を行う上での根拠を提供する学問であり、幅広い分野で応用されている。 現在では、医学(疫学、EBM)、薬学、経済学、社会学、心理学、言語学など、自然科学・社会科学・人文科学の実証分析を伴う分野について、必須の学問となっている。また、統計学は哲学の一分科である科学哲学においても重要な一つのトピックになっている。.

新しい!!: 確率変数の収束と統計学 · 続きを見る »

経験過程

経験過程(けいけんかてい、empirical process)は、経験測度の中心極限定理の一般化のひとつである。経験過程の理論は、ノンパラメトリック統計学などに応用される。.

新しい!!: 確率変数の収束と経験過程 · 続きを見る »

特性関数 (確率論)

''U''(−1, 1) の一様確率変数の特性関数。原点を中心とする対称性のある確率変数であるため、この関数は実数値を返す。ただし、一般に特性関数は複素数を返す。 確率論と統計学において、任意の確率変数に対する特性関数(characteristic function)とは、その確率分布を完全に定義する関数である。したがって、確率密度関数や累積分布関数の代わりに特性関数を解析の基盤とすることもできる。確率変数の重み付き総和で分布を定義する単純な特性関数も存在する。 1 変量の分布以外にも、ベクトルまたは行列型の確率変数についての特性関数もあり、さらに一般化することもできる。 実数引数をとる関数と考えたとき、特性関数は積率母関数とは異なり、常に存在する。特性関数の振る舞いとその分布の属性には、モーメントの存在や密度関数の存在などの関係がある。.

新しい!!: 確率変数の収束と特性関数 (確率論) · 続きを見る »

独立同分布

率論と統計において、確率変数の列やその他の系が独立同分布(どくりつどうぶんぷ)である(independent and identically distributed; IID)とは、それぞれの確率変数が他の確率変数と同じ確率分布を持ち、かつ、それぞれ互いに独立している場合をいう。独立同一分布ともいい、i.i.d., iidとも略記される。「独立同分布」という確率分布があるわけではない。 IIDという注記は統計において特に一般的であり、推計統計学の目的のために、しばしば標本中の観測値が効果的にIIDであると仮定される。観測値がIIDであるという前提(または要件)により、多くの統計的方法の基礎となる数学が単純化される傾向がある(およびを参照)。しかし、の実際の応用においては、この仮定が現実的である場合とそうでない場合がある。与えられたデータの集合上でこの仮定がどれほど現実的であるかをテストするために、を書いたりをすることで、自己相関を計算することができる。の一般化はしばしば十分であり、より容易に満たされる。 この仮定は、有限の分散を有するIIDな変数の和(または平均)の確率分布が正規分布に近づくという中心極限定理の古典的な形式において重要である。 IIDは確率変数の列を参照することに注意が必要である。独立同分布とは、列内の要素が、その要素の前の確率変数とは独立していることを意味する。このように、IIDの列はマルコフ過程とは異なる。マルコフ過程では、n 番目の確率変数の確率分布は、列内の前の確率変数の関数である(1次マルコフ過程の場合)。IIDの列は、標本空間またはイベント空間の全ての要素の確率が同じでなければならないということを意味しない。例えば、積み重ねられたサイコロを繰返し投げた場合、結果が偏っているにもかかわらず、IIDである列が生成される。.

新しい!!: 確率変数の収束と独立同分布 · 続きを見る »

距離化定理

位相幾何学および関連する数学の分野において、距離化可能空間(きょりかかのうくうかん、)とは、距離空間と位相同型な位相空間のことを言う。すなわち、ある位相空間 (X,\tau) が距離化可能であるとは、ある距離 で、それによって導かれる位相が \tau であるようなものが存在することを言う。距離化定理(きょりかていり、)とは、位相空間が距離化可能であるための十分条件を与える定理のことを言う。.

新しい!!: 確率変数の収束と距離化定理 · 続きを見る »

距離函数

距離函数(きょりかんすう、distance function)、距離計量(きょりけいりょう)あるいは単に距離(きょり、distance)、計量(けいりょう、metric)は、集合の二点間の距離を定義する函数である。距離が定義されている集合を距離空間(きょりくうかん、metric space)と呼ぶ。距離はその集合上の位相(距離位相)を誘導するが、必ずしもすべての位相空間が距離位相によって生成されるわけではない。ある位相空間の位相を距離によって記述することができるとき、その位相空間は距離化可能 (metrizable) であるという。.

新しい!!: 確率変数の収束と距離函数 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 確率変数の収束と距離空間 · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: 確率変数の収束と閉集合 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 確率変数の収束と開集合 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 確率変数の収束と連続 (数学) · 続きを見る »

退化分布

数学の分野における退化分布(たいかぶんぷ、)とは、ただ一つの値のみを取る確率変数の確率分布のことを言う。例としては、両側とも表となっているコインや、すべての目が同じ値になっているサイコロなどが考えられる。この分布は、日常生活の言葉の意味としてのランダムではない様に思われるが、確率変数の定義を満たすものである。 退化分布は、実数直線上のある一点 k0 に配置される。その確率質量関数は次のように与えられる: f(k;k_0).

新しい!!: 確率変数の収束と退化分布 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: 確率変数の収束とLp空間 · 続きを見る »

推定量

統計学における推定量(すいていりょう)とは、現実に測定された標本データをもとに、確率分布の母数(パラメータ、現実には測定できない)として推定した数量(英語:Estimate)、もしくはそれをデータの関数として表す推定関数(すいていかんすう:Estimator)のことをいう。各母数に対していろいろな種類の推定量がある。これらはそれぞれ異なる基準に従って得られるものであり、必ずしもどれが特に優れているということはできない。 母数の推定には、1つの数値として与える「点推定」と、確率的に母数を含む区間を与える「区間推定」の2種類があるが、点推定量のことを特に推定量と呼ぶことが多い。 区間推定量には通常用いられる信頼区間(その区間が母数を含んでいる確率に応じて表示)や、ベイズ統計学における信用区間(母数がその区間に入る確率に応じて表示)がある。 日本工業規格では、「母集団のパラメータを推定するのに用いる統計量。」と定義している。.

新しい!!: 確率変数の収束と推定量 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 確率変数の収束と極限 · 続きを見る »

標本空間

率論における標本空間(ひょうほんくうかん、sample space)は (experiment, random trial) に付随して決まり、試行の取りうるすべての (outcome, result) からなる集合を言う。標本空間はふつう集合の記法に則り、取りうる順序付けられた結果はその集合の元として書き並べられる。標本空間を表すのに、S (Sample) や U (Universe) のような頭文字をとったり、 のような全体集合を表すのによく用いられる文字が使われる。 例えば、コイントスの試行では標本空間は典型的には であり、コインを二回投げる場合にはその標本空間は とするが、順番に関係なく二枚投げるならば標本空間は である。 六面ダイスを投げて上の面にある目の数を結果とする試行では、標本空間は とする。 きちんと定義された標本空間は、確率モデルを与える確率空間の三つの基本要素の一つであり、ほかの二つは可能なすべてのを表す完全加法族と各事象に割り当てられた確率を表す確率測度と呼ばれる線型汎函数である。.

新しい!!: 確率変数の収束と標本空間 · 続きを見る »

正規分布

率論や統計学で用いられる正規分布(せいきぶんぷ、normal distribution)またはガウス分布(Gaussian distribution)は、平均値の付近に集積するようなデータの分布を表した連続的な変数に関する確率分布である。中心極限定理により、独立な多数の因子の和として表される確率変数は正規分布に従う。このことにより正規分布は統計学や自然科学、社会科学の様々な場面で複雑な現象を簡単に表すモデルとして用いられている。たとえば実験における測定の誤差は正規分布に従って分布すると仮定され、不確かさの評価が計算されている。 また、正規分布の確率密度関数のフーリエ変換は再び正規分布の密度関数になることから、フーリエ解析および派生した様々な数学・物理の理論の体系において、正規分布は基本的な役割を果たしている。 確率変数 が1次元正規分布に従う場合、X \sim N(\mu, \sigma^) 、確率変数 が 次元正規分布に従う場合、X \sim N_n(\mu, \mathit) などと表記される。.

新しい!!: 確率変数の収束と正規分布 · 続きを見る »

期待値

率論において、期待値(きたいち、expected value)または平均は、確率変数の実現値を, 確率の重みで平均した値である。 例えば、ギャンブルでは、掛け金に対して戻ってくる「見込み」の金額をあらわしたものである。ただし、期待値ぴったりに掛け金が戻ることを意味するのではなく、各試行で期待値に等しい掛け金が戻るわけでもない。.

新しい!!: 確率変数の収束と期待値 · 続きを見る »

有界函数

数学の分野において、ある集合 X 上で定義される実数あるいは複素数値の函数 f が有界函数(ゆうかいかんすう、)であるとは、その値からなる集合が有界集合であることを言う。言い換えると、X 内のすべての x に対して が成り立つような、x に依らない実数 M が存在することを言う。 しばしば、X 内のすべての x に対して f(x)\le A が成立するとき、その函数は上界 A によって上から抑えられる()と言い、そのような A が存在するときその函数は上に有界であるという。それと対照的に、X 内のすべての x に対して f(x)\ge B が成立するとき、その函数は下界 B によって下から抑えられる()と言い、そのような B が存在するときその函数は下に有界であるという。 (しばしば、函数・写像・作用素などが同意語として扱われることもあるけれども)この概念は、有界作用素のそれと混同しないように注意するべきである。 有界函数の概念の重要で特別な場合として、X を自然数全体の集合 N と取って有界数列()が考えられる。すなわち、ある数列 (a0, a1, a2,...) が有界であるとは、ある実数 M が存在して、すべての自然数 n に対して が成立することを言う。有界数列すべてからなる集合(にベクトル空間の構造を入れたもの)は数列空間を成す。 この定義は、距離空間 Y に値を取る函数へと拡張することが出来る。ある集合 X 上で定義される函数 f が有界であるとは、Y 内のある a に対して適当な実数 M を取れば、距離函数 d で測った a と f(x) との距離が M 以下にできること、すなわち が X 内のすべての x に対して成立することを言う。この場合、a を他の任意の点に取り換えても、三角不等式により、同様な性質を持つ M を取ることができる。.

新しい!!: 確率変数の収束と有界函数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 確率変数の収束と数学 · 続きを見る »

ここにリダイレクトされます:

概収束

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »