ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

発散

索引 発散

散(はっさん、Divergence)は、; 数学.

8 関係: 収束級数収斂作用素級数発散 (ベクトル解析)発散級数極限数列

収束級数

数学において、級数が収束(しゅうそく、converge)あるいは収斂(しゅうれん)するとは、部分和の成す数列が収束することをいう。このとき、与えられた級数は「(有限な)和を持つ」とか「和が有限確定である」などともいい、収束する級数のことを短く、収束級数 (convergent series) などともよぶ。 ここで、級数とは数列の項の総和のことであり、与えられた数列 (a1, a2,..., an,...) の第 n-部分和とは最初の n-項の有限和 のことであった。.

新しい!!: 発散と収束級数 · 続きを見る »

収斂

収斂(しゅうれん、:en:convergence)とは、複数の物が互いに異なる性質・指標などを持っている状況から変更・移行を起こし、同質化・同等化・相似化(互いの性質等の差を無くす方向)が進むこと。散布的に位置していた複数の物を一箇所に集める(集まっていく)こと。学術用語として収束(しゅうそく)と訳されることもある。.

新しい!!: 発散と収斂 · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: 発散と作用素 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 発散と級数 · 続きを見る »

発散 (ベクトル解析)

ベクトル解析における発散(はっさん、divergence)は、各点においてベクトル場のの大きさを符号付きスカラーの形で測るベクトル作用素である。より技術的に言えば、発散が表すのは与えられた点の無限小近傍領域から出る流束の体積密度である。例えば、空気を熱したり冷ましたりするものとして考えると、各点において空気の移動速度を与えるベクトル場を例にとることができる。領域内で空気を熱すれば空気は全方向へ膨張していくから、速度場は領域の外側をさしていることになり、従って速度場の発散はこの領域で正の値をとり、この領域は流入(あるいは湧き出し、湧出、source)域であることが示される。空気を冷まして収縮させるなら、発散の値は負となり、この領域は流出(あるいは沈み込み、排出、sink)域と呼ばれる。.

新しい!!: 発散と発散 (ベクトル解析) · 続きを見る »

発散級数

数学において発散級数(はっさんきゅうすう、divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし、級数の収束性はそれよりも強い条件で、級数の項が 0 に収束するからといって必ずしもその級数自身は収束しない。最も簡単な反例として、調和級数 が挙げられる。調和級数の発散性は、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。.

新しい!!: 発散と発散級数 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 発散と極限 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: 発散と数列 · 続きを見る »

ここにリダイレクトされます:

ダイバージェンス

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »