ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

熱雑音

索引 熱雑音

熱雑音(ねつざつおん、thermal noise)は、抵抗体内の自由電子の不規則な熱振動(ブラウン運動)によって生じる雑音のことをいう。1927年にこの現象を発見した二人のベル研究所の研究者ジョン・バートランド・ジョンソン及びハリー・ナイキストの名前からジョンソン・ノイズまたはジョンソン-ナイキスト・ノイズとも呼ばれる。 抵抗体内で発生する雑音の電圧Vn 、電流In は次式で与えられる。 ここでk B はボルツマン定数、T は導体の温度、Δf は帯域幅、R は抵抗値である。 従ってノイズの大きさPn は次式で与えられる。 また、雑音元(信号元)から回路に入力される雑音電力を入力雑音電力と言い、電気通信分野での増幅器雑音計算には専らこちらが使用される。入力雑音電力N i は次式で与えられる。 入力雑音電力がこの数式で与えられるのは、雑音元を、起電力が上記のV_、内部抵抗がRの電源と考え、負荷につないだときに負荷で消費される電力として計算するからである。入力された電力を、反射することなく負荷で完全に消費するには、負荷のインピーダンスがRである必要があり、その結果として上記の入力雑音電力N_\mathrmが導出される。 ノイズの大きさは温度で決まる。室温(300K)のノイズ(入力雑音電力)の大きさP をデシベル単位(dBm)で表すと である。 熱雑音が問題になるような領域は極めて小さい信号を扱う場合で、そのような場合は、増幅器を極低温まで冷却して極限まで雑音性能を高めることなどがされる。 熱雑音が有効活用される例として、コンピュータの乱数発生器に熱雑音を用いる物がある。.

28 関係: 増幅器室温導体信号ノイズハリー・ナイキストハードウェア乱数生成器ボルツマン定数ブラウン運動ピンクノイズデシベルベル研究所ケルビンコンピュータショット雑音ジョン・バートランド・ジョンソンDBm自由電子電力電圧電気通信電気抵抗電流抵抗器揺動散逸定理温度1927年

増幅器

増幅器(ぞうふくき、 アンプリファイアー) 増幅器とは信号を増幅するもの(機器、装置 等々)のことである。信号の波の形や特性は、おおむねそのままに、その大きさを大きくする。.

新しい!!: 熱雑音と増幅器 · 続きを見る »

室温

室温(しつおん)とは、部屋など屋内の温度のことである。 ただし以下に述べるように、自然科学の用語として用いられる場合があり、その場合は領域ごとに若干定義が異なる。常温も参照のこと。 英語では室温をroom temperatureいう事から「RT」または「rt」と略記されることがある。.

新しい!!: 熱雑音と室温 · 続きを見る »

導体

導体 (conductor).

新しい!!: 熱雑音と導体 · 続きを見る »

信号

信号 (しんごう).

新しい!!: 熱雑音と信号 · 続きを見る »

ノイズ

ノイズ (noise) とは、処理対象となる情報以外の不要な情報のことである。歴史的理由から雑音(ざつおん)に代表されるため、しばしば工学分野の文章などでは(あるいは日常的な慣用表現としても)音以外に関しても「雑音」と訳したり表現したりして、音以外の信号等におけるノイズの意味で扱っていることがある。西洋音楽では噪音(そうおん)と訳し、「騒音」や「雑音」と区別している。.

新しい!!: 熱雑音とノイズ · 続きを見る »

ハリー・ナイキスト

ハリー・ナイキスト(英語: Harry Nyquist, スウェーデン語: Harry Theodor Nyqvist, 1889年2月7日 - 1976年4月4日)はスウェーデン生まれの物理学者で自動制御理論および情報理論の発展に貢献した。スウェーデンでの名はハリー・テオドール・ニュークヴィスト。 スウェーデン・ヴェルムランド地方ヴェルムランド県シール市のNilsbyに生れた。1907年に一家でアメリカ合衆国に移住して帰化した。ノースダコタ大学とイェール大学で学んだ後、1917年から1934年までAT&T研究所に勤め、その後ベル研究所に移った。 ベル研究所では熱雑音、フィードバック増幅器の安定性などの研究を行った。ナイキストが研究した雑音は、同じくベル研究所で熱雑音の研究に取り組んだジョン・バートランド・ジョンソンに因み、ジョンソン-ナイキスト雑音と呼ばれる。 情報の伝送に必要な帯域の決定に関する理論は Certain factors affecting telegraph speed Nyquist (1924).として発表され、これは後にクロード・シャノンによって発展させられる情報理論の基になった。 1927年にナイキストはアナログ信号をデジタルサンプリングして、再現するのにアナログ信号の周波数の 2 倍が必要であることを Telegraph Transmission Theory Nyquist (1928).の中で示した。ナイキスト-シャノンの標本化定理と呼ばれる。 1960年にIRE栄誉賞(IEEE栄誉賞の前身)を受賞。 晩年はテキサス州で隠居し、1976年にハーリンジェンで死去した。.

新しい!!: 熱雑音とハリー・ナイキスト · 続きを見る »

ハードウェア乱数生成器

ハードウェア乱数生成器(-らんすうせいせいき)は、ハードウェアに由来する不確定性を利用した、擬似乱数列でない「真の乱数列」を発生させるシステム。コンピュータの内部などのものでは、システム中にソフトウェアが併用されることも多い。 サイコロなども原始的なハードウェア乱数生成器である。 ダイオードの生成するノイズや熱雑音、放射性物質の崩壊による放射線をセンサで検出する等、ランダムな物理現象を用い、その信号を元に乱数を生成する。物理現象は必ずしも一様乱数とはならないため、センサからの出力を必要な種類の乱数に変換する必要がある場合もある。使用環境によっては発生する乱数に傾向が見られないようにノイズ発生器を設計する事が重要になる。.

新しい!!: 熱雑音とハードウェア乱数生成器 · 続きを見る »

ボルツマン定数

ボルツマン定数(ボルツマンていすう、Boltzmann constant)は、統計力学において、状態数とエントロピーを関係付ける物理定数である。統計力学の分野において重要な貢献をしたオーストリアの物理学者ルートヴィッヒ・ボルツマンにちなんで名付けられた。通常は記号 が用いられる。特にの頭文字を添えて で表されることもある。 ボルツマンの原理において、エントロピーは定まったエネルギー(及び物質量や体積などの状態量)の下で取りうる状態の数 の対数に比例する。これを と書いたときの比例係数 がボルツマン定数である。従って、ボルツマン定数はエントロピーの次元を持ち、熱力学温度をエネルギーに関係付ける定数として位置付けられる。国際単位系(SI)における単位はジュール毎ケルビン(記号: J K)が用いられる。.

新しい!!: 熱雑音とボルツマン定数 · 続きを見る »

ブラウン運動

ブラウン運動(ブラウンうんどう、Brownian motion)とは、液体のような溶媒中媒質としては気体、固体もあり得る。に浮遊する微粒子(例:コロイド)が、不規則(ランダム)に運動する現象である。1827年、ロバート・ブラウンが、水の浸透圧で破裂した花粉から水中に流出し浮遊した微粒子を、顕微鏡下で観察中に発見し、論文「植物の花粉に含まれている微粒子について」で発表した。 この現象は長い間原因が不明のままであったが、1905年、アインシュタインにより、熱運動する媒質の分子の不規則な衝突によって引き起こされているという論文が発表された。この論文により当時不確かだった原子および分子の存在が、実験的に証明出来る可能性が示された。後にこれは実験的に検証され、原子や分子が確かに実在することが確認された。同じころ、グラスゴーの物理学者が1905年にアインシュタインと同じ式に到達し、ポーランドの物理学者も1906年に彼自身によるブラウン運動の理論を発表した。 数学のモデルとしては、フランス人のルイ・バシュリエは、株価変動の確率モデルとして1900年パリ大学に「投機の理論」と題する博士論文を提出した。今に言う、ランダムウォークのモデルで、ブラウン運動がそうである、という重要な論文であるが、当時のフランスの有力数学者たちに理解されず、出版は大幅に遅れた。 ブラウン運動と言う言葉はかなり広い意味で使用されることもあり、類似した現象として、電気回路における熱雑音(ランジュバン方程式)や、希薄な気体中に置かれた、微小な鏡の不規則な振動(気体分子による)などもブラウン運動の範疇として説明される。.

新しい!!: 熱雑音とブラウン運動 · 続きを見る »

ピンクノイズ

ピンクノイズとは、パワーが周波数に反比例する雑音のこと。同じ周波数成分を持つ光がピンク色に見えることからピンクノイズと呼ばれる。いわゆる1/fゆらぎを持った信号源をマクロに見た場合も似た感じになる。 ピンクノイズの波形は、フラクタル状になっていることが知られている。オクターブバンドと呼ばれる帯域ごとのエネルギーが一様になるため、様々な音響測定に使用される。 ピンクノイズまたは1/fノイズは 、周波密度が周波数の逆数となるような周波スペクトルをもった信号、または過程を指す。ピンクノイズという名前は、ホワイトノイズ(1/f0)とレッドノイズ(またはブラウニアンノイズ、1/f2)の中間であることにちなむ。 科学論文では1/fノイズは、より幅広く、下記式のスペクトル密度を持つ各種ノイズを指す。.

新しい!!: 熱雑音とピンクノイズ · 続きを見る »

デシベル

デシベル(、記号: dB)は、電気工学や振動・音響工学などの分野で、物理量をレベル表現により表すときに使用される単位である。SIにおいてレベル表現として表される量には次元が与えられておらず、無次元量である。 ベルの語源は、アレクサンダー・グラハム・ベルが電話における電力の伝送減衰を表わすのに最初に用いたことに由来する。.

新しい!!: 熱雑音とデシベル · 続きを見る »

ベル研究所

ベル研究所(ベルけんきゅうじょ、Bell Laboratories)はもともとBell System社の研究開発部門として設立された研究所であり、現在はノキアの子会社である。「ベル電話研究所」、略して「ベル研」とも。.

新しい!!: 熱雑音とベル研究所 · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 熱雑音とケルビン · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 熱雑音とコンピュータ · 続きを見る »

ショット雑音

デジタル写真における光子ショット雑音のシミュレーション。 ショット雑音(ショットざつおん、ショットノイズ、Shot noise)とは、回路ノイズの一種である。電気回路における電子や光学装置における光子のようなエネルギーを持った粒子の数が極度に小さい場合、粒子数の統計的変動が測定にかかるほど大きくなるために発生する。ショット雑音は電子工学、電気通信、基礎物理学の分野で問題にされる。 ショット雑音の大きさは光強度や電流の平均値に比例する。普通平均値は信号そのものを指すが、平均値が増えるとき、信号レベルは雑音レベルよりも早く増加する。したがって、多くの場合、ショット雑音は電流や光強度が小さいときにしか問題にならない。 ある時間内に検出される光子数の平均値は光源の強さから決まるが、実際に検出される数は平均値と等しい場合もあれば大きくも小さくもなる。平均値を中心とするその分布はポアソン分布になる。事象の数が大きくなるにつれポアソン分布は正規分布に近づくので、非常に多数の光子を測定すると、信号に含まれる光子雑音は正規分布に近づく。 事象の間に相関がない場合、ショット雑音は理想的なホワイトノイズである。 ポアソン分布の性質から、光子雑音の標準偏差は光子数の平均の平方根に等しいことが示せる。したがってSN比は次の式で表される。 ここでNは検出される光子数の平均である。Nを大きくすれば、SN比もそれにつれて大きくなる。このことから、光子数が小さいときに光子雑音が相対的に重要になることが分かる。.

新しい!!: 熱雑音とショット雑音 · 続きを見る »

ジョン・バートランド・ジョンソン

ョン・バートランド・ジョンソン(バート・ジョンソン、英語: John Bertrand "Bert" Johnson、スウェーデン語: Johan Erik Bertrand Johansson、1887年10月2日 – 1970年11月27日)は、スウェーデン出身のアメリカ人物理学者で電気技術者。ジョンソンは電線を伝わる情報に干渉する雑音の根源について、詳細な説明をした最初の人物である。ジョンソンの研究した雑音は今日、その理論的な説明を与えたハリー・ナイキストの名を冠してジョンソン-ナイキスト雑音と呼ばれる。 ジョンソンは1887年10月2日にスウェーデンのイェーテボリにて、ヨアン・イーリク・ベルトランド・ヨアンソンの名で生まれた。父親は明らかになっていない。 1889年に、ヨアンは母親と共に、ブーヒュースレーンのターヌム小教区 (Tanums socken) ブラムセルード (Bramseröd) にある母の実家へと移った。 1902年、ヨアンの母はアメリカ合衆国へ行き、ヨアン自身は1904年に彼の弟と共に合衆国へと向かった。アメリカ合衆国で、ヨアンは名前をジョン・バートランド・ジョンソンと改めた。.

新しい!!: 熱雑音とジョン・バートランド・ジョンソン · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: 熱雑音と熱 · 続きを見る »

DBm

dBmまたはデシベルミリワット(dBmW)は、電力を1ミリワット(mW)を基準値とするデシベル(dB)の値で表した単位である。電波や光ファイバーなどで信号の強さを表すのに用いられる。dBmで表すことで、非常に大きな値から非常に小さな値までを、以下のように少ない桁数の数字で簡便に表すことができる。.

新しい!!: 熱雑音とDBm · 続きを見る »

自由電子

自由電子(じゆうでんし, free electron)とはポテンシャルがいたるところでゼロ、つまり何ら束縛を受けていない電子のこと。電子気体(フェルミ気体)とも呼ばれることがある。この自由電子をモデルとしたものを自由電子モデル(自由電子模型、Free electron model)と言う。現実の電子系について、それらが自由電子であると仮定する近似を自由電子近似と言う。 特に金属の場合は、伝導電子と同じ意味で自由電子という言葉が用いられる。金属内部の自由電子は、電気伝導や熱伝導を担う。 実際には通常の金属においても、伝導電子はごく弱くはあるが相互作用を受けている。強く束縛を受ける伝導電子などには適用できず、電子同士の多体相互作用も無視している。自由電子として扱うのは一種の理想化である。.

新しい!!: 熱雑音と自由電子 · 続きを見る »

電力

電力(でんりょく、electric power)とは、単位時間に電流がする仕事(量)のことである。なお、「電力系統における電力」とは、単位時間に電気器具によって消費される電気エネルギーを言う。国際単位系(SI)においてはワット が単位として用いられる。 なお、電力を時間ごとに積算したものは電力量(electric energy)と呼び、電力とは区別される。つまり、電力を時間積分したものが電力量である。.

新しい!!: 熱雑音と電力 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 熱雑音と電圧 · 続きを見る »

電気通信

電気通信(でんきつうしん)とは、電気信号・電磁波・光波等の電磁的手段により映像・音声・データなどの情報を伝える通信である。.

新しい!!: 熱雑音と電気通信 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

新しい!!: 熱雑音と電気抵抗 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: 熱雑音と電流 · 続きを見る »

抵抗器

抵抗器(ていこうき、resistor)とは、一定の電気抵抗値を得る目的で使用される電子部品であり受動素子である。通常は「抵抗」と呼ばれることが多い。 電気回路用部品として、電流の制限や、電圧の分圧、時定数回路などの用途に用いられる。集積回路など半導体素子の内部にも抵抗素子が形成されているが、この項では独立した回路部品としての抵抗器について述べる。.

新しい!!: 熱雑音と抵抗器 · 続きを見る »

揺動散逸定理

揺動散逸定理(ようどうさんいつていり、fluctuation-dissipation theorem, FDT)とは、「熱力学的平衡状態にある系が外部から受けたわずかな摂動に対する応答(線形近似できるとする)が、自発的なゆらぎに対する応答と同じである」という仮定から導かれる、統計力学の定理である。つまり、熱力学系の平衡におけるゆらぎと抵抗(抗力)の間にある関係を示すものである。.

新しい!!: 熱雑音と揺動散逸定理 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 熱雑音と温度 · 続きを見る »

1927年

記載なし。

新しい!!: 熱雑音と1927年 · 続きを見る »

ここにリダイレクトされます:

ジョンソン・ナイキスト・ノイズジョンソン・ノイズジョンソンナイキストノイズジョンソンノイズ

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »