ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

無限小

索引 無限小

数学における無限小(むげんしょう、infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さかろうと、角度や傾きといったある種の性質はそのまま有効であることである。 術語 "infinitesimal" は、17世紀の造語 infinitesimus(もともとは列の「無限番目」の項を意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルかライプニッツである。無限小はライプニッツがやなどをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが零でない対象である」とか「如何なる適当な意味においても零と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。 シラクサのアルキメデスは、自身の (機械的定理証明法)においてと呼ばれる手法を応分に用いて領域の面積や立体の体積を求めた。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。15世紀にはニコラウス・クザーヌスの業績として(17世紀にはケプラーがより詳しく調べているが)、特に円を無限個の辺を持つ多角形と見做して円の面積を計算する方法が見受けられる。16世紀における、任意の実数の十進表示に関するシモン・ステヴィンの業績によって、実連続体を考える下地はすでにでき上がっていた。カヴァリエリの不可分の方法は、過去の数学者たちの結果を拡張することに繋がった。この不可分の方法は幾何学的な図形を 1 の量に分解することと関係がある。ジョン・ウォリスの無限小は不可分とは異なり、図形をもとの図形と同じ次元の無限に細い構成要素に分解するものとして、積分法の一般手法の下地を作り上げた。面積の計算においてウォリスは無限小を 1/∞ と書いている。 ライプニッツによる無限小の利用は、「有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」有限/無限というのは個数に関して言うのではない(有限個/無限個ではない)ことに注意せよ。ここでいう「有限」とは無限大でも無限小でもないという意味である。や(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。18世紀にはレオンハルト・オイラーやジョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 (解析学教程)で、無限小を「連続量」(continuity) ともディラックのデルタ函数の前身的なものとも定義した。カントールとデデキントがスティーヴンの連続体をより抽象的な対象として定義したのと同様に、は函数の増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。デュ・ボア=レーモンの業績は、エミール・ボレルとトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にが、および1955年にが成した先駆的研究に基づき超準解析を展開した)。ロビンソンの超実数 (hyperreals) は無限小で豊饒化された連続体の厳密な定式化であり、がライプニッツの連続の法則の厳密な定式化である。また、はフェルマーの (adequality, pseudo-equality) の定式化である。 ウラジーミル・アーノルドは1990年に以下のように書いている.

53 関係: 助数詞取り尽くし法外積代数実閉体実数の連続性三角関数一階述語論理交換法則二重数微分微分積分学圏論ヨハネス・ケプラーレヴィ゠チヴィタ体レオンハルト・オイラーローラン級数ボナヴェントゥーラ・カヴァリエーリトアルフ・スコーレムディラックのデルタ関数ニコラウス・クザーヌスニコラス・メルカトル列 (数学)アルキメデスアルキメデスの性質アブラハム・ロビンソンウラジーミル・アーノルドエミール・ボレルオーギュスタン=ルイ・コーシーゴットフリート・ライプニッツシモン・ステヴィンシュルレアリスムジョン・ホートン・コンウェイジョン・ウォリスジョゼフ=ルイ・ラグランジュ傾き冪零元積分法立方根線型代数学無視可能性無限直観論理順序体角度超実数超越関数超準解析量化自動微分...排中律数学1 インデックスを展開 (3 もっと) »

助数詞

助数詞(じょすうし)は、数を表す語の後ろに付けてどのような事物の数量であるかを表す語要素である。数詞を作る接尾辞の一群。類別詞の一種である。 日本語のほか、中国語・韓国語など東アジア・東南アジアの多くの言語、またアメリカ大陸先住民の言語などにある。.

新しい!!: 無限小と助数詞 · 続きを見る »

取り尽くし法

取り尽くし法(method of exhaustion、methodus exaustionibus)は、与えられた図形の面積や体積を求める手法の1つで、その図形に内接する一連の多角形を描き、それらの面積を元の図形に収束させる方法である。積尽法、窄出法ともいう。また古代人の方法(méthode des anciens)とも呼ばれる。列を正しく構築すれば、n角形の面積と元の図形の面積の差は n が大きくなるにつれて小さくなっていく。この差を恣意的に小さくすれば、その図形の面積は一連の数列で得られる面積によって「取り尽くされ」、とりうる値の下限が体系的に定まる。この方法はアンティポンが起源だが、彼がどこまで明確に理解していたのかは不明である。厳密な理論付けをしたのはエウドクソスである。「取り尽くし法」という用語を最初に使ったのは、Grégoire de Saint-Vincent の Opus geometricum guadraturae circuli et sectionum coni(1647年)である。 取り尽くし法には一般に背理法の一種を必要とする。これは、ある領域の面積を第2の領域の面積と比較することによって求めることに相当し、それを「取り尽くす」ことで真の面積に恣意的に近づけていく。第2の面積より真の面積が大きいことを前提とし、その前提が偽であることを証明する。次に、真の面積が第2の面積より小さいことを前提として、その前提も偽であることを証明する。 取り尽くし法は微分積分学の先駆けと言える。17世紀から19世紀に解析幾何学と厳密な微分積分学が発展し(特に極限に厳密な定義が与えられ)、取り尽くし法は問題の解法としては使われなくなった。.

新しい!!: 無限小と取り尽くし法 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: 無限小と外積代数 · 続きを見る »

実閉体

数学における実閉体(じつへいたい、real closed field)は実数体と一階の性質が同じである体を言う。実数体、実代数的数体、超実数体などがその例を与える。.

新しい!!: 無限小と実閉体 · 続きを見る »

実数の連続性

実数の連続性(continuity of real numbers)とは、実数の集合がもつ性質である。 実数の連続性は、実数の完備性(completeness of the real numbers)とも言われる。また、実数の連続性を議論の前提とする立場であれば実数の公理と記述する場合もある。 また、実数の連続性における連続性とは関数の連続性とは別の概念である。.

新しい!!: 無限小と実数の連続性 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: 無限小と三角関数 · 続きを見る »

一階述語論理

一階述語論理(いっかいじゅつごろんり、first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(にかいじゅつごろんり、second-order predicate logic)と呼ぶ。それにさらなる一般化を加えた述語論理を高階述語論理(こうかいじゅつごろんり、higher-order predicate logic)という。本項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細は「二階述語論理」「高階述語論理」を参照。.

新しい!!: 無限小と一階述語論理 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 無限小と交換法則 · 続きを見る »

二重数

数学、特に線型代数学における二重数(にじゅうすう、dual numbers)は、実数の全体に実数ではない新しい元 ε で複零性 ε2.

新しい!!: 無限小と二重数 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 無限小と微分 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 無限小と微分積分学 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 無限小と圏論 · 続きを見る »

ヨハネス・ケプラー

ヨハネス・ケプラー(Johannes Kepler、1571年12月27日 - 1630年11月15日)はドイツの天文学者。天体の運行法則に関する「ケプラーの法則」を唱えたことでよく知られている。理論的に天体の運動を解明したという点において、天体物理学者の先駆的存在だといえる。一方で数学者、自然哲学者、占星術師という顔ももつ。欧州補給機(ATV)2号機、アメリカ航空宇宙局の宇宙望遠鏡の名前に彼の名が採用されている。.

新しい!!: 無限小とヨハネス・ケプラー · 続きを見る »

レヴィ゠チヴィタ体

数学におけるレヴィ゠チヴィタ体(レヴィ-チヴィタたい、Levi-Civita field)は、トゥーリオ・レヴィ゠チヴィタに名を因む、非アルキメデス順序体—ある種の無限大量と無限小量を含む数体系—である。レヴィ゠チヴィタ体の各元は有理数全てを亙る変数 に対する実係数の形式級数 \sum_ a_q\varepsilon^q \quad(a_q\in\R) として与えられる。ここに、 は有理数全体の成す集合を表し、 は正の無限小と解釈されるべきものである。 ただし、係数列 の台 は左有限集合—任意の有理数に対し、それより小さい元は有限個しか含まない—でなければならない。この制約条件はこの体における乗法および除法が一意に定義可能であるようにするために必要である。この体における順序関係は、係数列に対する辞書式順序に従って定められ、これは直観的には を無限小とするという仮定をおくことと同値である。 実数全体の成す順序体 は、定数項のみからなる級数— 以外の全ての係数が の級数—としてレヴィ゠チヴィタ体に埋め込まれる。.

新しい!!: 無限小とレヴィ゠チヴィタ体 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 無限小とレオンハルト・オイラー · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: 無限小とローラン級数 · 続きを見る »

ボナヴェントゥーラ・カヴァリエーリ

フランチェスコ・ボナヴェントゥーラ・カヴァリエーリ(Francesco Bonaventura Cavalieri、1598年 - 1647年11月30日)はイタリアの数学者。微分積分分野の権威として理論形成に多大な影響を残し、カヴァリエリの原理の提唱者として知られる。.

新しい!!: 無限小とボナヴェントゥーラ・カヴァリエーリ · 続きを見る »

トアルフ・スコーレム

トアルフ・スコーレム(Albert Thoralf Skolem、1887年5月23日 - 1963年3月23日)は、ノルウェーの数学者。オスロ大学で代数学や自然数論を講義した。 数理論理学、数学基礎論で重要な発見をしている。また、不定方程式論においても、いくつかの定理を発見している。主な業績として、数理論理学では.

新しい!!: 無限小とトアルフ・スコーレム · 続きを見る »

ディラックのデルタ関数

right 数学におけるディラックのデルタ関数(デルタかんすう、delta function)、制御工学におけるインパルス関数 (インパルスかんすう、impulse function) とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数は、デルタ超関数 (delta distribution) あるいは単にディラックデルタ (Dirac's delta) とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数 の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、 として実直線上常に一定の値 をとる関数をとり、デルタ関数をデルタ関数自身と との積であると見ることにより である。一方、積分値が の での値にしかよらないことから でなければならないが、その上で積分値が でない有限の値をとるためには が満たされなければならない。.

新しい!!: 無限小とディラックのデルタ関数 · 続きを見る »

ニコラウス・クザーヌス

ニコラウス・クザーヌス(Nicolaus Cusanus、1401年 - 1464年8月11日)は、ドイツの哲学者・神学者・数学者・枢機卿であり、中世の博学者。.

新しい!!: 無限小とニコラウス・クザーヌス · 続きを見る »

ニコラス・メルカトル

ニコラス・メルカトル(Nicholas (Nikolaus) Mercator、1620年頃 - 1687年)は17世紀の数学者。 北ドイツのオイティンに生まれた。1642年から1648年までオランダで暮らし、1648年から1654年までコペンハーゲン大学で教え、その後パリで暮らし、1657年にサセックスで第10代ノーサンバランド伯の息子のジョスリン・パーシーの数学の家庭教師を務め、1658年から1682年までロンドンで数学を教えた。1666年に王立協会の会員になり、チャールズ2世のために航海用時計を設計し、ヴェルサイユ宮殿の噴水の設計と製作をおこなった。 もっとも知られているのは1668年の対数に関する著書『対数術』(Logarithmo-technica)でGregory Saint-Vincentと独立に式: を導き、自然対数という用語を導いた。 音楽理論の分野でも53平均律の理論で知られる。.

新しい!!: 無限小とニコラス・メルカトル · 続きを見る »

列 (数学)

数学において列(れつ、sequence)とは、粗く言えば、対象あるいは事象からなる集まりを「順序だてて並べる」ことで、例えば「A,B,C」は3つのものからなる列である。狭義にはこの例のように一列に並べるものを列と呼ぶが、広義にはそうでない場合(すなわち半順序に並べる場合)も列という場合がある(例:有向点列)。集合との違いは順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列を「○○列」という言い方をするが、異なる種類のものを並べた列も許容されている。 列の構成要素は、列の要素あるいは項(こう、term)と呼ばれ、例えば「A,B,C」には3つの項がある。項の個数をその列の項数あるいは長さ (length, size) という。項数が有限である列を有限列(ゆうげんれつ、finite sequence)と、そうでないものを無限列(むげんれつ、infinite sequence)と呼ぶ。(例えば正の偶数全体の成す列 (2, 4, 6,...) )。.

新しい!!: 無限小と列 (数学) · 続きを見る »

アルキメデス

アルキメデス(Archimedes、Ἀρχιμήδης、紀元前287年? - 紀元前212年)は、古代ギリシアの数学者、物理学者、技術者、発明家、天文学者。古典古代における第一級の科学者という評価を得ている。.

新しい!!: 無限小とアルキメデス · 続きを見る »

アルキメデスの性質

ヒルベルトによるアルキメデスの公理の定式化 数学におけるアルキメデスの性質(〜せいしつ、Archimedean property)とは、古代ギリシャの数学者シラクサのアルキメデスにちなんで名付けられた、実数の体系を典型的な例として一定の種類の群や体などいくつかの代数的構造が共通として持っている性質のことである。ふつう、アルキメデスの性質とは考えている体系の中に無限大や無限小が現れないこと、という意味で理解される。この概念は古代ギリシャにおける量の理論に端を発しているが、近現代の数学の教育や研究においてもヒルベルトの幾何の公理、順序群や順序体、局所体の理論などにおいて重要な役割を果たしている。 0でない元の任意の対について、それぞれ他方に対して無限小量ではないという意味で、「比較可能」な代数系はアルキメデス的であると呼ばれる。反対に二つの0でない元で片方がもう一方に対して無限小であるような代数系は非アルキメデス的であると呼ばれる。例えば、アルキメデス的な順序群はアルキメデス的順序群あるいはArchimedes的順序群、Archimedes順序群と呼ばれることになる。 アルキメデスの性質は様々な文脈に応じて異なった方法で定式化される。たとえば順序体の文脈ではアルキメデスの公理と呼ばれる命題によってアルキメデス性が定義され、実数体はその意味でのアルキメデス性を持つ一方で、実係数の有理関数体は適当な順序構造によってはアルキメデス性を持たない順序体になる。.

新しい!!: 無限小とアルキメデスの性質 · 続きを見る »

アブラハム・ロビンソン

アブラハム・ロビンソン(Abraham Robinson, 1918年10月6日 - 1974年4月11日)は、ドイツ出身の数学者・論理学者。専門は数理論理学、モデル理論。 ドイツ帝国のヴァルデンブルク(現在のポーランド・ヴァウブジフ)でシオニストの家庭に生まれた。1933年にイギリス委任統治領パレスチナへ移住し、ヘブライ大学で最初の学位を取得した。第二次世界大戦中はロンドンでに参加し、空気力学と戦闘機の翼型の専門家として活動した。 戦後は、ロンドン、トロント、エルサレムを経てアメリカ合衆国へ渡り、1962年までカリフォルニア大学ロサンゼルス校で教鞭を執った後、1967年からイェール大学で教鞭を執った。 ライプニッツ流の無限小や無限大を合理化した超準解析を考え出した。 1974年4月11日、コネチカット州ニューヘイブンで肝臓癌のため死去。55歳没。 Category:アメリカ合衆国の数学者 181006 Category:数理論理学者 Category:数学に関する記事 Category:カリフォルニア大学ロサンゼルス校の教員 Category:イェール大学の教員 Category:ヘブライ大学出身の人物 Category:ユダヤ系ドイツ人 Category:ドイツユダヤ系アメリカ人 Category:シレジア・ユダヤ人 Category:シュレージエン州出身の人物 Category:1918年生 Category:1974年没.

新しい!!: 無限小とアブラハム・ロビンソン · 続きを見る »

ウラジーミル・アーノルド

ウラジーミル・イーゴレヴィチ・アーノルド(ヴラジーミル・イーゴレヴィチ・アルノーリト、ロシア語:Влади́мир И́горевич Арно́льдヴラシーミル・イーガリェヴィチュ・アルノーリト、ラテン文字転写の例:Vladimir Igorevich Arnol'd、1937年6月12日 - 2010年6月3日)はウクライナ出身のロシアの数学者。.

新しい!!: 無限小とウラジーミル・アーノルド · 続きを見る »

エミール・ボレル

ミール・ボレル (Félix Édouard Justin Émile Borel, 1871年1月7日-1956年2月3日) は、フランスの数学者、政治家。ボレル測度などで知られ、アンリ・ルベーグとともに測度論の先駆者となった。また、ゲーム理論に関する論文もいくつか発表した。.

新しい!!: 無限小とエミール・ボレル · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

新しい!!: 無限小とオーギュスタン=ルイ・コーシー · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 無限小とゴットフリート・ライプニッツ · 続きを見る »

シモン・ステヴィン

モン・ステヴィン ステヴィンが考案した小数 16世紀にステヴィンが製作した船 シモン・ステヴィン(、1548年 - 1620年)は、フランドル(現:ベルギー)ブルッヘ出身の数学者、物理学者、会計学者、オランダ軍主計将校ステヴィンはオランダ人である。。 イタリアの天文学者、哲学者、物理学者であるガリレオ・ガリレイよりも早く落下の法則を発見し、また、ヨーロッパで初めて小数を提唱したとして名高い。また、力の平行四辺形の法則の発見者としても名高い。.

新しい!!: 無限小とシモン・ステヴィン · 続きを見る »

シュルレアリスム

ュルレアリスム(surréalisme、surrealism)は、フランスの詩人アンドレ・ブルトンが提唱した思想活動。一般的には芸術の形態、主張の一つとして理解されている。日本語で超現実主義と訳されている。シュルレアリスムの芸術家をシュルレアリスト(surréaliste)と呼ぶ。 日本ではフランス語と英語の発音が混同され「シュールレアリスム」、「シュールリアリスム」、「シュールレアリズム」、「シュールリアリズム」、「シュルレアリズム」、「シュルリアリズム」、「シュルリアリスム」といったバリエーションがあり、日本語のカタカナ表記においては様々である。 「シュール」は「非現実的」「現実離れ」の意味によく使われる。1970年代前後に「シュール」が日本の広告媒体で頻繁に使用された例がある。いずれにせよシュルレアリスム自体とは意味が異なる。 上記のように、日本語のシュールの用法、または「超現実」という日本語訳によって現実と完全に隔離された非現実を表現することと誤解されることが多い。 シュルレアリスムという名詞自体は詩人ギョーム・アポリネールの作品から引用された造語の固有名詞である。.

新しい!!: 無限小とシュルレアリスム · 続きを見る »

ジョン・ホートン・コンウェイ

ョン・ホートン・コンウェイ ジョン・ホートン・コンウェイ(John Horton Conway, 1937年12月26日 - )はイギリスの数学者。現プリンストン大学教授。.

新しい!!: 無限小とジョン・ホートン・コンウェイ · 続きを見る »

ジョン・ウォリス

ョン・ウォリス(John Wallis、1616年11月23日 - 1703年10月28日)は、イングランドの数学者で、微分積分学への貢献で知られている。1643年から1689年までイングランド議会(後には王宮)に暗号研究者として雇われた。また、小惑星 31982 Johnwallis は彼の名を冠している。.

新しい!!: 無限小とジョン・ウォリス · 続きを見る »

ジョゼフ=ルイ・ラグランジュ

ョゼフ=ルイ・ラグランジュ(Joseph-Louis Lagrange, 1736年1月25日 - 1813年4月10日)は、数学者、天文学者である。オイラーと並んで18世紀最大の数学者といわれている。イタリア(当時サルデーニャ王国)のトリノで生まれ、後にプロイセン、フランスで活動した。彼の初期の業績は、微分積分学の物理学、特に力学への応用である。その後さらに力学を一般化して、最小作用の原理に基づく、解析力学(ラグランジュ力学)をつくり出した。ラグランジュの『解析力学』はラプラスの『天体力学』と共に18世紀末の古典的著作となった。.

新しい!!: 無限小とジョゼフ=ルイ・ラグランジュ · 続きを見る »

傾き

傾き(かたむき).

新しい!!: 無限小と傾き · 続きを見る »

冪零元

数学において、環 R の元 x はある正の整数 n が存在して xn.

新しい!!: 無限小と冪零元 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 無限小と積分法 · 続きを見る »

立方根

立方根(りっぽうこん、cubic root、root of third power)とは、ある数が与えられた時、三乗して与えられた数となるような新たな数を指す。三乗根(さんじょうこん)ともいう。.

新しい!!: 無限小と立方根 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 無限小と線型代数学 · 続きを見る »

無視可能性

無視できる(Negligible)とは、考えている量が十分小さく、大勢に影響ないという意味で考慮からはずしてもよいことを意味する術語である。これはより数学的な無限小の概念と関連するが、無視可能という考え方は、特に物理学や化学、電気工学や計算機プログラミング、あるいは日常的な決定などの実利的な場面で有効なものである。ある量が「無視できる」ということができるのは、それが「当面の問題」においてその場合に許容できるという合意の得られる「誤差の範囲内」に収まるために、無視しても安全であるときである。例えば、電線の電気抵抗や原子における電子の質量などは、しばしば無視してよい量として扱われる。.

新しい!!: 無限小と無視可能性 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 無限小と無限 · 続きを見る »

直観論理

観主義論理(intuitionistic logic)、直観論理あるいは構成的論理(constructive logic)とは、ある種の論理体系であり、伝統的な真理値の概念が構成的証明の概念に置き換わっている点で古典論理とは異なる。例えば古典論理では、全ての論理式に真か偽の真理値 (\) が割り当てられる。このときその真理値に対する直接的なエビデンスを持つか否かは問題にしない。これはどのような曖昧な命題においても「真か偽かが決定可能である」ということを意味する。対照的に直観主義論理では確定的に論理式に真理値を割り当てるのではなく、それが真であるとは「直接的なエビデンス」つまり「証明」があることと見做す。 Instead they remain of unknown truth value, until they are either proved or disproved.

新しい!!: 無限小と直観論理 · 続きを見る »

順序体

数学における順序体(じゅんじょたい、ordered field)は、その元が全順序付けられた体であって、その順序が体の演算と両立するものを言う。歴史的にはヒルベルト、ヘルダー、ハーンらを含む数学者たちによって徐々にぼんやりと公理化が進められ、1926年に順序体および(形式的)実体に関するによって結実する。 順序体は標数 でなければならず、任意の自然数 は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体は順序付けることができない。 順序体の任意の部分体は、もとの体の順序に関してそれ自身順序体を成す。任意の順序体は有理数体に同型な部分順序体を含む。任意の順序体は実数体に同型である。順序体において平方元は非負でなければならない。従って複素数体は(虚数単位 の平方が だから)順序付けることはできない。任意の順序体は実体である。.

新しい!!: 無限小と順序体 · 続きを見る »

角度

角度(かくど、measure of angle, angle)とは、角(かく、angle)の大きさを表す量・測度のことである。なお、一般の角の大きさは、単位の角の大きさの実数倍で表しうる。角およびその角度を表す記号としては ∠ がある。これは角記号(かくきごう、angle symbol)と呼ばれる。 単に角という場合、多くは平面上の図形に対して定義された平面角(へいめんかく、plane angle)を指し、さらに狭義にはある点から伸びる2つの半直線(はんちょくせん、ray)によりできる図形を指す。平面角の角度は、同じ端点を持つ2つの半直線の間の隔たりを表す量といえる。2つの半直線が共有する端点は角の頂点(かくのちょうてん、vertex of angle)と呼ばれ、頂点を挟む半直線は角の辺(かくのへん、side of angle)と呼ばれる。また、直線以外の曲線や面などの図形がなす角の角度も、何らかの2つの直線のなす角の角度として定義される。より広義には、角は線や面が2つ交わって、その交点や交線の周りにできる図形を指す。線や面が2つ交わって角を作ることを角をなすという。ここでいう面は通常の2次元の面に限らず、一般には超平面である。 角が現れる基本的な図形としては、たとえば三角形や四角形のような多角形(たかくけい、polygon)がある。特に三角形は平面図形における最も基本的な図形であり、すべての多角形は三角形の組み合わせによって表現することができる。また、他にも単純な性質を多く持っているため、様々な場面で応用される。有名なものは余弦定理(よげんていり、law of cosines)や、三角形の辺の比を通じて定義される三角関数(さんかくかんすう、trigonometric function)などがある。余弦定理と三角関数は、三角形の角と辺の間に成り立つ関係を示したもので、これらの関係を利用して、三角形の辺の長さからある角の大きさを求めたり、大きさが既知の角から辺の長さや長さの比を求めることができる。このことはしばしば三角形の合同条件(さんかっけいのごうどうじょうけん、congruence condition of triangles)としても言及される。 物理学など自然科学においては、量の次元が重要な役割を果たす。例えば、辺の長さや弧の長さは物理量として「長さ」の次元を持っているが、国際量体系において、角度は辺の長さの比などを通じて定義される無次元量であるとしている。角度が無次元であることは、直ちに角度が単位を持たないことを意味しない。例えば角度を表す単位としてはラジアン(らじあん、radian)や度(ど、degree)が有名である。ラジアンと度の換算は以下の式によって示される。 また、ラジアンで表された数値は単位なしの数として扱うことができる。 角度に関連する物理学の概念として、位相(いそう、phase)がある。位相は波のような周期的な運動を記述するパラメーターであり、その幾何学的な表現が角度に対応している。位相も角度と同様にラジアンが単位に用いられる。 立体的な角として立体角(りったいかく、solid angle)も定義されているが、これは上記の定義には当てはまらない。その大きさは単に立体角と呼ばれることが多く、角度と呼ばれることはほとんどない。 以下、本項目においては平面角を扱う。.

新しい!!: 無限小と角度 · 続きを見る »

超(ちょう)は、「~を超える」を意味する接辞(接頭辞と接尾辞)である。中国語では動詞・形容詞としても働く。日本語でも形容詞とする説もあるがそうすると一般的な用例とそぐわなくなる。.

新しい!!: 無限小と超 · 続きを見る »

超実数

超実数(ちょうじっすう、hyperreal number)または超準実数(ちょうじゅんじっすう、nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 は実数体 の拡大体であり、 の形に書ける如何なる数よりも大きい元を含む。そのような数は無限大であり、その逆数は無限小である。 の語はが1948年に導入した。 超実数は(ライプニッツの経験則的なを厳密なものにした)を満たす。この移行原理が主張するのは、 についての一階述語論理の真なる主張は においても真であることである。例えば、加法の可換則 は、実数におけると全く同様に、超実数に対しても成り立つ。また例えば は実閉体であるから、 も実閉体である。また、任意の整数 に対して が成立するから、任意の に対しても が成立する。超冪に対する移行原理は1955年のウォシュの定理の帰結である。 無限小を含むような論法の健全性に対する関心は、アルキメデスがそのような証明を取り尽くし法など他の手法によって置き換えた、古代ギリシャ時代の数学にまで遡る。1960年代にロビンソンは、超実数体が論理的に無矛盾であることと実数体が論理的に無矛盾であることが同値であることを示した。これは、ロビンソンが描いた論理的な規則に従って操作されなかったならば、あらゆる無限小を含む証明が不健全になる恐れが残ることを示している。 超実数の応用、特に解析学における諸問題への移行原理の適用は超準解析と呼ばれる。一つの例は、微分や積分のような解析学の基礎概念を複数の量化子を用いる論理的複雑さを回避して直接的に定義することである。つまり、 の導関数は、 になる。 ただし、 は無限小超実数で、 とは有限超実数から実数への関数で、「有限超実数にそれに無限に近いただ一つの実数への関数」というである。積分も同様に、適切な無限和の標準部によって定義される。.

新しい!!: 無限小と超実数 · 続きを見る »

超越関数

超越関数(ちょうえつかんすう、transcendental function)とは、多項式方程式を満たさない解析関数であり、代数関数と対照的である。言い換えると、超越関数は加算、乗算そして冪根という代数的演算を有限回用いて表せないという意味で代数を「超越」したものである。 超越関数の例として、指数関数、対数関数、そして三角関数が挙げられる。 正式には、実あるいは複素変数 の解析関数 が超越的とは、 が と代数的独立であることをいう。この定義は多変数関数にも拡張できる。.

新しい!!: 無限小と超越関数 · 続きを見る »

超準解析

は、あるいは無限小数の意味および論理的妥当性に関する哲学的論争を孕んでいる。これらの論争の標準的な解決策は、微分積分学における操作を無限小ではなくイプシロン-デルタ論法によって定義することである。超準解析(nonstandard analysis)は代わりに論理的に厳格な無限小数の概念を用いて微分積分学を定式化する。Nonstandard Analysisは直訳すれば非標準解析学となるが、齋藤正彦が超準解析という訳語を使い始めたため、そのように呼ばれるようになった。無限小解析(infinitesimal analysis)という言葉で超準解析を意味することもある。 超準解析は1960年代に数学者アブラハム・ロビンソンによって創始せられた。 彼は次のように記述している: 無限に小さいあるいは無限小の量という概念は我々の直観に自然に訴えかけるように見える。何れにせよ、無限小の使用は、微分学・積分学の黎明期において、広く普及した。相異なる2つの実数の差が無限に小さくなることはないという 異論に対して、ゴットフリート・ライプニッツは、無限小の理論は理想的数――それは実数と比較して無限に小さかったり無限に大きかったりするものであるが、後者(訳注:実数)と同じ性質を有する――の導入を含意するものであると主張した。 ロビンソンはこのライプニッツのはの先駆けであるとしている。ロビンソンは次のように続ける: しかしながら、彼も、彼の弟子たちや後継者たちも、このようなシステムに繋がる合理的な進展(訳注:そのような原理を合理化するもの)を得なかった。その結果、無限小の理論は徐々に評判を落としてゆき、最終的には古典的な極限の理論に取って代わられた。Robinson, A.: Non-standard analysis.

新しい!!: 無限小と超準解析 · 続きを見る »

量化

量化(りょうか、Quantification)とは、言語や論理学において、論理式が適用される(または満足される)議論領域の個体の「量」を指定すること。.

新しい!!: 無限小と量化 · 続きを見る »

自動微分

自動微分(じどうびぶん、アルゴリズム的微分とも)とは、プログラムで定義された関数を解析し、偏導関数の値を計算するプログラムを導出する技術である。自動微分は複雑なプログラムであっても加減乗除などの基本的な算術演算や基本的な関数(指数関数・対数関数・三角関数など)のような基本的な演算の組み合わせで構成されていることを利用し、これらの演算に対して連鎖律を繰り返し適用することによって実現される。自動微分を用いることで偏導関数値を少ない計算量で自動的に求めることができる。 自動微分は.

新しい!!: 無限小と自動微分 · 続きを見る »

排中律

排中律(はいちゅうりつ、Law of excluded middle)とは、論理学において、任意の命題 P に対し"P ∨ ¬P"(P であるか、または P でない)が成り立つことを主張する法則である。これは、論理の古典的体系では基本的な属性であり、同一律、無矛盾律とともに、(古典的な)思考の三原則のひとつに数えられる。しかし、論理体系によっては若干異なる法則となっている場合もあり、場合によっては排中律が全く成り立たないこともある(例えば直観論理)。 (第三の命題が排除される原理)あるいは(第三の命題・可能性は存在しない)と称され、Law of excluded middle(中間の命題は排除されて存在しない法則)または (第三の命題が排除される法則)と呼ばれ、これらが日本語での排中という表記につながり、排中原理と呼ばれる。 排中律は論理から導かれる法則ではない。また principle of bivalence とは異なる主張である。 修辞学では排中律が誤解されて利用されることがあり、誤謬の原因となっている。.

新しい!!: 無限小と排中律 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 無限小と数学 · 続きを見る »

1

一」の筆順 1(一、いち、ひと、ひとつ)は、最小の正の整数である。0 を自然数に含めない流儀では、最小の自然数とも言える。整数の通常の順序において、0 の次で 2 の前の整数である。1 はまた、実数を位取り記数法で記述するための数字の一つでもある。 「無」を意味する 0 に対して、1 は有・存在を示す最原初的な記号なので、物事を測る基準単位、つまり数や順序を数える際の初めである。英語の序数詞では、1st、first となる。ラテン語では unus(ウーヌス)で、接頭辞 uni- はこれに由来する。.

新しい!!: 無限小と1 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »