ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

演算装置

索引 演算装置

演算装置(えんざんそうち)は、コンピュータ(プロセッサ)の構成要素のひとつで、論理演算や四則演算などの演算をおこなう装置である。.

34 関係: 加算器加法実行ユニット乗算器形式ニューロンノーバート・ウィーナーノイマン型マイクロプログラム方式バレルシフタライブラリプロセッサフィードバック制御装置ウォルター・ピッツウォーレン・マカロックオペコードコンピュータジョン・フォン・ノイマンステータスレジスタソフトウェアサイバネティックス符号付数値表現算術生物被演算子論理演算除算 (デジタル)除法FPU機械語汎用ロジックIC減法浮動小数点数2の補数

加算器

加算器(かさんき、Adder)とは、加算を行う演算装置である。この記事ではデジタル回路によるものについて説明する。アナログ回路による加算回路の一例はオペアンプ#加算回路(電圧によるもの。他に電流の加算もある)を参照。.

新しい!!: 演算装置と加算器 · 続きを見る »

加法

加法(かほう、addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、)という。記号は「+」。 自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。 減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。 無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。.

新しい!!: 演算装置と加法 · 続きを見る »

実行ユニット

実行ユニット(じっこうゆにっと、Execution unit)とは、コンピュータのプロセッサの構成において、命令を実行する指示を受け、命令を実行するユニットである。。 -->.

新しい!!: 演算装置と実行ユニット · 続きを見る »

乗算器

乗算器(じょうざんき)とは、二つの数について乗算を行うための電子回路であり、#デジタル乗算器と#アナログ乗算器がある。.

新しい!!: 演算装置と乗算器 · 続きを見る »

形式ニューロン

形式ニューロン(けいしきニューロン、formal neuron)や Threshold Logic Unit とは、1943年に神経生理学者・外科医であるウォーレン・マカロックと論理学者・数学者であるウォルター・ピッツが発表した最初の人工ニューロン(artificial neuron)。伝達関数としてはヘヴィサイドの階段関数を使い、入出力の値は 0 または 1 の二値だけをとる。.

新しい!!: 演算装置と形式ニューロン · 続きを見る »

ノーバート・ウィーナー

ノーバート・ウィーナー(Norbert Wiener, 1894年11月26日 - 1964年3月18日)はアメリカ合衆国の数学者。ミズーリ州コロンビア生まれ。サイバネティックスの提唱者として知られている。 父親はイディッシュ語研究などで知られるビャウィストク出身のポーランド系ユダヤ人言語学者レオ・ウィーナー(ヴィーネル、 Leo Wiener)。.

新しい!!: 演算装置とノーバート・ウィーナー · 続きを見る »

ノイマン型

ノイマン型(-がた、von Neumann architecture)は、コンピュータの基本的な構成法のひとつである。今日では基本的なコンピュータ・アーキテクチャのひとつとされるが、そもそもコンピュータの要件とされることもあり、このあたりの定義は循環的である。 プログラム内蔵方式のディジタルコンピュータで、CPU(中心となるプロセッサ、今日では一つの部品としてまとめて考えることが多いが、オリジナルの報告書では制御装置と演算装置に分けている)とアドレス付けされた記憶装置とそれらをつなぐバスを要素に構成され、命令(プログラム)とデータを区別せず記憶装置に記憶する。 プログラムカウンタを構成要素に含め、またより抽象的なモデルにおける命令スケジューラの実装とみることがある。また、今日では、演算などの命令の実行は演算装置を含む実行ユニットで行われる、というように考えられることもある。 オリジナルの報告書では、入出力について特別に扱っているが、今日の視点からではメモリマップドI/Oを考えれば特に必要ない。また、バスは、報告書では明示的に数え上げてはいないが(言及はある)、今日ではフォン・ノイマン・ボトルネックのように明確に認識される存在である。 ノイマン型の名は、最初にこれを広めたEDVACに関する報告書 w:First Draft of a Report on the EDVAC(1945)の著者がジョン・フォン・ノイマン(ひとり)になっていることに由来する。誰がなんのためにそうしたかについては諸説ある。このアイディア、特にプログラム内蔵方式のアイディアは、ジョン・モークリーとジョン・エッカートによるENIACのプロジェクト中の検討にその芽があった。ノイマンは(理論的な、とされる)助言役として加わり、執筆者はノイマンであった。誰にどのような功績があったかは諸説ある。 この方式について、以後のコンピュータ研究開発に大きな影響を与えた1946年夏のムーアスクールで講義したのは、ノイマンではなくモークリーとエッカートであったし、ノイマン型という用語は不当だとして、使わない者もいる。一方で、EDSACの設計・建造者であるモーリス・ウィルクスは、ENIACが軍事機密の下にあった時に、ノイマンの草稿がその保護に入らず、多くの人がノイマンを発明者だとみなしたことは不公平な結果だったとし、ノイマンの参加以前に本質的な先進があった、としながらも、数値データと命令を同じ記憶装置の中に置くのは不自然である、とか、そのために必要な遅延記憶装置は信頼性に欠ける、といった、新規技術への疑念に対し、物理学者として、また数学者(計算理論)として、ノイマンが計算機の潜在能力を見抜き、信望と影響力を行使したことは重要だった、とも述べている。.

新しい!!: 演算装置とノイマン型 · 続きを見る »

マイクロプログラム方式

マイクロプログラム方式(マイクロプログラムほうしき、マイクロプログラミング、英:microprogramming)は、プロセッサの制御装置の実装手法のひとつであり、CPU内のマイクロプログラム(マイクロコード)を使用して、複雑な命令を比較的容易に実装する。 利点としては、オペレーティングシステムを含めたソフトウェアから見た場合のハードウェア(命令セットアーキテクチャ、ISA)を、容易に追加・拡張したり、あるいはプロセッサ間で標準化して互換性を高める、更には異なる命令セットのCPUのエミュレートにも応用可能である(仮想化技術のひとつともいえる)。 反面、複雑な命令の増加はパイプラインの効果が薄れる結果ともなりやすい。 一般にROM (Read Only Memory) またはPLA()、またはそれらを組み合わせたものに格納される。コントロールストアをRAMで構成すると、動的にプログラマブル可能にできるが起動時に読み込みが必要である。ROMにすれば読み込みは必要ないが、動的にプログラム可能という利点がなくなる。 マイクロプログラム方式は、主にCISCのCPUで採用されている。 マイクロプログラム方式に対し、論理ゲートとフリップフロップを配線でつなぎあわせて直接実装する方式はワイヤードロジック(布線論理)と呼ばれる。RISCは原則としてはワイヤードロジックで構築される。 マイクロプロセッサやマイクロコンピュータやマイクロコントローラの「マイクロ」とは、どちらも英語の小さいという意味であるという以外に関連はない。 IBMなどのベンダーではマイクロコードという語を「ファームウェア」の同義として使うことがあり、周辺機器に格納されるマイクロプログラムも機械語プログラムもまとめてマイクロコードと呼ぶことがある。.

新しい!!: 演算装置とマイクロプログラム方式 · 続きを見る »

バレルシフタ

バレルシフタ(barrel shifter)は、ある特定のビット数分だけワードデータをシフトできるデジタル回路である。これはマルチプレクサを並べたものとして実装できる。この実装では一つのマルチプレクサの出力はシフト距離に依存するウェイ数分離れた段のマルチプレクサの入力に接続されている。必要なマルチプレクサの数はnビットワードに対しては、n*log2(n)である。よくある4つのワードサイズとそれに必要なマルチプレクサの数を以下に示す。.

新しい!!: 演算装置とバレルシフタ · 続きを見る »

ライブラリ

ライブラリ()は、汎用性の高い複数のプログラムを再利用可能な形でひとまとまりにしたものである。ライブラリと呼ぶ時は、それ単体ではプログラムとして作動させることはできない実行ファイルではない場合がある。ライブラリは他のプログラムに何らかの機能を提供するコードの集まりと言うことができる。ソースコードの場合と、オブジェクトコード、あるいは専用の形式を用いる場合とがある。たとえば、UNIXのライブラリはオブジェクトコードをarと呼ばれるアーカイバでひとまとめにして利用する。図書館()と同様にプログラム(算譜)の書庫であるので、索引方法が重要である。 また、ソフトウェア以外の再利用可能なものの集合について使われることもある。.

新しい!!: 演算装置とライブラリ · 続きを見る »

プロセッサ

プロセッサ は、コンピュータシステムの中で、ソフトウェアプログラムに記述された命令セット(データの転送、計算、加工、制御、管理など)を実行する(=プロセス)ためのハードウェアであり、演算装置、命令や情報を格納するレジスタ、周辺回路などから構成される。内蔵されるある程度の規模の記憶装置までを含めることもある。プロセッサー、プロセサ、プロセッシングユニット、処理装置(しょりそうち)ともいう。「プロセッサ」は処理装置の総称で、システムの中心的な処理を担うものを「CPU()」(この呼称はマイクロプロセッサより古くからある)、集積回路に実装したものをマイクロプロセッサ、またメーカーによっては(モトローラなど)「MPU()」と呼んでいる。 プロセッサの構成要素の分類として、比較的古い分類としては、演算装置と制御装置に分けることがある。また、理論的な議論では、厳密には記憶装置であるレジスタすなわち論理回路の用語で言うところの順序回路の部分を除いた、組み合わせ論理の部分のみを指すことがある(状態機械モデルと相性が悪い)。の分類としては、実行すべき命令を決め、全体を制御するユニットと、命令を実行する実行ユニットとに分けることがある。.

新しい!!: 演算装置とプロセッサ · 続きを見る »

フィードバック

フィードバック(feedback)とは、もともと「帰還」と訳され、ある系の出力(結果)を入力(原因)側に戻す操作のこと。古くは調速機(ガバナ)の仕組みが、意識的な利用は1927年のw:Harold Stephen Blackによる負帰還増幅回路の発明に始まり、サイバネティックスによって広められた。システムの振る舞いを説明する為の基本原理として、エレクトロニクスの分野で増幅器の特性の改善、発振・演算回路及び自動制御回路などに広く利用されているのみならず、制御システムのような機械分野や生物分野、経済分野などにも広く適用例がある。自己相似を作り出す過程であり、それゆえに予測不可能な結果をもたらす場合もある。.

新しい!!: 演算装置とフィードバック · 続きを見る »

制御装置

制御装置(せいぎょそうち、Control Unit)とは、一般に何らかのシステム全体あるいは一部を制御する装置を指す。.

新しい!!: 演算装置と制御装置 · 続きを見る »

ウォルター・ピッツ

ウォルター・ピッツ ウォルター・ピッツ(Walter J. Pitts, 1923年4月23日 - 1969年5月14日)は、論理学者・数学者。 ミシガン州・デトロイト生まれ。シカゴ大学で論理学を学び、ジェローム・レトビンやウォーレン・マカロックに出会う。マサチューセッツ工科大学に勤務。 1943年、神経生理学者・外科医のウォーレン・マカロックと共に、形式ニューロンというモデルを考えた。.

新しい!!: 演算装置とウォルター・ピッツ · 続きを見る »

ウォーレン・マカロック

ウォーレン・スタージス・マカロック(Warren Sturgis McCulloch、1898年11月16日 - 1969年9月24日)は、アメリカ合衆国の神経生理学者で外科医。マカラック、マッカロとも表記される。 ベルビュー病院、ロックランド州立病院、イリノイ大学、マサチューセッツ工科大学リサーチエレクトロニクス研究所に勤務。 数学・論理学・心理学などに関する教養も深かった。 1943年、論理学者・数学者のウォルター・ピッツと共に、形式ニューロンというモデルを考えた。.

新しい!!: 演算装置とウォーレン・マカロック · 続きを見る »

オペコード

ペコード (operation code, opcode) とは、機械語の1個の命令の部分で、実行する操作 (operation) の種類を指定する部分のこと、およびそのコード(符号)のことである。数式における演算子に相当する。命令のもうひとつの主要部分は、操作される対象を指定するオペランド(被演算子)である。.

新しい!!: 演算装置とオペコード · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 演算装置とコンピュータ · 続きを見る »

ジョン・フォン・ノイマン

ョン・フォン・ノイマン(ハンガリー名:Neumann János(ナイマン・ヤーノシュ、)、ドイツ名:ヨハネス・ルートヴィヒ・フォン・ノイマン、John von Neumann, Margittai Neumann János Lajos, Johannes Ludwig von Neumann, 1903年12月28日 - 1957年2月8日)はハンガリー出身のアメリカ合衆国の数学者。20世紀科学史における最重要人物の一人。数学・物理学・工学・計算機科学・経済学・気象学・心理学・政治学に影響を与えた。第二次世界大戦中の原子爆弾開発や、その後の核政策への関与でも知られる。.

新しい!!: 演算装置とジョン・フォン・ノイマン · 続きを見る »

ステータスレジスタ

テータスレジスタは、コンピュータのプロセッサなどにおいて、フラグのビットの集まったワードをその内容とするレジスタである。フラグレジスタやフラグバイト、コンディションコードレジスタなどとも呼ばれる。 その仕様は一般に、プロセッサの命令セットと密接に結びついており、命令セットアーキテクチャ(ISA)毎に決まっている。.

新しい!!: 演算装置とステータスレジスタ · 続きを見る »

ソフトウェア

フトウェア(software)は、コンピューター分野でハードウェア(物理的な機械)と対比される用語で、何らかの処理を行うコンピュータ・プログラムや、更には関連する文書などを指す。ソフトウェアは、一般的にはワープロソフトなど特定の作業や業務を目的としたアプリケーションソフトウェア(応用ソフトウェア、アプリ)と、ハードウェアの管理や基本的な処理をアプリケーションソフトウェアやユーザーに提供するオペレーティングシステム (OS) などのシステムソフトウェアに分類される。.

新しい!!: 演算装置とソフトウェア · 続きを見る »

サイバネティックス

イバネティックス(cybernetics)または人工頭脳学(じんこうずのうがく)は、通信工学と制御工学を融合し、生理学、機械工学、システム工学を統一的に扱うことを意図して作られた学問。語源は、ギリシャ語で「(船の)舵を取る者」を意味するキベルネテス(Κυβερνήτης)。第二次世界大戦の後、ノーバート・ウィーナーによって提唱された。当時はまだ情報理論の発展する前であり、自動制御とフィードバックがそれぞれ発展しても、両方の関連を認識することにすら年数を要した、という時代であった。.

新しい!!: 演算装置とサイバネティックス · 続きを見る »

符号付数値表現

号付数値表現(ふごうつきすうちひょうげん)の記事では、コンピュータシステムにおける数の表現(コンピュータの数値表現)において、負の範囲も含んで(正の数と負の数の記事も参照)数を表現する方法を解説する。 コンピュータで負の数を表す方法は、用途などにあわせいくつかある。ここでは、二進記数法を拡張して負の数を表す方法を四種類説明する(符号-仮数部、1の補数、2の補数、エクセスN)。ほとんどの場合、最近のコンピュータでは2の補数表現を使うが、他の表現が全く使われないわけではない(おそらく、最も使われている2の補数以外の表現は、浮動小数点の表現内に含まれるエクセス1023であろう)。.

新しい!!: 演算装置と符号付数値表現 · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

新しい!!: 演算装置と算術 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

新しい!!: 演算装置と生物 · 続きを見る »

被演算子

被演算子(ひえんざんし、operand)とは、演算子の演算の対象である。 英語名からオペランド(operand)とも呼ばれる。.

新しい!!: 演算装置と被演算子 · 続きを見る »

論理演算

論理演算(ろんりえんざん、logical operation)は、論理式において、論理演算子などで表現される論理関数(ブール関数)を評価し(正確には、関数適用を評価し)、変数(変項)さらには論理式全体の値を求める演算である。 非古典論理など他にも多くの論理の体系があるが、ここでは古典論理のうちの命題論理、特にそれを形式化したブール論理に話を絞る。従って対象がとる値は真理値の2値のみに限られる。また、その真理値の集合(真理値集合)と演算(演算子)はブール代数を構成する。 コンピュータのプロセッサやプログラミング言語で多用されるものに、ブーリアン型を対象とした通常の論理演算の他に、ワード等のビット毎に論理演算を行なう演算があり、ビット演算という。 なお、以上はモデル論的な議論であり、証明論的には、公理と推論規則に従って論理式を変形(書き換え)する演算がある(証明論#証明計算の種類)。.

新しい!!: 演算装置と論理演算 · 続きを見る »

除算 (デジタル)

数値的(ディジタル)な除算アルゴリズムはいくつか存在する。それらのアルゴリズムは、低速な除算と高速な除算の2つに分類できる。低速な除算は反復する毎に最終的な商を1桁ずつ生成していくアルゴリズムである。回復型、不実行回復型、非回復型、SRT除算などがある。高速な除算は最初に商の近似値から出発して徐々に正確な値に近づけていくもので、低速な除算よりも反復回数が少なくて済む。ニュートン-ラプソン法とゴールドシュミット法がこれに分類される。 以下の解説では、除算を Q.

新しい!!: 演算装置と除算 (デジタル) · 続きを見る »

除法

法(じょほう、division)とは、乗法の逆演算であり四則演算のひとつに数えられる二項演算の一種である。除算、割り算とも呼ばれる。 除法は ÷ や /, % といった記号を用いて表される。除算する 2 つの数のうち一方の項を被除数 (dividend) と呼び、他方を除数 (divisor) と呼ぶ。有理数の除法について、その演算結果は被除数と除数の比を与え、分数を用いて表すことができる。このとき被除数は分子 (numerator)、除数は分母 (denominator) に対応する。被除数と除数は、被除数の右側に除数を置いて以下のように表現される。 除算は商 (quotient) と剰余 (remainder) の 2 つの数を与え、商と除数の積に剰余を足したものは元の被除数に等しい。 剰余は余りとも呼ばれ、除算によって「割り切れない」部分を表す。剰余が 0 である場合、「被除数は除数を割り切れる」と表現され、このとき商と除数の積は被除数に等しい。剰余を具体的に決定する方法にはいくつかあるが、自然数の除法については、剰余は除数より小さくなるように取られる。たとえば、 を で割った余りは 、商は となる。これらの商および剰余を求める最も原始的な方法は、引けるだけ引き算を行うことである。つまり、 を で割る例では、 から を 1 回ずつ引いていき()、引かれる数が より小さくなるまで引き算を行ったら、その結果を剰余、引き算した回数を商とする。これは自然数の乗法を足し算によって行うことと逆の関係にある。 剰余を与える演算に % などの記号を用いる場合がある。 除数が である場合、除数と商の積は必ず になるため商を一意に定めることができない。従ってそのような数 を除数とする除法の商は未定義となる(ゼロ除算を参照)。 有理数やそれを拡張した実数、複素数における除法では、整数や自然数の除法と異なり剰余は用いられず、 という関係が除数が 0 の場合を除いて常に成り立つ。この関係は次のようにも表すことができる。 実数などにおける定義から離れると、除法は乗法を持つ代数的構造について「乗法の逆元を掛けること」として一般化することができる。一般の乗法は交換法則が必ずしも成り立たないため、除法も左右 2 通り考えられる。.

新しい!!: 演算装置と除法 · 続きを見る »

FPU

FPU(Floating Point Unit、浮動小数点(演算処理)装置)とは、浮動小数点演算を専門に行う処理装置のこと。コンピュータの周辺機器のようなアーキテクチャのものもあれば、主プロセッサと一体化したコプロセッサのようなアーキテクチャのものもある。 AMDではAm9511をAPU (Arithmetic Processing Unit) と呼んでおり(2011年以降はAPUをAccelerated Processing Unitの略称として使用)、インテルではx87をNDP(Numeric data processor, 数値演算コプロセッサ)、またその命令についてNPX(Numeric Processor eXtension)とも呼んでいる。 マイクロプロセッサにおいては、Apple IIの頃は完全に周辺機器のようなアーキテクチャだったが、8087の頃には命令の一体化など、CPUの拡張装置のようなアーキテクチャになった。 インテルのx86系CPUでは387(386用)が最後となり、486からは同一のチップ内に内蔵された(486の初期には、FPUを内蔵しない廉価版と、事実上はオーバードライブプロセッサであった487もあった)。同様に、モトローラの68000系でもMC68040以降のMPUではチップ内に内蔵している。 1990年代中盤以降の高性能プロセッサではFPUはプロセッサ内部のサブユニットとなっている。プロセッサに内蔵されたFPUは、スーパースカラーで他ユニットと並列動作させることができるなど様々なメリットがあるため、現在ではFPUを単体で用いることは珍しくなっている。.

新しい!!: 演算装置とFPU · 続きを見る »

機械語

機械語(きかいご)またはマシン語(Machine code、machine language)とは、コンピュータのプロセッサが直接解釈実行可能な一連の命令群のデータそのもの(を、コンピュータ・プログラミング言語とみなしたもの)である。.

新しい!!: 演算装置と機械語 · 続きを見る »

汎用ロジックIC

汎用ロジックIC(はんようロジックアイシー)とは、様々な論理回路に共通して必要とされる個々の機能を1つの小型パッケージにまとめた小規模な集積回路である。 ANDゲート、ORゲート、NOTゲート、NANDゲート、NORゲート、ExORゲートといったゲート回路や、フリップフロップ、カウンタ、レジスタ、シフトレジスタ、ラッチ、エンコーダ/デコーダ、マルチプレクサ/デマルチプレクサ、加算器、コンパレータといった簡単な論理機能ブロックなどのデジタル回路が主体であるが、そういった論理回路だけでなく、バッファやインバータといった論理というよりは駆動電流を増強するアンプの役割をする回路も含まれている。 また、場合によっては、電気的なスイッチであるアナログスイッチや、アナログマルチプレクサ、発振器あるいは位相同期回路(PLL)など、ほとんどロジック(論理)と呼べないアナログ回路に属するものも含める場合もある。.

新しい!!: 演算装置と汎用ロジックIC · 続きを見る »

減法

減法(げんぽう、subtraction)は、一方から一部として他方を取り去ることにより両者の間の差分を求める二項演算で、算術における四則演算の 1 つ。計算することの側面を強調して引き算(ひきざん)、減算(げんさん、げんざん)などとも言う。また、引き算を行うことを「( から) を引く」 と表現する。引く数を減数(げんすう、subtrahend)と呼び引かれる数を被減数(ひげんすう、minuend)と呼ぶ。また、減算の結果は差(さ、difference)と呼ばれる。 抽象代数学において減法は多くの場合、加法の逆演算として定式化されて加法に統合される。たとえば自然数の間の減法は、整数への数の拡張により、数を引くことと負の数を加えることとが同一視されて、減法は加法の一部となる。またこのとき、常に大きいものから小さいものを減算することしかできない自然数の体系に対して、整数という体系では減算が自由に行えるようになる(整数の全体は、逆演算として減法を内包した加法に関してアーベル群になる)。.

新しい!!: 演算装置と減法 · 続きを見る »

浮動小数点数

浮動小数点数(ふどうしょうすうてんすう、英: floating point number)は、浮動小数点方式による数のことで、もっぱらコンピュータの数値表現において、それぞれ固定長の仮数部と指数部を持つ、数値の表現法により表現された数である。.

新しい!!: 演算装置と浮動小数点数 · 続きを見る »

2の補数

2の補数(にのほすう)は、2、ないし2のべき乗の補数、またそれによる負の値の表現法である。特に二進法で使われる。(数学的あるいは理論的には、三進法における減基数による補数、すなわち による補数も「2の補数」であるが、まず使われることはない) コンピュータの固定長整数型や、固定小数点数で、負の値を表現するためや加算器で減算をするために使われる。 頭の部分の1個以上の0を含む(正規化されていない)ある桁数の二進法で表現された数があるとき、その最上位ビット (MSB) よりひとつ上のビットが1で、残りが全て0であるような値(8ビットの整数であれば、100000000_.

新しい!!: 演算装置と2の補数 · 続きを見る »

ここにリダイレクトされます:

Arithmetic Logic Unit演算論理装置算術論理演算装置

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »