ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

生物工学

索引 生物工学

生物工学(せいぶつこうがく)は、生物学の知見を元にし、実社会に有用な利用法をもたらす技術の総称である。ただし定義は明確ではなく、バイオテクノロジー(biotechnology)やバイオニクス(bionics)の訳語として使われる場合が多く、この両方を含んだ学問の領域と捉えることに矛盾しない。また、特に遺伝子操作をする場合には、遺伝子工学と呼ばれる場合もある。.

94 関係: 塩基配列大腸菌学問岡田善雄工学市場人工多能性幹細胞二重らせん介護形質転換医学マックス・デルブリュックバイオハザードバイオレメディエーションバイオ産業バイオ技術者認定試験ポリメラーゼ連鎖反応ポリエチレングリコールモノクローナル抗体トマトデオキシリボ核酸フレデリック・サンガーファージドリー (羊)制限酵素分子生物学アメリカ国立衛生研究所インスリンオズワルド・アベリーキャリー・マリスクローンゲノムジョルジュ・J・F・ケーラーセンダイウイルスセーサル・ミルスタインソマトスタチンサイエンス・フィクション品種改良再生医学創薬獣医学理学福祉細胞培養看護経済環境生体工学生体認証生化学...生物多様性生物学生物兵器発酵発酵食品DNAリガーゼ遺伝子遺伝子工学遺伝子組み換え作物遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律遺伝子治療衛生農学農作物胚性幹細胞薬学醸造金融Flavr Savr抗がん剤抗精神病薬技術東京化学同人栄養学歯学放射線療法1944年1945年1953年1956年1967年1968年1970年1973年1974年1975年1977年1982年1985年1990年1994年1996年1998年2000年 インデックスを展開 (44 もっと) »

塩基配列

生物学における塩基配列(えんきはいれつ)とは、DNA、RNAなどの核酸において、それを構成しているヌクレオチドの結合順を、ヌクレオチドの一部をなす有機塩基類の種類に注目して記述する方法、あるいは記述したもののこと。 核酸の塩基配列のことを、単にシークエンスと呼ぶことも多い。ある核酸の塩基配列を調べて明らかにする操作・作業のことを、塩基配列決定、あるいはシークエンシングと呼ぶ。.

新しい!!: 生物工学と塩基配列 · 続きを見る »

大腸菌

大腸菌(だいちょうきん、学名: Escherichia coli)は、グラム陰性の桿菌で通性嫌気性菌に属し、環境中に存在するバクテリアの主要な種の一つである。この菌は腸内細菌でもあり、温血動物(鳥類、哺乳類)の消化管内、特にヒトなどの場合大腸に生息する。アルファベットで短縮表記でとすることがある(詳しくは#学名を参照のこと)。大きさは通常短軸0.4-0.7μm、長軸2.0-4.0μmだが、長軸が短くなり球形に近いものもいる。 バクテリアの代表としてモデル生物の一つとなっており、各種の研究で材料とされるほか、遺伝子を組み込んで化学物質の生産にも利用される(下図)。 大腸菌はそれぞれの特徴によって「株」と呼ばれる群に分類することができる(動物でいう品種のような分類)。それぞれ異なる動物の腸内にはそれぞれの株の 大腸菌が生息していることから、環境水を汚染している糞便が人間から出たものか、鳥類から出たものかを判別することも可能である。大腸菌には非常に多数の株があり、その中には病原性を持つものも存在する。.

新しい!!: 生物工学と大腸菌 · 続きを見る »

学問

学問(がくもん)とは、一定の理論に基づいて体系化された知識と方法であり、哲学や歴史学、心理学や言語学などの人文科学、政治学や法律学などの社会科学、物理学や化学などの自然科学などの総称。英語ではscience(s)であり、science(s)は普通、科学と訳す。なお、学問の専門家を一般に「学者」と呼ぶ。研究者、科学者と呼ばれる場合もある。.

新しい!!: 生物工学と学問 · 続きを見る »

岡田善雄

岡田 善雄(おかだ よしお、1928年3月10日 - 2008年1月16日)は、細胞生物学者。大阪大学名誉教授。バイオテクノロジーの基本技術である「細胞融合現象」を発見した細胞工学のパイオニア。広島県呉市出身。 .

新しい!!: 生物工学と岡田善雄 · 続きを見る »

工学

工学(こうがく、engineering)とは、.

新しい!!: 生物工学と工学 · 続きを見る »

市場

ポルトガルの市場 シンガポールの市場 市場(いちば、しじょう、market、 マーケット)とは、定期的に人が集まり商いを行う場所、あるいは、この市場(いちば)における取引機構に類似した社会機構の概念を指す。「市(いち)」「市庭」とも言う。.

新しい!!: 生物工学と市場 · 続きを見る »

人工多能性幹細胞

人工多能性幹細胞(じんこうたのうせいかんさいぼう、induced pluripotent stem cellsイギリス英語発音: インデューストゥ・プル(ー)リポウトゥントゥ・ステム・セルズ)とは、体細胞へ数種類の遺伝子を導入することにより、ES細胞(胚性幹細胞)のように非常に多くの細胞に分化できる分化万能性 (pluripotency)「pluripotency」の日本語訳については、科学者の間では「多能性」と訳されるが、「totipotency(全能性)」と「multipotency(多能性)」の中間の分化能として捉えた場合、「万能」と表記した方が分かりやすいため、報道や講演などで多用される。なお、ES細胞は特定の条件下において胚体外組織へと分化できることが分かっており、現在では「pluripotency」とは、それだけでは個体になり得ないが、すべての細胞・組織に分化できる能力とされている。と、分裂増殖を経てもそれを維持できる自己複製能を持たせた細胞のこと。2006年(平成18年)、山中伸弥率いる京都大学の研究グループによってマウスの線維芽細胞(皮膚細胞)から初めて作られた。 英語名の頭文字をとって、iPS細胞(アイピーエスさいぼう、iPS cells)と呼ばれる。命名者の山中が最初を小文字の「i」にしたのは、当時世界的に大流行していた米アップルの携帯音楽プレーヤーである『iPod』のように普及してほしいとの願いが込められている。 以下、「iPS細胞」という表記を用いる。.

新しい!!: 生物工学と人工多能性幹細胞 · 続きを見る »

二重らせん

二重らせん(にじゅうらせん)は、.

新しい!!: 生物工学と二重らせん · 続きを見る »

介護

介護(かいご、nursing, elderly care)とは、障害者の生活支援をすること。あるいは高齢者・病人などを介抱し世話をすること。.

新しい!!: 生物工学と介護 · 続きを見る »

形質転換

分子生物学において形質転換(けいしつてんかん、Transformation)は、細胞外部からDNA を導入し、その遺伝的性質を変える、またその操作を意味する。 英語のtransformation には上記の意味に加えて、正常な動物細胞が無制限に分裂を行うようになる、つまりがん化の意味(悪性形質転換を参照)や、化生の中で特にダイナミックなもの(幹細胞まで脱分化したり組織の基本形の壁を越えて変化したりするもの)の意味を含み、混同を避けるため、動物細胞への遺伝子導入はトランスフェクション(英:transfection)が通常使用される。またファージやウイルスを用いた遺伝子導入は形質導入(英:transduction)と呼ばれる。 形質転換は、1928年フレデリック・グリフィス(Frederick Griffith)によって肺炎双球菌に対する実験(グリフィスの実験)により発見された。自然界において普通に起こりうる形質転換は実験室内においては人為的に作成出来るようになった。 バクテリアに対する形質転換としては、電気パルスにより瞬間的に細胞に穴を開けるエレクトロポレーション法や、塩化カルシウム存在下でコンピテントセル化した菌を用いる方法が広く使用されている。通常はファージ、プラスミドなどのベクターを用いて外来遺伝子を導入する。植物細胞に対してはアグロバクテリウム、パーティクル・ガン法やエレクトロポレーションがよく使用される。糸状菌などに対してはプロトプラスト-PEG法やエレクトロポレーション法、酵母に対してはLi法などがよく使用される。また、この他にもBiolistic法などもある。 これらの形質転換法は、生物学の研究にとって欠かすことのできないツールである。この形質転換法の開発によって、現在のバイオテクノロジーの発展があった。 応用としては発現誘導プロモーターを用いた転換、ジーントラップ法、エンハンサートラップ法、アクティベーションタギング法などが挙げられる。.

新しい!!: 生物工学と形質転換 · 続きを見る »

医学

医学(いがく、英:Medicine, Medical science)とは、生体(人体)の構造や機能、疾病について研究し、疾病を診断・治療・予防する方法を開発する学問である広辞苑「医学」。 医学は、病気の予防および治療によって健康を維持、および回復するために発展した様々な医療を包含する。.

新しい!!: 生物工学と医学 · 続きを見る »

マックス・デルブリュック

マックス・ルートヴィヒ・ヘニング・デルブリュック(Max Ludwig Henning Delbrück、1906年9月4日 - 1981年3月9日)はアメリカ合衆国の生物物理学者。1969年度のノーベル生理学・医学賞受賞者。スウェーデン、カロリンスカ研究所関係者。.

新しい!!: 生物工学とマックス・デルブリュック · 続きを見る »

バイオハザード

バイオハザード(、生物学的危害)とは、有害な生物による危険性をいう。「生物災害」と訳して危険性による災害そのものをいうこともある。古典的には病院や研究所の試料や廃棄物など、病原体を含有する危険物(病毒をうつしやすい物質)を指してきたが、20世紀末からは雑草や害虫を強化しかねない農薬耐性遺伝子や農薬内生遺伝子を有する遺伝子組み換え作物等もこの概念に含まれてきている(遺伝子組換え生物等)。 肝炎ウイルスや結核菌、エキノコックス、プリオンタンパク質といった病原体の培養物やその廃棄物、注射針等の医療廃棄物、生物兵器といった、病原体等を含有する物質を総称して病毒をうつしやすい物質()という。病原体とは感染症の原因物質のことであり、ウイルスや細菌、リケッチア、寄生虫、真菌、プリオンタンパク質等のうち、人畜に感染性を有し、その伝播により市民の生命や健康、畜産業に影響を与えるおそれがあるものを指す。 病毒をうつしやすい物質は過去に幾多の事故や事件を引き起こしており、これがバイオセーフティーの呼びかけやバイオセキュリティー上の規制に繋がっている。世界保健機関(2004年)は『WHO実験室バイオセーフティ指針』を示すなどして、感染防止、漏洩防止(バイオセーフティー)を呼びかけている。輸送にあっては、国際連合が国際連合危険物輸送勧告により、感染性廃棄物を含めて第6.2類危険物「病毒をうつしやすい物質」(Infectious substances; UN2814, 2900, 3373, 3291) としてバイオセキュリティーに配慮するよう勧告している。これらを受け、日本では、特定病原体等などを含有する物質は感染症法・家畜伝染病予防法、感染性廃棄物は廃棄物処理法等、輸送にあっては、危険物船舶運送及び貯蔵規則および航空法施行規則による規制がなされるに至っている。.

新しい!!: 生物工学とバイオハザード · 続きを見る »

バイオレメディエーション

バイオレメディエーション(bioremediation、生物学的環境修復)は、微生物や菌類や植物、あるいはそれらの酵素を用いて、有害物質で汚染された自然環境(土壌汚染の状態)を、有害物質を含まない元の状態に戻す処理のことである。 バイオレメディエーションの典型例は、劣化した有機塩素化合物のような特定の土壌汚染物質を、微生物によって処理するような場合である。より一般的なアプローチの例としては、重油等で汚染された土地において、その土地に常在する、または外来のバクテリアによる重油の分解を促進させるため、窒素や硫黄肥料を施用することにより、 油流出の浄化を図るような場合がある。 現在実用化しているもので最もよく知られているのは下水処理場での活性汚泥法であり、日本での公共下水処理施設の多くがこの技術で排水を処理している。.

新しい!!: 生物工学とバイオレメディエーション · 続きを見る »

バイオ産業

バイオ産業(バイオさんぎょう Bio-Industry)とは、生物学での研究を基盤として実業に結びつけ行われる産業である。具体的には、発酵、組織培養、細胞融合、遺伝子組換え等の技術を応用した産業が含まれる。醗酵産業は伝統的なものもあるが、特に20世紀後半以降の上記分野の発展にともなう成果を応用した産業がこう呼ばれる傾向が強い。バイオインダストリー、生物産業とも言う。 醗酵に関しては、それが微生物の活動の産物であることが判明したのが19世紀末であり、そこから科学的研究が進められるようになった。微生物学と生化学の発展、それに加えて微生物における遺伝学の発達から、醗酵に関わる微生物の性質や働きを技術的に扱えるようになったのが新たな産業の発達に結びついた。微生物に関しては、ペニシリンとストレプトマイシンの発見以来、抗生物質など微生物の生産する化学物質の探求と利用が重要になってもいる。.

新しい!!: 生物工学とバイオ産業 · 続きを見る »

バイオ技術者認定試験

バイオ技術者認定試験(バイオぎじゅつしゃにんていしけん)は、日本バイオ技術教育学会(Japan Association of Biotechnology Education; JABE)が実施している認定試験。日本では数少ない、バイオテクノロジーに関する(民間)資格である。.

新しい!!: 生物工学とバイオ技術者認定試験 · 続きを見る »

ポリメラーゼ連鎖反応

ポリメラーゼ連鎖反応(ポリメラーゼれんさはんのう、polymerase chain reaction, PCR)は、DNAを増幅するための原理またはそれを用いた手法で、手法を指す場合はPCR法と呼ばれることの方が多い。英語をそのまま片仮名読みにして「ポリメラーゼ・チェーン・リアクション」とも呼ばれる。次の特徴を持つ。.

新しい!!: 生物工学とポリメラーゼ連鎖反応 · 続きを見る »

ポリエチレングリコール

ポリエチレングリコールの構造式 ポリエチレングリコール(polyethylene glycol、略称 PEG)は、エチレングリコールが重合した構造をもつ高分子化合物(ポリエーテル)である。 ポリエチレンオキシド(polyethylene oxide、略称PEO)も基本的に同じ構造を有する化合物であるが、PEGは分子量2万程度までのもの、PEOは数万以上のものをいう。両者は物理的性質(融点、粘度など)が異なり用途も異なるが、化学的性質はほぼ同じである。 一般的な構造式は HO−(CH2−CH2−O)n−H と表される。PEG は水、メタノール、ベンゼン、ジクロロメタンに可溶、ジエチルエーテル、ヘキサンには不溶である。タンパク質など他の高分子に PEG構造を付加することを PEG化 (ペグか、pegylation) という。.

新しい!!: 生物工学とポリエチレングリコール · 続きを見る »

モノクローナル抗体

一般的なモノクローナル抗体の作成法 モノクローナル抗体(モノクローナルこうたい)とは、単一の抗体産生細胞に由来するクローンから得られた抗体(免疫グロブリン)分子。通常の抗体(ポリクローナル抗体)は抗原で免疫した動物の血清から調製するために、いろいろな抗体分子種の混合物となるが、モノクローナル抗体では免疫グロブリン分子種自体が均一である。抗原は複数のエピトープ(抗原決定基)を持つことが多く、ポリクローナル抗体は各々のエピトープに対する抗体の混合物となるため、厳密には特異性が互いに異なる抗体分子が含まれている。これに対してモノクローナル抗体では、一つのエピトープに対する単一の分子種となるため、抗原特異性が全く同一の抗体となる。 通常、抗体産生細胞を骨髄腫細胞と細胞融合させることで自律増殖能を持ったハイブリドーマ (hybridoma) を作成し、目的の特異性をもった抗体を産生しているクローンのみを選別(スクリーニング)する。この細胞を培養し、分泌する抗体を精製して用いることになる。モノクローナル抗体を作製する方法を1975年に発明したジョルジュ・J・F・ケーラーとセーサル・ミルスタインは1984年にノーベル生理学・医学賞を受賞した。 最近では、動物を使用しないファージディスプレイでのモノクローナル抗体作製が行われている。ハイブリドーマを使用する作製方法とは違い、ファージディスプレイでの作製では、完全なるクローンでの追加抗体作製が可能で、安定的に研究を行うことができる。 国内では、ジーンフロンティアが、サービスの提供を行っている。.

新しい!!: 生物工学とモノクローナル抗体 · 続きを見る »

トマト

トマト(学名:Solanum lycopersicum、)は、南アメリカのアンデス山脈高原地帯(ペルー、エクアドル)原産のナス科ナス属の植物。また、その果実のこと。多年生植物で、果実は食用として利用される。緑黄色野菜の一種である。日本語では、、、、などの異称もある。.

新しい!!: 生物工学とトマト · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 生物工学とデオキシリボ核酸 · 続きを見る »

フレデリック・サンガー

フレデリック・サンガー(Frederick Sanger, 1918年8月13日 - 2013年11月19日)は、イギリス・グロスターシャー州レンコム出身の生化学者。ケンブリッジ大学セント・ジョンズ・カレッジ卒業。後、同大学キングス・カレッジ教授。2013年現在、ノーベル化学賞を2度受賞した唯一の人物として知られる。1954年王立協会フェロー選出。 2013年11月19日、ケンブリッジの病院で死去。95歳没。.

新しい!!: 生物工学とフレデリック・サンガー · 続きを見る »

ファージ

ファージ (Phage) は細菌に感染するウイルスの総称。正式にはバクテリオファージと呼ばれる。 ファージの基本構造は、タンパク質の外殻と遺伝情報を担う核酸 (主に二本鎖DNA) からなる。ファージが感染した細菌は細胞膜を破壊される溶菌という現象を起こし、死細胞を残さない。細菌が食べ尽くされるかのように死滅するため、これにちなんで「細菌(bacteria)を食べるもの(ギリシア語:phagos)」を表す「バクテリオファージ(bacteriophage)」という名がつけられた。 20世紀初頭にアーネスト・ハンキンとフレデリック・トウォートによって独立に発見され、カナダの生物学者フェリックス・デレーユによって溶菌作用が見出された。初期の分子生物学においてモデル生物として盛んに用いられた。またファージのゲノムは改変され、遺伝子導入やDNA断片のライブラリ作成などにも用いられている。有名なファージの一つにはラムダファージ(λファージ)があり、大腸菌に感染する。全ゲノムの解読はラムダファージで行われた(ゲノムプロジェクト)。また、ウイルス粒子が非常に複雑な形態のT4ファージもよく知られている。.

新しい!!: 生物工学とファージ · 続きを見る »

ドリー (羊)

ドリー(Dolly、1996年7月5日 - 2003年2月14日)は、世界初の哺乳類の体細胞クローンである雌羊。スコットランドのロスリン研究所で生まれ育ち、6歳で死ぬ。ドリーの誕生は1997年2月22日に発表された。 ドリーという名前は乳腺細胞由来にちなんで、飼育係がドリー・パートンの巨乳を称えて提案したものである。ドリーは体細胞の核を除核した胚細胞に移植する技術によって誕生した。ドリーは1996年に6歳の雌羊の細胞からクローンされ、今日まで続く議論の的となっている。 2003年5月9日、ドリーの剥製がエディンバラのスコットランド博物館へ陳列された。.

新しい!!: 生物工学とドリー (羊) · 続きを見る »

制限酵素

制限酵素(せいげんこうそ)は、酵素の一種。2本鎖のDNAを切断する。必須因子や切断様式により3種類に大別されるが、そのうちのII型酵素が遺伝子組み換えに多用される。.

新しい!!: 生物工学と制限酵素 · 続きを見る »

分子生物学

分子生物学(ぶんしせいぶつがく、:molecular biology)は、生命現象を分子を使って説明(理解)することを目的とする学問である。.

新しい!!: 生物工学と分子生物学 · 続きを見る »

アメリカ国立衛生研究所

アメリカ国立衛生研究所(アメリカこくりつえいせいけんきゅうじょ、National Institutes of Health、NIH)は、アメリカ合衆国の保健福祉省公衆衛生局の下にあり、1887年に設立された合衆国で最も古い医学研究の拠点機関。本部はメリーランド州ベセスダに置かれている。Institutesと複数形であるように、国立癌研究所、国立心肺血液研究所、国立老化研究所、国立小児保健発達研究所、国立精神衛生研究所など、それぞれの専門分野を扱う研究所と、医学図書館などの研究所以外の組織、合わせて全部で27の施設と所長事務局によって構成されている。1万8000人以上のスタッフのうち6000人以上が科学者(医師、生命科学研究者)である。.

新しい!!: 生物工学とアメリカ国立衛生研究所 · 続きを見る »

インスリン

インスリンの分子構造 インスリン(インシュリン、insulin)は、膵臓に存在するランゲルハンス島(膵島)のβ細胞から分泌されるペプチドホルモンの一種。名前はラテン語の insula (島)に由来する。21アミノ酸残基のA鎖と、30アミノ酸残基のB鎖が2つのジスルフィド結合を介してつながったもの。C-ペプチドは、インスリン生成の際、プロインスリンから切り放された部分を指す。 生理作用としては、主として血糖を抑制する作用を有する。インスリンは脂肪組織や骨格筋を中心に存在するグルコーストランスポーターの一種であるGLUT4に作用し、そこから血中のグルコースを取り込ませることによって血糖値を下げる重要な役割を持つ。また骨格筋におけるアミノ酸、カリウムの取り込み促進とタンパク質合成の促進、肝臓における糖新生の抑制、グリコーゲンの合成促進・分解抑制、脂肪組織における糖の取り込みと利用促進、脂肪の合成促進・分解抑制などの作用により血糖を抑制し、グリコーゲンや脂肪などの各種貯蔵物質の新生を促進する。腎尿細管におけるNa再吸収促進作用もある。炭水化物を摂取すると小腸でグルコースに分解され、大量のグルコースが体内に吸収される。体内でのグルコースは、エネルギー源として重要である反面、高濃度のグルコースはそのアルデヒド基の反応性の高さのため生体内のタンパク質と反応して糖化反応を起こし、生体に有害な作用(糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症の微小血管障害)をもたらすため、インスリンの分泌によりその濃度(血糖)が常に一定範囲に保たれている。 インスリンは血糖値の恒常性維持に重要なホルモンである。血糖値を低下させるため、糖尿病の治療にも用いられている。逆にインスリンの分泌は血糖値の上昇に依存する。 従前は「インシュリン」という表記が医学や生物学などの専門分野でも正式なものとして採用されていたが、2006年現在はこれらの専門分野においては「インスリン」という表記が用いられている。一般にはインスリンとインシュリンの両方の表記がともに頻用されている。.

新しい!!: 生物工学とインスリン · 続きを見る »

オズワルド・アベリー

ワルド・アベリー オズワルド・セオドア・アベリー(エイブリーとも。 Oswald Theodore Avery 、1877年10月21日 - 1955年2月2日)はカナダ生まれのアメリカ人医師・医学研究者。彼の業績の多くはニューヨーク市のロックフェラー病院でなされた。アベリーは最初の分子生物学者の一人であり、免疫化学の創始者でもあった。彼の業績でもっともよく知られたものは、共同研究者のColin MacLeoudおよびMaclyn McCartyとともに行った1944年の発見である。それは、DNAが遺伝子の実体であるという発見であった。.

新しい!!: 生物工学とオズワルド・アベリー · 続きを見る »

キャリー・マリス

ャリー・バンクス・マリス(Kary Banks Mullis, 1944年12月28日 - )は、アメリカ合衆国ノースカロライナ州レノア出身の生化学者。ポリメラーゼ連鎖反応 (PCR) 法の開発で知られ、その功績により、1993年にノーベル化学賞及び日本国際賞を受賞した。 誕生後、サウスカロライナ州コロンビアに移り住み、そこで成長した。ドレハー高校を経てジョージア工科大学卒。1973年にカリフォルニア大学バークレー校から博士号を与えられた。カリフォルニア州に移り、ニューポートビーチ、その後アンダーソンバレーに住んだ。バイオテクノロジーの企業シータス社に就職。そこでPCR法によるDNAの増幅方法を考案した。後に好熱菌のDNAポリメラーゼであるTaqポリメラーゼを用いる改良法が開発され、世界の分子生物学の進展に大きな影響を与えた。 現在では免疫に関する研究を行うベンチャー企業を率いている。 またエイズ否認主義の提唱者でもあり、ヒト免疫不全ウイルス(HIV)はコッホの原則を満たしておらず、存在しないと主張している。.

新しい!!: 生物工学とキャリー・マリス · 続きを見る »

クローン

ーンは、同一の起源を持ち、尚かつ均一な遺伝情報を持つ核酸、細胞、個体の集団。もとはギリシア語で植物の小枝の集まりを意味するκλών klōn から。1903年、が、栄養生殖によって増殖した個体集団を指す生物学用語として“” という語を考案した。本来の意味は挿し木である。.

新しい!!: 生物工学とクローン · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

新しい!!: 生物工学とゲノム · 続きを見る »

ジョルジュ・J・F・ケーラー

ョルジュ・ジャン・フランツ・ケーラー(Georges Jean Franz Köhler、1946年4月17日 - 1995年3月1日)はドイツの生物学者。 ミュンヘンで、ドイツ人の父とフランス人の母の間に生まれた。免疫制御機構に関する理論の確立とモノクローナル抗体の作成法の開発により、ニールス・イェルネ及びセーサル・ミルスタインと共に1984年にノーベル生理学・医学賞を受賞した。同年、フライブルク大学の教授に就任した。マックス・プランク免疫生物学研究所の研究員となった。1995年、彼は肺炎により死亡した。.

新しい!!: 生物工学とジョルジュ・J・F・ケーラー · 続きを見る »

センダイウイルス

ンダイウイルス (Sendai virus) は、パラミクソウイルス科レスピロウイルス属のウイルスの一種。 Sendai virus から SeV、 または Hemagglutinating Virus of Japan の略で HVJ と略される。正式名称をマウスパラインフルエンザ1型ウイルスと言い、マウスやラットに感染し肺炎を引き起こす。1本鎖RNAを遺伝子として持ち、全ゲノム配列は1980年代に決定された。 1952年(昭和27年)、新生児肺炎の流行の際に、患者の剖検肺乳剤をマウスに経鼻接種したことにより分離された。1953年(昭和28年)、東北大学医学部(宮城県仙台市)の石田名香雄によって発見され、発見地の都市名にちなんで「センダイウイルス」と命名された。赤血球の溶血を引き起こすことは知られていたが、1957年(昭和32年)、大阪大学教授の岡田善雄によって異種の細胞を融合させる作用があることが発見され、バイオテクノロジーの分野で注目を集めることになった。現在でも宿主域が広く細胞傷害性の低いベクターとして分子生物学の実験に盛んに用いられている。.

新しい!!: 生物工学とセンダイウイルス · 続きを見る »

セーサル・ミルスタイン

ーサル・ミルスタイン(César Milstein、1927年10月8日 - 2002年3月24日)は、アルゼンチン生まれの生化学者で、人生の大半をイギリスで過ごし、帰化した。抗体を専門に研究し、ニールス・イェルネ、ジョルジュ・J・F・ケーラーとともに1984年度のノーベル生理学・医学賞を受賞した。.

新しい!!: 生物工学とセーサル・ミルスタイン · 続きを見る »

ソマトスタチン

マトスタチン(somatostatin, SST)とは、脳の視床下部、膵臓のランゲルハンス島δ細胞(D細胞)、消化管の内分泌細胞(δ細胞)などから分泌され、内分泌系を制御し、G蛋白質共役を介してやに影響を与え、さらには多くの二次ホルモンの分泌を抑制するペプチドホルモンである。コレシストキニンなどにより、ソマトスタチンのD細胞からの分泌が促進される。ソマトスタチンは、ガストリン、セクレチン、インスリン、グルカゴンの分泌を抑制する。 ソマトスタチンには共通の前駆蛋白質(preproprotein)から切り出される2つの活性型がある。一つは14アミノ酸から成り、もう一つは28アミノ酸から成る。28アミノ酸型ソマトスタチンは14アミノ酸型のアミノ酸鎖を延長した形になっている。 脊椎動物では6つのソマトスタチン遺伝子が知られており、SS1〜SS6と呼ばれている。ゼブラフィッシュは6つの遺伝子を全て持つ。6つの遺伝子は5つのに対応し、ソマトスタチンの機能を多様なものにしている。ヒトにはソマトスタチン遺伝子は1つ(SST)しかない。.

新しい!!: 生物工学とソマトスタチン · 続きを見る »

サイエンス・フィクション

宇宙戦争』のイラストレーション。Henrique Alvim Corr画(1906年) SF漫画雑誌『プラネット・コミックス』 サイエンス・フィクション(Science Fiction、略語:SF、Sci-Fi、エスエフ)は、科学的な空想にもとづいたフィクションの総称。メディアによりSF小説、SF漫画、SF映画、SFアニメなどとも分類される。日本では科学小説、空想科学小説とも訳されている(詳細は呼称を参照)。.

新しい!!: 生物工学とサイエンス・フィクション · 続きを見る »

品種改良

品種改良(ひんしゅかいりょう)とは、栽培植物や家畜などにおいて、より人間に有用な品種を作り出すこと。具体的な手法としては、人為的な選択、交雑、突然変異を発生させる手法などを用いる。 公的な農業試験場や畜産試験場などで進められているほか、穀物メジャーなどに代表される民間企業もビジネスとして参入している。.

新しい!!: 生物工学と品種改良 · 続きを見る »

再生医学

再生医学(さいせいいがく、Regenerative medicine)とは、人体の組織が欠損した場合に体が持っている自己修復力を上手く引き出して、その機能を回復させる医学分野である。この分野における医療行為としては再生医療(さいせいいりょう)とも呼ばれる。.

新しい!!: 生物工学と再生医学 · 続きを見る »

創薬

創薬(そうやく、drug discovery)とは医学、生物工学および薬学において薬剤を発見したり設計したりするプロセスのことである。 以前は、大半の薬剤が伝統治療薬(生薬)の有効性成分の同定や宝探しのようにして発見されたものであった。今日における創薬アプローチは疾病や感作が分子生物学や生理学の見地で解明された制御機序や、その見地において見出された創薬対象の特性を理解することで薬剤を発見する手法である。 創薬のプロセスは、創薬標的の同定、合成、特徴付け、薬効のスクリーニングおよびアッセイの順に進展する。これらの試験で有用性を有する化合物を見出すと、前臨床試験の医薬品開発プロセスに進む。テクノロジーや生物システムの解明が進んでいるのにもかかわらず、創薬はまだ15年以上の長期間を要す上に新薬発見の成功率は低い。 創薬に予想もしない恩恵をもたらす可能性を秘めた暗号であるヒトゲノム情報は治療標的のボトルネックを計算機上で排除すると信じられているDrug Discovery & Development, October 2005, reporting on industry trends in 2003–2005このデータは製薬産業の示した21世紀初頭から今日までの傾向の思想上の基盤を明らかにする。つまりそれは多国籍製薬企業が標的選択においてリスクを嫌うという傾向である。-->.

新しい!!: 生物工学と創薬 · 続きを見る »

獣医学

獣医学(じゅういがく、veterinary medicine)は、医学、診断学および治療原理を伴侶動物(ペット)、産業動物(家畜)、野生動物およびエキゾチックアニマルに応用するための学問である。獣医学は家畜生産の実践、群単位での健康管理、疾患のモニタリングなどを研究し、保護するために不可欠の分野である。科学的知識の取得・応用が必要となり、家畜と野生動物両方の疾患防御、及び食品衛生や環境衛生を通じた人間の健康の維持・増進を目的とした技術を使用する。 獣医学は家畜、伴侶動物および野生動物の慎重なモニタリングを通じて、人間の健康を守るという手段のひとつでもある。新興の人獣共通感染症に対処するには、獣医学でも行われている「群の健康管理」という概念に特に適した疫学および感染症制御の手法が必要な場合ある。.

新しい!!: 生物工学と獣医学 · 続きを見る »

理学

学(りがく)とは.

新しい!!: 生物工学と理学 · 続きを見る »

福祉

福祉(ふくし、Welfare)とは、「しあわせ」や「ゆたかさ」を意味する言葉であり、すべての市民に最低限の幸福と社会的援助を提供するという理念を指す。.

新しい!!: 生物工学と福祉 · 続きを見る »

細胞培養

細胞培養(さいぼうばいよう、cell culture)は、多細胞生物から細胞を分離し、体外で増殖、維持すること。生体外で培養されている細胞のことを培養細胞と呼ぶ。生体から分離し、最初の植え替えを行うまでを初代培養、既存の培養細胞を新たな培養容器へと移し替えて増殖、維持することを継代培養と呼ぶ。細胞を培養するために用いられる組織間液を模した液体を培地と呼ぶ。一般に、間葉系細胞は培養が容易であるのに対して、上皮系組織の細胞の培養は困難である。また、正常細胞に比較して癌細胞は容易に培養することができる。細胞培養における存在形態により培養細胞は接着培養系細胞と浮遊培養系細胞に分類することができる。接着培養系細胞は培養容器に付着し増殖する培養細胞であり、継代には培地交換を行う。浮遊培養系細胞は培地内で浮遊状態で増殖する培養細胞であり、継代の際には培地交換は行わず、希釈培養を行う。特殊な培養法として三次元培養がある。細胞培養において培養を目的としている生物因子以外の生物因子の混入をコンタミネーションと呼び(混入したものが細胞の場合はクロスコンタミネーションと呼ばれる)、細胞の増殖や機能、実験結果に影響を及ぼすため、細胞培養の際は無菌操作が行われる。細胞は生体の一部であるため、培養細胞の研究を介して生命現象の解析をすることができる。また、モノクローナル抗体などのようにある種の物質の生産手段としても細胞培養は利用される。.

新しい!!: 生物工学と細胞培養 · 続きを見る »

看護

看護(かんご、)は、個人や家族、地域社会が最大限の健康を取り戻し、できる限り質の高い生活ができることを目的とした支援的活動である。職業人である看護師の行う実践を指す場合が多いが、患者の家族などが病気や障害などを理由に生活上の困難を抱えている患者などに対して日常生活における世話や情緒的に支えることなどを含むこともある。 看護を職業として実践しているのは看護師(かんごし、Nurse)であり、疾病者や褥婦(じょくふ、=出産後の女性)などの療養上の世話または診療の補助などをすることを業とする人のことである広辞苑 第五版【看護師】。コ・メディカルに分類される。看護師を育成する教育は看護教育である。 看護を学問的に支えるのが看護学であり、他の成熟した学問分野と同様、医学や哲学など他の学問領域の知見や、各国の世界観・価値観のような文化的な背景を踏まえ、人のよりよい生に関わっていくための知識や技術、さまざまな理論を発展させてきた。こうした看護理論やその他の知見は実際の看護の根拠や基盤となって、その発展に寄与している。 看護は他の医療職種の活動に比べて、対象者の個別の疾患や機能とその回復に関心を持つだけでなく、人の生き死にや生き様、個人を取り巻く家族や環境など全人的な視野と関心をもって行われる点に特徴がある。.

新しい!!: 生物工学と看護 · 続きを見る »

経済

経済(けいざい、οικονομία、oeconomia、economy)とは、社会が生産活動を調整するシステム、あるいはその生産活動を指す。.

新しい!!: 生物工学と経済 · 続きを見る »

環境

境(かんきょう)は、広義においては人、生物を取り巻く家庭・社会・自然などの外的な事の総体であり、狭義ではその中で人や生物に何らかの影響を与えるものだけを指す場合もある。特に限定しない場合、人間を中心とする生物を取り巻くおおざっぱな環境のことである場合が多い。 環境は我々を取り巻き、我々に対して存在するだけでなく、我々やその生活と係わって、安息や仕事の条件として成り立つ。また狭義の環境については、人間が生産と消費の活動によって汚染し、破壊するという関係性の中で大きな環境問題になってきた。.

新しい!!: 生物工学と環境 · 続きを見る »

生体工学

生体工学(せいたいこうがく、英: bionics)は、科学的方法や自然界にあるシステムを応用して工学システムや最新テクノロジーの設計や研究を行う学問領域である。アメリカ空軍の医師が1958年に提唱した。「bionics」の語源は、ギリシア語の βίον(生命体)に接尾辞 -ic(-的、-の方法で)が付いたもので、「生命体的」を意味する。 近い概念として、生体模倣(英: Biomimetics,Biomimicry)がある。 生命体には進化的な圧力による高度な最適化があり、効率的であるため、これを人工物の構築に応用することが考えられた。古典的な例としてはハス科の植物の表面を研究することにより、撥水加工技術が生まれた(ロータス効果)。他にも、イルカの肌を模倣した船殻、コウモリの反響定位を模倣したソナー、レーダー、医用超音波画像などがある。 コンピュータの分野では、生体工学の研究から人工神経、ニューラルネットワーク、群知能などが生まれた。進化的計算も生体工学的な考え方が根底にあるが、In silico(コンピュータを用いて)進化のシミュレーションを行うことから生まれた考え方であり、自然界にはなかった最適化された手法が生み出されている。 イギリス バス大学の生体模倣技術の専門家ジュリアン・ヴィンセントによれば、「現在、生物学とテクノロジーの間でメカニズムが共有されている部分は10%にすぎない」とされている。.

新しい!!: 生物工学と生体工学 · 続きを見る »

生体認証

生体認証(せいたいにんしょう)とは、バイオメトリック(biometric)認証あるいはバイオメトリクス(biometrics)認証とも呼ばれ、人間の身体的特徴(生体器官)や行動的特徴(癖)の情報を用いて行う個人認証の技術やプロセスである。.

新しい!!: 生物工学と生体認証 · 続きを見る »

生化学

生化学(せいかがく、英語:biochemistry)は生命現象を化学的に研究する生化学辞典第2版、p.713 【生化学】生物学または化学の一分野である。生物化学(せいぶつかがく、biological chemistry)とも言う(若干生化学と生物化学で指す意味や範囲が違うことがある。生物化学は化学の一分野として生体物質を扱う学問を指すことが多い)。生物を成り立たせている物質と、それが合成や分解を起こすしくみ、そしてそれぞれが生体システムの中で持つ役割の究明を目的とする。.

新しい!!: 生物工学と生化学 · 続きを見る »

生物多様性

生物多様性に富むアマゾン熱帯雨林 生物多様性(せいぶつたようせい、)とは、生物に関する多様性を示す概念である。生態系・生物群系または地球全体に、多様な生物が存在していることを指す。生態系の多様性、種多様性、遺伝的多様性(遺伝子の多様性、種内の多様性とも言う)から構成される。 生物多様性の定義には様々なものがあるが、生物の多様性に関する条約では「すべての生物(陸上生態系、海洋その他の水界生態系、これらが複合した生態系その他生息又は生育の場のいかんを問わない。)の間の変異性をいうものとし、種内の多様性、種間の多様性及び生態系の多様性を含む」と定義されている。.

新しい!!: 生物工学と生物多様性 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

新しい!!: 生物工学と生物学 · 続きを見る »

生物兵器

生物兵器(せいぶつへいき)とは、細菌やウイルス、あるいはそれらが作り出す毒素などを使用し、人や動物に対して使われる兵器のこと。国際法(ジュネーヴ議定書)で使用が禁止されている。生物兵器を使用した戦闘を生物戦(せいぶつせん)という。.

新しい!!: 生物工学と生物兵器 · 続きを見る »

発酵

酵(はっこう。醱酵とも表記).

新しい!!: 生物工学と発酵 · 続きを見る »

発酵食品

酵食品(はっこうしょくひん)とは、食材を微生物等の作用で発酵させることにより加工した食品である。冷蔵庫などの存在する以前から、保存食として、または風味を改良したり食品の硬さを柔らかくするといった目的でも行われる。納豆、醤油、味噌、漬物、鰹節のように日本の伝統的な食品に見られる。このことは日本だけでなく、パンやヨーグルト、紅茶、キムチなど世界でも伝統的に利用されてきた。また穀物や果物を発酵させて製造される酒は、アルコールが殺菌作用を持つが、同時に精神作用を持つ飲料である。 発酵は、近代における微生物学など科学の発達によって、主に微生物などの働きであることが理解されるようになってきたものの、古くは「理由はわからないが所定の工程を行うことで概ね同じような状態に変化する」という現象を利用することで連綿と行われてきた。このため、一概に発酵食品とはいっても微生物の存在が理解される以前から行われていることにも絡んで、微生物の作用以外に酵素の働きによるものや生物の自己消化(→自己融解)作用による変化などもその類型に収まる。.

新しい!!: 生物工学と発酵食品 · 続きを見る »

DNAリガーゼ

DNAリガーゼ(ディーエヌエーリガーゼ、)は、DNA鎖の末端同士をリン酸ジエステル結合でつなぐ酵素である。生体内では主としてDNA複製とDNA修復に寄与している。一方、遺伝子工学で組換えDNAを作るために頻繁に利用されている。EC番号は(基質ATP)または(基質NAD+)。英語での発音に倣ってDNAライゲースともいい、ポリデオキシリボヌクレオチドシンターゼ、ポリヌクレオチドリガーゼなどとも呼ばれる。.

新しい!!: 生物工学とDNAリガーゼ · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: 生物工学と遺伝子 · 続きを見る »

遺伝子工学

遺伝子工学(いでんしこうがく、英:genetic engineering)とは、遺伝子を人工的に操作する技術を指し、特に生物の自然な生育過程では起こらない人為的な型式で行うことを意味している。遺伝子導入や遺伝子組換え(いでんしくみかえ:組換えDNA(くみかえDNA))などの技術で生物に遺伝子操作(いでんしそうさ)を行う事を一般に指す。.

新しい!!: 生物工学と遺伝子工学 · 続きを見る »

遺伝子組み換え作物

遺伝子組換え作物(いでんしくみかえさくもつ)は、遺伝子組換え技術を用いて遺伝的性質の改変が行われた作物である。 日本語では、いくつかの表記が混在している。「遺伝子組換作物反対派」は遺伝子組み換え作物、厚生労働省などが遺伝子組換え作物、食品衛生法では組換えDNA技術応用作物、農林水産省では遺伝子組換え農産物などの表記を使うことが多い。 英語の からGM作物、GMOとも呼ばれることがある。なお、GMOは通常はトランスジェニック動物なども含む遺伝子組換え生物を指し、作物に限らない。 GMO生産マップ(2005年)。オレンジ色の5カ国はGMOの95%を生産している。オレンジ色の斜線の国々はGMOを生産している。オレンジの点の国々は屋外での実験が許可されている。.

新しい!!: 生物工学と遺伝子組み換え作物 · 続きを見る »

遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律

遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律(いでんしくみかえせいぶつとうのしようとうのきせいによるせいぶつのたようせいのかくほにかんするほうりつ、平成15年法律第97号)は、遺伝子組換えなどのバイオテクノロジーによって作製された生物の使用等を規制するための法律である。通称として遺伝子組換え(生物等)規制法、カルタヘナ法ともいう。 生物の多様性に関する条約のバイオセーフティに関するカルタヘナ議定書(平成15年条約第7号)が発効したのに伴い、当議定書の実施を目的として制定され、2004年2月19日をもって施行された。 従来、遺伝子組換え等を規制するものとしては「組換えDNA実験指針」があったが、本法律がこれに代わり罰則を加えて規制を行うこととなった。.

新しい!!: 生物工学と遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律 · 続きを見る »

遺伝子治療

遺伝子治療(いでんしちりょう)とは、異常な遺伝子を持っているため機能不全に陥っている細胞の欠陥を修復・修正することで病気を治療する手法である。代表的なものでは、治療用の遺伝子情報を組み込んだレトロウイルスを異常な遺伝子を持つ細胞内に浸入させる手法がとられているが、成功例は少なく、より画期的なDNA導入法が期待される。ベクターを注射、吸入、塗布などで患部組織に注入するか、患者自身の血球などを一度取り出し、体外でベクターを作用させてから、患者に戻す方法などがある。 具体例として、1990年アメリカにおいてアデノシンデアミナーゼ欠損症による重度免疫不全患者に対する初の遺伝子治療に成功し、その後日本でも1995年北海道で同様の成果が得られた。.

新しい!!: 生物工学と遺伝子治療 · 続きを見る »

衛生

衛生(えいせい、英語・ドイツ語:hygiene)とは、「生」を「まもる」ことから健康をまもること、転じて健康の増進を意味する。今日では単に清潔のみを意味する場合も多い。また、医学の一分野として衛生学、保健衛生学と称されることもある。.

新しい!!: 生物工学と衛生 · 続きを見る »

農学

農学(のうがく、agriculture)とは、農業・林業・水産業・畜産業などに関わる、応用的な学問。農産物の栽培・育種、生産技術の向上、生産物の加工技術などや、生産に関わる社会的な原理、環境の保全など、第一次産業に関わる幅広い事柄を研究し、産業の改良と発展を目指す。広義の自然科学に属し、化学、生物学、地学などを基礎とするが、社会科学も基盤の一部を成す。.

新しい!!: 生物工学と農学 · 続きを見る »

農作物

様々な農作物 農作物(のうさくぶつ、のうさくもつ)または作物(さくもつ)とは広義には田畑につくる栽培植物全般を指す。.

新しい!!: 生物工学と農作物 · 続きを見る »

胚性幹細胞

マウスES細胞:緑の部分が小型のES細胞の塊であり、周りの細胞はフィーダー細胞 胚性幹細胞(はいせいかんさいぼう、embryonic stem cells)とは、動物の発生初期段階である胚盤胞期の胚の一部に属する内部細胞塊より作られる幹細胞細胞株のこと。英語の頭文字をとって、ES細胞(イーエスさいぼう、ES cells)と呼ばれる。体細胞より作られる人工多能性幹細胞(iPS細胞)とは異なる。 生体外にて、理論上すべての組織に分化する分化多能性を保ちつつ、ほぼ無限に増殖させることができるため、有力な万能細胞の一つとして再生医療への応用が期待されている。またマウスなどの動物由来のES細胞は、体外培養後、胚に戻し、発生させることで、生殖細胞を含む個体中の様々な組織に分化することができる。また、その高い増殖能から遺伝子に様々な操作を加えることが可能である。このことを利用して、相同組換えにより個体レベルで特定遺伝子を意図的に破壊したり(ノックアウトマウス)、マーカー遺伝子を自在に導入したりすることができるので、基礎医学研究では既に広く利用されている。.

新しい!!: 生物工学と胚性幹細胞 · 続きを見る »

薬学

薬学(やくがく、pharmacy)とは、薬物を専門とする学問である。医療をサポートする学問領域の医療薬学と薬の発見と製造に関する領域の医薬品化学に大別される。.

新しい!!: 生物工学と薬学 · 続きを見る »

醸造

醸造(じょうぞう)とは、発酵作用を利用してアルコール飲料(酒類)やその他の食品(主に液状の調味料)を製造することである。アルコール燃料等に転用する場合もある。 日本語の醸造という言葉は元来麹(こうじ)を用いて発酵させるものをさしたが、現代では麹以外の微生物を用いたものも含める。.

新しい!!: 生物工学と醸造 · 続きを見る »

金融

金融(きんゆう、finance)とは、一般に、資金余剰者から資金不足者へ資金を融通することをいう。しかし、歴史に残る金融は合理化の手段である。したがって合理的に解釈すれば、ここにいう「不足」とは絶対量のそれではなく、単純に資金需要を指すことになる。.

新しい!!: 生物工学と金融 · 続きを見る »

Flavr Savr

Flavr Savr(フレーバーセーバー)とは、遺伝子組み換え技術により作出されたトマトの品種。世界で初めて商用栽培された遺伝子組み換え作物である。日持ちをよくすることを目的としてCalgene社により作られた。1992年アメリカ食品医薬品局により承認、1994年販売開始。.

新しい!!: 生物工学とFlavr Savr · 続きを見る »

抗がん剤

抗がん剤(こうがんざい、Anticancer drug)とは、悪性腫瘍(がん)の増殖を抑えることを目的とした薬剤である。抗癌剤、制癌剤とも。がんの三大治療である手術、化学療法、放射線療法のうち化学療法に入る。.

新しい!!: 生物工学と抗がん剤 · 続きを見る »

抗精神病薬

抗精神病薬(こうせいしんびょうやく、Antipsychotics)は、広義の向精神薬の一種で、主に統合失調症や躁状態の治療に承認されている精神科の薬である。過去には、神経遮断薬(Neuroleptics)、あるいはメジャートランキライザー(Major tranquilizers)とも呼ばれ、1950年代には単にトランキライザーと呼ばれた。薬事法における劇薬に指定されるものが多い。抗精神病薬は、それ以外にも幅広い精神障害に使用される。 抗精神病薬は大きく2分類することができ、古い定型抗精神病薬と、新世代型の非定型抗精神病薬がある。非定型抗精神病薬は、双極性障害のうつ状態やうつ病にも適応がある薬がある。非定型抗精神病薬は、従来の定型抗精神病薬と比較してドーパミンD2受容体拮抗作用に加えてセロトニン5HT2A受容体拮抗作用を有したり、「緩い」ドーパミンD2受容体拮抗作用を有するなどの特徴をもった薬剤である。非定型抗精神病薬は、錐体外路症状、口が渇く、便秘といった副作用が少なく、統合失調症の陰性症状にも効果が認められる場合があるとされる。しかし#定型対非定型節に見られるように、大規模な試験による分析によれば、非定型抗精神病薬が定型抗精神病薬よりも優れているという根拠は乏しい。 副作用として、口渇、便秘、無意識的に身体が動く錐体外路症状や、肥満といった代謝の異常、母乳が出るといった高プロラクチン血症などがある。代謝の異常は、特に非定型抗精神病薬に特徴的である。抗精神病薬を服用している患者の代謝のチェックが日常的に適切に行われていないことが多く、約90%の患者が1つ以上の代謝性の危険因子を持ち、約30%がメタボリックシンドロームである。さらに抗精神病薬の使用は高い無職率の原因となっている。また服薬を中断する場合#離脱症状が生じる可能性がある。#有効性節以下で示されるが、効果がなかったり副作用のため服薬の中止が多い薬剤である。 抗精神病薬の過剰処方が問題となっている。投与量の増大に伴う治療効果は頭打ちになるが、副作用発現率は上昇していくため、世界保健機関および英米の診療ガイドラインでは単剤療法を推奨している。日本でも2010年に、抗精神病薬の種類が2種類以下である場合に診療報酬が有利になる改定が行われた。厚生労働省自殺・うつ病等対策プロジェクトチームが「統合失調症に対する抗精神病薬多剤処方の是正に関するガイドライン」の策定を計画しており、2013年10月にSCAP法という減薬ガイドラインが公開された。抗精神病薬の大量処方からの減量は、過感受性精神病という離脱症状による精神症状の悪化を引き起こす可能性があり注意が必要である。 抗精神病薬の使用は脳の容積を減少させるかについてはさらなる研究を要する。抗精神病薬の使用は若年認知症発症の危険因子である。.

新しい!!: 生物工学と抗精神病薬 · 続きを見る »

技術

技術(ぎじゅつ)とは、かなり多義的に用いられる言葉であり、.

新しい!!: 生物工学と技術 · 続きを見る »

東京化学同人

株式会社 東京化学同人(とうきょうかがくどうじん)は、主に理・工・農・薬・医・家政学系などの教科書類、専門書、辞典類および雑誌を出版・販売する日本の出版社。.

新しい!!: 生物工学と東京化学同人 · 続きを見る »

栄養学

栄養学(えいようがく、)とは、食事や食品、その成分である栄養素がどのように生物の中で利用されたり影響しているかを研究する、栄養に関する学問である。1910年代、日本での栄養学の創設期には、食品に含まれる栄養成分の分析や、「何を、いつ、どのくらい」食べたらいいのかを研究した。次第に白米の栄養素が乏しいということで、玄米かこれを部分的に精米した分搗き米や胚芽米かといった激しい主食論争が交わされた。1980年頃から、食事と生活習慣病が大きく関係することが分かり、食生活指針が作られ関連を研究する疫学研究が盛んになった。また1980年代以降、食品成分の健康に対する作用が解明されることが増え、健康食品として食品の機能に関して認識されていくこととなった。 炭水化物、たんぱく質、脂質で三大栄養素と呼ばれる。炭水化物が減少し、脂質が増えるという比率の変化は、食の西洋化(また欧米化)と呼ばれ健康への影響が調査されてきた(厳密には脂肪の種類が重要)。日本でも反省され1980年代には日本型食生活が提唱された。沖縄は、以前は世界に名だたる長寿地域でその食事要因なども調査されてきたが、全国に先駆けた食事の西欧化により、その長寿が危機に瀕している。このような傾向を日本の他の地域も後追いするといわれている。ビタミン、ミネラルを加えて五大栄養素である。さらに微量な栄養素や腸内細菌の影響も調査される。 同じ栄養学が、古くは精白を奨励し21世紀近くには問題にし、動物性食品を古くは奨励し後に大きな問題の源としたのである。過去に食物繊維は栄養素の利用効率を下げると考えられ穀物の精白が推奨されたが、白米など精白による栄養損失も問題となり日本の栄養学創設者佐伯矩は七分搗き米を、女子栄養大学創設者の香川綾は胚芽米を推奨し21世紀でも重視されている。1970年代には食物繊維の重要性が知られ、1990年代に目標摂取量が策定され、穀物からの摂取量減少が目標達成を阻んでいる。欧米の食生活指針は全粒穀物を推奨した。砂糖をエネルギー比10%未満にするという2003年の世界保健機関(WHO)の勧告は、2014年に5%未満とする草案となった。1957年の国際的なタンパク質の品質の評価基準プロテインスコアでは鶏卵100点を頂点とし木綿豆腐は67点だった、1973年にアミノ酸スコアとして改訂され、1985年の改定、1990年の確認を経て、大豆も100点と高いものとなり、動物性食品を減らす動きや、穀物と豆という組み合わせは良質なタンパク質の品質になることが確認されてきた。脂肪も必須でないと考えられた時代から1980年前後には必須脂肪酸が特定され、特にω-3脂肪酸は亜麻仁や魚に多く、大豆や菜種油に比較的多く含まれる。1977年のアメリカの食事目標でも動物性脂肪削減は主な焦点となり宮崎基嘉(国立健康栄養研究所基礎栄養部長)「米国の食事目標に学ぶもの」『米国の食事目標(第2版)-米国上院:栄養・人間ニーズ特別委員会の提言』 食品産業センター、1980年3月。Dietary Goals for the United States (second edition)、2003年トランス脂肪酸による心血管系リスク増加の防止をWHOが勧告した。.

新しい!!: 生物工学と栄養学 · 続きを見る »

歯学

歯学(しがく、dentistry)は、口腔顎顔面領域に関する外傷や疾患の性状、原因についての知識を蓄積、その予防、診断、治療の方法を開発する学問である。歯科学・歯科医学(しかがく・しかいがく、dental medicine)とも呼ばれる。 日本においては、明治時代に医学より独立しているが、それまでは口中科として医学の一分科であった。口腔科医師として口腔医学(こうくういがく、oral medicine)や医学(口腔科学・こうくうかがく)に包括されている国も中国・台湾や欧米諸国など存在する。.

新しい!!: 生物工学と歯学 · 続きを見る »

放射線療法

『肺がん』 p.92。 放射線療法(ほうしゃせんりょうほう、radiation therapy / radiotherapy)は、放射線を患部に体外および体内から照射する治療法である。手術、抗がん剤治療とともに癌(がん)に対する主要な治療法の一つである。.

新しい!!: 生物工学と放射線療法 · 続きを見る »

1944年

記載なし。

新しい!!: 生物工学と1944年 · 続きを見る »

1945年

この年に第二次世界大戦が終結したため、世界史の大きな転換点となった年である。.

新しい!!: 生物工学と1945年 · 続きを見る »

1953年

記載なし。

新しい!!: 生物工学と1953年 · 続きを見る »

1956年

記載なし。

新しい!!: 生物工学と1956年 · 続きを見る »

1967年

記載なし。

新しい!!: 生物工学と1967年 · 続きを見る »

1968年

記載なし。

新しい!!: 生物工学と1968年 · 続きを見る »

1970年

記載なし。

新しい!!: 生物工学と1970年 · 続きを見る »

1973年

記載なし。

新しい!!: 生物工学と1973年 · 続きを見る »

1974年

記載なし。

新しい!!: 生物工学と1974年 · 続きを見る »

1975年

記載なし。

新しい!!: 生物工学と1975年 · 続きを見る »

1977年

記載なし。

新しい!!: 生物工学と1977年 · 続きを見る »

1982年

この項目では、国際的な視点に基づいた1982年について記載する。.

新しい!!: 生物工学と1982年 · 続きを見る »

1985年

この項目では、国際的な視点に基づいた1985年について記載する。.

新しい!!: 生物工学と1985年 · 続きを見る »

1990年

この項目では、国際的な視点に基づいた1990年について記載する。.

新しい!!: 生物工学と1990年 · 続きを見る »

1994年

この項目では、国際的な視点に基づいた1994年について記載する。.

新しい!!: 生物工学と1994年 · 続きを見る »

1996年

この項目では、国際的な視点に基づいた1996年について記載する。.

新しい!!: 生物工学と1996年 · 続きを見る »

1998年

この項目では、国際的な視点に基づいた1998年について記載する。.

新しい!!: 生物工学と1998年 · 続きを見る »

2000年

400年ぶりの世紀末閏年(20世紀および2千年紀最後の年)である100で割り切れるが、400でも割り切れる年であるため、閏年のままとなる(グレゴリオ暦の規定による)。。Y2Kと表記されることもある(“Year 2000 ”の略。“2000”を“2K ”で表す)。また、ミレニアムとも呼ばれる。 この項目では、国際的な視点に基づいた2000年について記載する。.

新しい!!: 生物工学と2000年 · 続きを見る »

ここにリダイレクトされます:

バイテクバイオテクノロジーバイオエンジニアリング生命工学生物工学科

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »