ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

演算子法

索引 演算子法

演算子法(えんざんしほう)とは、解析学の問題、特に微分方程式を、代数的問題(普通は多項式方程式)に変換して解く方法。オリヴァー・ヘヴィサイドの貢献が特に大きいので「ヘヴィサイドの演算子法」とも呼ばれるが、厳密な理論化はその後の数学者たちにより行われた。.

36 関係: 偏微分方程式差分法常微分方程式代数学代数方程式伊理正夫作用素微分微分方程式ミクシンスキーの演算子法ノーバート・ウィーナーヤン・ミクシンスキーラプラス変換ヴァネヴァー・ブッシュテイラー展開フーリエ変換分数階微積分学アンドレイ・コルモゴロフオリヴァー・ヘヴィサイドゴットフリート・ライプニッツジョージ・ブール冪乗積分法積分方程式線型性群遅延と位相遅延階段関数過渡現象解析学部分分数分解関数藤田宏電磁気学電気工学電気回路逆写像

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: 演算子法と偏微分方程式 · 続きを見る »

差分法

数値解析における有限差分法(ゆうげんさぶんほう、finite-difference methods; FDM)あるいは単に差分法は、微分方程式を解くために微分を有限差分近似(差分商)で置き換えて得られる差分方程式<!-- ループリンク -->で近似するという離散化手法を用いる数値解法である。18世紀にオイラーが考案したと言われる。 今日ではFDMは偏微分方程式の数値解法として支配的な手法である.

新しい!!: 演算子法と差分法 · 続きを見る »

常微分方程式

常微分方程式(じょうびぶんほうていしき、ordinary differential equation, O.D.E.)とは、数学において、未知関数とその導関数からなる等式で定義される方程式である微分方程式の一種で、未知関数が本質的にただ一つの変数を持つものである場合をいう。すなわち、変数 の未知関数 に対して、(既知の)関数 を用いて という形にできるような関数方程式を常微分方程式と呼ぶ。 は未知関数 の 階の導関数である。未知関数が単独でない場合には、関数の組をベクトルの記法を用いて表せば次のようになる。 \left(\boldsymbol^(t).

新しい!!: 演算子法と常微分方程式 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 演算子法と代数学 · 続きを見る »

代数方程式

数学において、代数方程式 (だいすうほうていしき、algebraic equation) とは(一般には多変数の)多項式を等号で結んだ形で表される方程式の総称で、式で表せば の形に表されるもののことである。言い換えれば、代数方程式は多項式の零点を記述する数学的対象である。.

新しい!!: 演算子法と代数方程式 · 続きを見る »

伊理正夫

伊理 正夫(いり まさお、1933年(昭和8年) - )は、日本の数学者・工学者。東京大学名誉教授、元同大学工学部長・中央大学理工学研究所所長。工学博士(東京大学)。専門は数理工学、応用数学。.

新しい!!: 演算子法と伊理正夫 · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: 演算子法と作用素 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 演算子法と微分 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 演算子法と微分方程式 · 続きを見る »

ミクシンスキーの演算子法

ミクシンスキーの演算子法(えんざんしほう、Mikusinski's operational calculus)は、ヤン・ミクシンスキーによる演算子法の数学的正当化の試みである。完全に形式的な記号操作でしかなかったヘヴィサイドの演算子法は、その後、ラプラス変換などを用いて部分的にその数学的正当性を保証されるようになったが、それには極限操作などの解析的な手法が必要となるため、形式的操作としての演算子法の簡便さは逆に失われることとなった。1951年に著されたミクシンスキーによる方法は、代数的な手法により、記号操作としての演算子法の特性を再び獲得することを可能にした。.

新しい!!: 演算子法とミクシンスキーの演算子法 · 続きを見る »

ノーバート・ウィーナー

ノーバート・ウィーナー(Norbert Wiener, 1894年11月26日 - 1964年3月18日)はアメリカ合衆国の数学者。ミズーリ州コロンビア生まれ。サイバネティックスの提唱者として知られている。 父親はイディッシュ語研究などで知られるビャウィストク出身のポーランド系ユダヤ人言語学者レオ・ウィーナー(ヴィーネル、 Leo Wiener)。.

新しい!!: 演算子法とノーバート・ウィーナー · 続きを見る »

ヤン・ミクシンスキー

ヤン・ミクシンスキー(Jan Mikusiński、1913年4月3日-1987年7月27日)は、ポーランドの数学者。解析学における先駆的な業績で知られる。微分方程式の解法として有効な演算子法を発展させた(ミクシンスキーの演算子法)。ミクシンスキーの演算子法は、フーリエ変換に関する、ある種の函数の畳み込み代数をもとに展開される。この非単位的代数が畳み込み積に関する零因子を持たないこと(Titchmarshの定理)から、代数学において一般に商体(あるいは分数体)と呼ばれる構成を行ってひとつの体が一意的に定義できる。このような構成によって得られる体に属する元は、もとの代数の元(ここでは特定の性質を備えた函数)の順序対(の属する同値類)であり、ミクシンスキーはそれらを総じて演算子と呼んだ。また、ミクシンスキーのキューブ(立体パズル)、Antosik-Mikusinskiの定理、ミクシンスキーの畳み込み代数等でも知られている。.

新しい!!: 演算子法とヤン・ミクシンスキー · 続きを見る »

ラプラス変換

関数解析学において、ラプラス変換(ラプラスへんかん、Laplace transform)とは、積分で定義される関数空間の間の写像(線型作用素)の一種。関数変換。 ラプラス変換の名はピエール=シモン・ラプラスにちなむ。 ラプラス変換によりある種の微分・積分は積などの代数的な演算に置き換わるため、制御工学などにおいて時間領域の(とくに超越的な)関数を別の領域の(おもに代数的な)関数に変換することにより、計算方法の見通しを良くするための数学的な道具として用いられる。 フーリエ変換を発展させて、より実用本位で作られた計算手法である。1899年に電気技師であったオリヴァー・ヘヴィサイドが回路方程式を解くための実用的な演算子を経験則として考案して発表し、後に数学者がその演算子に対し厳密に理論的な裏付けを行った経緯がある。理論的な根拠が曖昧なままで発表されたため、この計算手法に対する懐疑的な声も多かった。この「ヘヴィサイドの演算子」の発表の後に、多くの数学者達により数学的な基盤は1780年の数学者ピエール=シモン・ラプラスの著作にある事が指摘された(この著作においてラプラス変換の公式が頻繁に現れていた)。 従って、数学の中ではかなり応用寄りの分野である。ラプラス変換の理論は微分積分、線形代数、ベクトル解析、フーリエ解析、複素解析を基盤としているため、理解するためにはそれらの分野を習得するべきである。 これと類似の解法として、より数学的な側面から作られた演算子法がある。こちらは演算子の記号を多項式に見立て、代数的に変形し、公式に基づいて特解を求める方法である。.

新しい!!: 演算子法とラプラス変換 · 続きを見る »

ヴァネヴァー・ブッシュ

ヴァニーヴァー・ブッシュ(Vannevar/væˈniːvɑr/ Bush、1890年3月11日 - 1974年6月30日)は、アメリカの技術者・科学技術管理者。アナログコンピュータの研究者、情報検索システム構想「メメックス」(memex) 提唱者、MIT副学長、また原子爆弾計画の推進者として知られる。.

新しい!!: 演算子法とヴァネヴァー・ブッシュ · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 演算子法とテイラー展開 · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: 演算子法とフーリエ変換 · 続きを見る »

分数階微積分学

分数階微分積分学(ぶんすうかいびぶんせきぶんがく、fractional calculus)は解析学の一分野で、微分作用素 D および積分作用素 J が実数冪あるいは複素数冪をとる可能性について研究する。 この文脈における「冪」の語は作用素の合成を繰り返し行うという意味で用いており、それに従えばたとえば f2(x).

新しい!!: 演算子法と分数階微積分学 · 続きを見る »

アンドレイ・コルモゴロフ

アンドレイ・ニコラエヴィッチ・コルモゴロフ(Андре&#769;й Никола&#769;евич Колмого&#769;ров, Andrey Nikolaevich Kolmogorov, 1903年4月25日 - 1987年10月20日)はロシアの数学者であり、確率論および位相幾何学の大きな発展に寄与した。彼以前の確率論はラプラスによる「確率の解析的理論」に基づく古典的確率論が中心であったが、彼が「測度論に基づく確率論」「確率論の基礎概念(1933年)」で公理主義的確率論を立脚させ、現代確率論の始まりとなった。 初期には直観論理やフーリエ級数に関する研究を行っており、乱流や古典力学に関する研究成果もある。また彼はアルゴリズム情報理論の創始者でもある。なお、イズライル・ゲルファント、ウラジーミル・アーノルドをはじめ、コルモゴロフには数多くの弟子がいる。.

新しい!!: 演算子法とアンドレイ・コルモゴロフ · 続きを見る »

オリヴァー・ヘヴィサイド

リヴァー・ヘヴィサイド(Oliver Heaviside, 1850年5月18日 - 1925年2月3日)はイギリスの電気技師、物理学者、数学者である。幼時に猩紅熱に罹患したことにより難聴となった。正規の大学教育を受けず研究機関にも所属せず、独学で研究を行った。電気回路におけるインピーダンスの概念の導入、複素数の導入や「ヘヴィサイドの演算子法」といった物理数学の方法を開発するなど、大きな功績を残した。また、インダクタンスやコンダクタンスなど、回路理論用語のいくつかを提唱した。.

新しい!!: 演算子法とオリヴァー・ヘヴィサイド · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 演算子法とゴットフリート・ライプニッツ · 続きを見る »

ジョージ・ブール

ョージ・ブール(George Boole, 1815年11月2日 - 1864年12月8日)は、イギリスの数学者・哲学者。多くの仕事があるが、こんにちのコンピュータ科学の分野の基礎的な理論のひとつであるブール代数(ブール論理)が現代では広く知られている。.

新しい!!: 演算子法とジョージ・ブール · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 演算子法と冪乗 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 &#x5b;a, b&#x5d; 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 演算子法と積分法 · 続きを見る »

積分方程式

積分方程式(せきぶんほうていしき、Integral equation)は、数学において、未知の関数が積分の中に現れるような方程式である。積分方程式と微分方程式には密接な関係があり、そのどちらでも問題を定式化することができる場合もある。 積分方程式は次の3種類の分類方法がある。この分類によれば、8種類の積分方程式が存在する。.

新しい!!: 演算子法と積分方程式 · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: 演算子法と線型性 · 続きを見る »

群遅延と位相遅延

フィルタ回路において、入力波形と出力波形の位相差から遅延時間を計算する手法として、位相遅延を求める方法と、群遅延を求める方法がある。 波形にひずみが生じないようにするためには、できるかぎりフィルタ回路の遅延時間を一定にする必要がある。 この一例としてベッセルフィルタがある。.

新しい!!: 演算子法と群遅延と位相遅延 · 続きを見る »

階段関数

階段関数(かいだんかんすう、step functionまたはstaircase function)とは、おおまかに言って、グラフが階段状になる実関数のことである。より正確には、区間上の指示関数が有限個あって、それらの線型結合で表される関数である。有限個のみの区分を持った、区分的に定数関数である関数とも表現できる。.

新しい!!: 演算子法と階段関数 · 続きを見る »

過渡現象

過渡現象(かとげんしょう、transient phenomena)は、ある定常状態から別の定常状態に変化するときに、いずれの状態とも異なり時間的に状態が変化する非定常状態になる現象のことである。.

新しい!!: 演算子法と過渡現象 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 演算子法と解析学 · 続きを見る »

部分分数分解

部分分数分解(ぶぶんぶんすうぶんかい、partial fraction decomposition)とは、有理式(あるいは分数式ともいう、多項式の商で表される式のこと)に対し、その有理式の分母が互いに素な多項式の積で表されるとき、その有理式を多項式と複数の有理式(ただし、分子の次数は分母の次数より小さい)の和で表すことをいう。このとき分解された各々の有理式の分母を通分すれば、当然ながら元の有理式の分母となる。 有理式からその部分分数分解を得ることを 「部分分数に分解する」 と言いまわすことがあるが、部分分数という実体があるわけではないことに注意。;例:.

新しい!!: 演算子法と部分分数分解 · 続きを見る »

関数

関数(かんすう)、函数.

新しい!!: 演算子法と関数 · 続きを見る »

藤田宏

藤田 宏(ふじた ひろし、1928年12月7日 - )は、日本の数学者。東京大学名誉教授。大阪市出身。幼少期から中学校まで 愛媛県新居浜市久保田町に在住.

新しい!!: 演算子法と藤田宏 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: 演算子法と電磁気学 · 続きを見る »

電気工学

電気工学(でんきこうがく、electrical engineering)は、電気や磁気、光(電磁波)の研究や応用を取り扱う工学分野である。電気磁気現象が広汎な応用範囲を持つ根源的な現象であるため、通信工学、電子工学をはじめ、派生した技術でそれぞれまた学問分野を形成している。電気の特徴として「エネルギーの輸送手段」としても「情報の伝達媒体」としても大変有用であることが挙げられる。この観点から、前者を「強電」、後者を「弱電」と二分される。.

新しい!!: 演算子法と電気工学 · 続きを見る »

電気回路

電気回路(でんきかいろ、electric(al) circuit)は、抵抗器(抵抗)、インダクタ、コンデンサ、スイッチなどの電気的素子が電気伝導体でつながった電流のループ(回路)である。 電気回路は、電流の流れのための閉ループを持っていて、2つ以上の電気的素子が接続されている。 「回路」の語義的にはループになっているものだけであり、また電流は基本的にはその性質として、ループになっていなければ流れないものであるが、アンテナやアースのように開放端になっている部分も通例として含めている。対象が電子工学的(弱電)であるものは電子回路と言う。 例外的な分野の例ではあるが、主に数ギガヘルツの電磁波(電波)を伝播させる給電線である導波管をコンポーネント単位で、加工・細工するなどして、中空の導波管内を伝播する電磁波に直接作用させる形で構成した電気回路を立体回路と言う。これらは、基本的にループを構成せず、電気伝導体を介さない上記の電気回路の概念とは少し異なるものだが、電気回路の延長線上としてマイクロ波などの高周波領域であつかわれている。 導波管は金属の管であり、加工により通常の電気回路にあるような電気的素子である容量性(コンデンサ)、誘導性(インダクタ)、短絡(ショート)、抵抗減衰、分岐などを高周波領域で実現することが出来る。 これらは衛星通信やマイクロ波加熱、プラズマ生成など用途に応じて高出力(電力)で、かつ高周波の無線電波分野で用いられ、立体回路が構成される導波管は主に中空の方形導波管が多い。.

新しい!!: 演算子法と電気回路 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 演算子法と逆写像 · 続きを見る »

ここにリダイレクトされます:

ヘヴィサイドの演算子法

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »