ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

溶媒効果

索引 溶媒効果

化学において、溶媒効果(ようばいこうか、)とは反応性もしくは分子の会合に対して溶媒が及ぼす影響を指す。溶媒は溶解度、安定性、反応速度に影響を及ぼすため、適切な溶媒を選択することにより化学反応をできる。.

54 関係: 反応座標反応速度塩基安息香酸密度平衡定数互変異性圧力化学バルク (界面化学)ラジカル (化学)プロトン性溶媒ファンデルワールス力フェノール分子間力アジ化物アセチルアセトンアセトニトリルエントロピーエンタルピーカルボニル基カルボカチオンケンブリッジ大学出版局ケト-エノール互変異性シュプリンガー・サイエンス・アンド・ビジネス・メディアジメチルスルホキシドジョン・ワイリー・アンド・サンズ立体障害粘度置換反応遷移元素錯体自由エネルギー酢酸酸解離定数電磁相互作用電気双極子P-トルエンスルホン酸SN1反応SN2反応Tert-ブチルクロリド極性比誘電率水素結合求核剤溶媒溶媒和溶解度...溶液摩擦1-ブロモブタン2,4-ジニトロフェノール インデックスを展開 (4 もっと) »

反応座標

化学分野において、反応座標(はんのうざひょう、reaction coordinate)とは、 反応経路に沿った反応進行度を表す抽象的な1次元座標のこと 。 化学反応の過程で変化する幾何パラメータが、一般に反応座標にあたる。 分子動力学シミュレーションにおいては集団変数(しゅうだんへんすう、collective variable)とも呼称される 。 反応座標は結合長、結合角といった実在する座標系を表すこともあるが、 より複雑な反応では特に、幾何パラメータではなく結合次数などが用いられることがある。 反応の (の断面)の概略となるように、 反応座標と自由エネルギーの関係をプロットすることが多い。 遷移状態理論の中で反応座標は、 各素過程において反応物から遷移状態を介して生成物へと滑らかに変化する原子配置から得られる。 一般に反応座標は、反応物から生成物に至る過程の、ポテンシャルエネルギーの勾配を元に選ばれる。(登りでは勾配の最も緩い経路が選ばれ、下りでは勾配が最も急な経路が選ばれる) 例えば、水素分子のホモリティック開裂で、適切な座標系を選ぶとすれば、 結合長に対応する座標になるだろう。.

新しい!!: 溶媒効果と反応座標 · 続きを見る »

反応速度

反応速度(はんのうそくど、reaction rate)とは化学反応の反応物あるいは生成物に関する各成分量の時間変化率を表す物理量。通常、反応速度を表現する式は濃度のべき関数として表現される。.

新しい!!: 溶媒効果と反応速度 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: 溶媒効果と塩基 · 続きを見る »

安息香酸

安息香酸(あんそくこうさん、benzoic acid、Benzoesäure)は示性式 C6H5COOH の芳香族化合物であり、特に芳香族カルボン酸である。ベンゼンの水素原子1個がカルボキシ基に置換された構造を持つ。水に溶かすと酸性を示し、pKa は 4.21 である。 安息香酸のカルボキシル基に対してオルト位の水素原子がヒドロキシル基に置換されると、サリチル酸となる。 抗菌・静菌作用があるので、水溶性のナトリウム塩、安息香酸ナトリウム (sodium benzoate) などは清涼飲料等の保存料として添加されている。酸型保存料の一種。殺菌作用はない(既に細菌などの増殖したものに対しては無効)。旧厚生省は安息香酸を天然に存在しない添加物に分類している。.

新しい!!: 溶媒効果と安息香酸 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: 溶媒効果と密度 · 続きを見る »

平衡定数

平衡定数(へいこうていすう、)は、化学反応の平衡状態を、物質の存在比で表したもの。.

新しい!!: 溶媒効果と平衡定数 · 続きを見る »

互変異性

互変異性(ごへんいせい、tautomerism)は互変異性体(ごへんいせいたい、tautomer)を生じる現象である。互変異性体とは、それらの異性体同士が互いに変換する異性化の速度が速く、どちらの異性体も共存する平衡状態に達しうるものを指す。異性化の速度や平衡比は温度やpH、液相か固相か、また溶液の場合には溶媒の種類によっても変化する。平衡に達するのが数時間から数日の場合でも互変異性と呼ぶことが多い。 互変異性と共鳴は表現は良く似ているもののまったく別の概念である。互変異性は化学反応であり、 の表現で、2つの異なる化学種AとBが存在して、相互に変換されるのを表しているのに対し、共鳴は量子力学的な電子の配置の重ね合わせを表しており、 の表現で、ある物質の真の構造がAとBの中間的な構造(共鳴混成体)であることを表している。 互変異性はその異性化反応の形式からプロトン互変異性、核内互変異性、原子価互変異性、環鎖互変異性といくつかに分類される。代表的なものにケト-エノール異性がある。これはプロトン互変異性の一種である。.

新しい!!: 溶媒効果と互変異性 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 溶媒効果と圧力 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 溶媒効果と化学 · 続きを見る »

バルク (界面化学)

バルク (Bulk) とは、ある物体、流体のうち界面に触れていない部分を指す。 物体の、界面や境膜、物質表面などと対になる部分であり、ある物質の物性といえばバルク部分が持つ性質を指す。主に界面化学、移動現象論、物性物理などで用いられる用語である。.

新しい!!: 溶媒効果とバルク (界面化学) · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: 溶媒効果とラジカル (化学) · 続きを見る »

プロトン性溶媒

プロトン性溶媒(Protic solvent)は、酸素(ヒドロキシ基)や窒素(アミン)等に結合した水素原子を含む溶媒である。一般に、不安定性を持つヒドロン(H+)を含む溶媒はプロトン性溶媒と呼ばれる。そのような溶媒の分子は、プロトン(H+)を容易に供与する。逆に、非プロトン性溶媒(aprotic solvent)はプロトンを供与することができない。.

新しい!!: 溶媒効果とプロトン性溶媒 · 続きを見る »

ファンデルワールス力

ファンデルワールス力(ファンデルワールスりょく、van der Waals force)は、原子、イオン、分子間(場合によっては、同一分子の中の異なる原子団の間)に働く引力または反発力の中で、次に挙げる物理的起源をもつ相互作用のものを総称する。.

新しい!!: 溶媒効果とファンデルワールス力 · 続きを見る »

フェノール

フェノール (phenol、benzenol) は、水彩絵具のような特有の薬品臭を持つ有機化合物である。芳香族化合物のひとつで、常温では白色の結晶。示性式は C6H5OHで、ベンゼンの水素原子の一つがヒドロキシル基に置換した構造を持つ。和名は石炭酸(せきたんさん)。 広義には、芳香環の水素原子をヒドロキシ基で置換した化合物全般を指す。これらについてはフェノール類を参照のこと。.

新しい!!: 溶媒効果とフェノール · 続きを見る »

分子間力

分子間力(ぶんしかんりょく、intermolecular force)は、分子同士や高分子内の離れた部分の間に働く電磁気学的な力である。力の強い順に並べると、次のようになる。.

新しい!!: 溶媒効果と分子間力 · 続きを見る »

アジ化物

アジ化物(アジかぶつ、azide)とは −N3 原子団を持つ化合物の総称である。アジ化物イオン (N3&minus) の塩も、置換基であるアジ基 (−N3) が共有結合した化合物もアジド (azide) と呼ばれる。特にアシル基にアジ基が置換した化合物を酸アジドと呼ぶ。 アジ化物塩は爆発性を示すものが多く、重金属塩は爆発物の信管に利用される(記事 アジ化鉛に詳しい)。金属のアジ化物は消防法第2条第7項及び別表第一第5類10号、危険物の規制に関する政令第1条により危険物第5類に指定されている。アジ基を持つ有機化合物の大半は爆発性を示さないが、常圧蒸留等で過熱した際に爆発するものも一部存在する。 アジ化物イオンもアジ基も直線構造ではなく、僅かに曲がっている(約172度)。.

新しい!!: 溶媒効果とアジ化物 · 続きを見る »

アセチルアセトン

アセチルアセトン (acetylacetone) は化学式 C5H8O2 で表される有機化合物である。ジケトンの一種で、IUPAC名は 2,4-ペンタンジオンである。その共役塩基、アセチルアセトナート(略号 acac)は二座配位子として重要で、さまざまな金属錯体が知られる。消防法に定める第4類危険物 第2石油類に該当する。.

新しい!!: 溶媒効果とアセチルアセトン · 続きを見る »

アセトニトリル

アセトニトリル (acetonitrile) は有機溶媒の一種で、分子式 C2H3N、示性式 CH3CN と表される最も単純なニトリルである。IUPAC系統名としてエタンニトリル (ethanenitrile)、シアン化メチル (methyl cyanide) シアノメタン (cyanomethane) と表記できる。消防法に定める第4類危険物 第1石油類に該当する。.

新しい!!: 溶媒効果とアセトニトリル · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: 溶媒効果とエントロピー · 続きを見る »

エンタルピー

ンタルピー()とは、熱力学における示量性状態量のひとつである。熱含量()とも。エンタルピーはエネルギーの次元をもち、物質の発熱・吸熱挙動にかかわる状態量である。等圧条件下にある系が発熱して外部に熱を出すとエンタルピーが下がり、吸熱して外部より熱を受け取るとエンタルピーが上がる。 名称が似ているエントロピー()とは全く異なる物理量である。.

新しい!!: 溶媒効果とエンタルピー · 続きを見る »

カルボニル基

ルボニル基(カルボニルき、carbonyl group)は有機化学における置換基のひとつで、−C(.

新しい!!: 溶媒効果とカルボニル基 · 続きを見る »

カルボカチオン

平面構造の''tert''-ブチルカチオン カルボカチオン (carbocation) は炭素原子上に正電荷を持つカチオンのことである。電気的に中性な有機化合物の炭素原子からヒドリドイオンが脱離した形の3価の炭素のカチオンと、電気的に中性な有機化合物の炭素原子にプロトンが付加した形の5価のカチオンがある。 IUPAC命名法では、そのカルボカチオンにヒドリドイオンを付加した炭化水素の語尾を -ylium に変更して命名するか、そのカルボカチオンからプロトンを除去した炭化水素の語尾を -ium に変更して命名する。すなわち CH3+ は CH4 メタン (methane) の語尾を -ylium に変更してメチリウム (methylium)、CH2 メチレン (methylene) の語尾を -ium に変更してメチレニウム (methylenium) と命名する。CH5+ はメタンの語尾を -ium に変更してメタニウム (methanium) と命名する。 このIUPAC命名法に従うと従来3価のカルボカチオンに対してしばしば使用されてきたカルボニウムイオン (carbonium ion) は5価のカチオンと混同する可能性がある。そのため、3価のカルボカチオンについては2価の炭素化合物であるカルベン (carbene) にプロトンが付加した形であることを強調してカルベニウムイオン (carbenium ion) という語が特に使われることもある。.

新しい!!: 溶媒効果とカルボカチオン · 続きを見る »

ケンブリッジ大学出版局

ンブリッジ大学出版局(Cambridge University Press)は、ケンブリッジ大学の出版事業を手がける出版社である。1534年、ヘンリー8世により特許状が発せられたのを起こりとする世界最古の出版社、かつ世界第2の規模の大学出版局であり、聖書や学術誌の出版も手掛けている。 「出版活動を通して、大学の理念である全世界における学問、知識、研究の促進を推し進めること」を使命として掲げている。これは、ケンブリッジ大学規約中の「Statute J」に規定されている。そして、「公益のため継続的に出版活動を行い、ケンブリッジという名前の評価を高めること」を目的としている。 ケンブリッジ大学出版局は、学術、教育分野の書籍の出版を行なっており、ヨーロッパ、中東、アフリカ、アメリカ、アジア太平洋といった地域で事業を展開している。世界中に50以上の事業所を持ち、2000人近くの従業員を抱え、4万以上のタイトルの書籍を発行している。その種類は、専門書、教科書、研究論文、参考書、 300近くに及ぶ学術誌、聖書、祈祷書、英語教育教材、教育ソフト、電子出版など、多岐にわたる。.

新しい!!: 溶媒効果とケンブリッジ大学出版局 · 続きを見る »

ケト-エノール互変異性

ト-エノール互変異性。左,ケト型、右,エノール型 ケト-エノール互変異性(ケト-エノールごへんいせい、Keto-enol tautomerism)は、ケト(ケトン、アルデヒド)とエノールの間の互変異性である。この互変異性は反応性に富むため様々な反応に使われる。.

新しい!!: 溶媒効果とケト-エノール互変異性 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 溶媒効果とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジメチルスルホキシド

メチルスルホキシド (Dimethyl sulfoxide、略称 DMSO) は、分子式 C2H6SO、示性式 CH3SOCH3、または、(CH3)2SO で表される有機化合物である。純度の高いものは無色無臭だが、長く貯蔵したものは分解物である硫黄化合物の臭気(磯の香りに似ている)を持つ。非常に吸湿性が高い。 皮膚への浸透性が非常に高いことでも知られている。ジメチルスルホキシド自体は毒性は低いが、他の物質が混入している場合、他物質の皮膚への浸透が促進されるので取り扱いには注意を要する。 化学構造の観点からは、ジメチルスルホキシドは理想的なCs対称性を持つ。その他の3配位S(IV) 化合物と同じく三角錐形分子構造を有し、四面体形硫黄原子上に非結合性電子対がある。スルホキシドの硫黄-酸素結合は一般にS.

新しい!!: 溶媒効果とジメチルスルホキシド · 続きを見る »

ジョン・ワイリー・アンド・サンズ

ョン・ワイリー・アンド・サンズ(John Wiley & Sons、略称: Wiley、)は、1807年創業の科学、医学、教育などの分野の世界的な学術出版社である。 大学院のための教材、トレーニング教材、百科事典などの印刷、オンライン製品やオンラインサービスのような電子的情報も扱っている。『フォー・ダミーズ』シリーズの出版でも知られている。.

新しい!!: 溶媒効果とジョン・ワイリー・アンド・サンズ · 続きを見る »

立体障害

立体障害(りったいしょうがい, steric effects)とは分子内および分子間で分子を構成する各部分がぶつかることによる回転などの制限のこと。 立体障害は化学では非常に大きな意味を持ち、(有機化学の試験で基質の反応性が違う理由の多くは立体障害、ほかには電子状態、溶媒効果、各種相互作用など)非常に重要である。一般の置換反応や付加反応における分子の反応中心への接近、LDAに代表される求核剤と塩基、アトロプ異性などのような結合周りの回転の制限や、不安定化合物の安定化、不斉合成における配位子設計など多くの場面に関わっている。 立体障害の大きな置換基としてはイソプロピル基、tert-ブチル基、メシチル基などが挙げられる。分子模型としてよく用いられている球棒モデル(原子を表す球と原子間の結合を表す棒からなる模型、右図右)ではあまり実感がわかないが、CPKモデル(右図左)を用いると立体障害がいかに大きな意味を持つかがよく分かる。.

新しい!!: 溶媒効果と立体障害 · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号にはμまたはηが用いられる。SI単位はPa·s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

新しい!!: 溶媒効果と粘度 · 続きを見る »

置換反応

置換反応(ちかんはんのう)とは有機化学において、化合物の同一原子上で置換基が置き換わる化学反応のことを指す。一般的に結合エネルギーが高い結合から結合エネルギーの低い結合へと置き換わる反応が進行しやすい。 置換反応は大きく求核置換反応と求電子置換反応(親電子置換反応とも言う)に分けられる。求核置換反応は反応機構別に SN2反応やSN1反応などのさまざまな形式に分類される。親電子置換反応は芳香環によく見られる反応である。また、置き換わる分子の数によって、単置換反応(en:single displacement reaction)と二重置換反応(en:double displacement reaction)に分けられる。 反応機構は求核置換反応、芳香族求核置換反応、芳香族求電子置換反応の項に詳しい。 芳香族求電子置換反応の場合、反応が同一原子上に限定されて進行するわけではないので厳密には置換反応の定義から外れるが、反応前後の様式から置換反応と呼ばれる。.

新しい!!: 溶媒効果と置換反応 · 続きを見る »

遷移元素

遷移元素(せんいげんそ、transition element)とは、周期表で第3族元素から第11族元素の間に存在する元素の総称である IUPAC.

新しい!!: 溶媒効果と遷移元素 · 続きを見る »

錯体

錯体(さくたい、英語:complex)もしくは錯塩(さくえん、英語:complex salt)とは、広義には、配位結合や水素結合によって形成された分子の総称である。狭義には、金属と非金属の原子が結合した構造を持つ化合物(金属錯体)を指す。この非金属原子は配位子である。ヘモグロビンやクロロフィルなど生理的に重要な金属キレート化合物も錯体である。また、中心金属の酸化数と配位子の電荷が打ち消しあっていないイオン性の錯体は錯イオンと呼ばれよ 金属錯体は、有機化合物・無機化合物のどちらとも異なる多くの特徴的性質を示すため、現在でも非常に盛んな研究が行われている物質群である。.

新しい!!: 溶媒効果と錯体 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: 溶媒効果と自由エネルギー · 続きを見る »

酢酸

酢酸(さくさん、醋酸、acetic acid)は、化学式は示性式 CH3COOH、分子式 C2H4O2と表される簡単なカルボン酸の一種である。IUPAC命名法では酢酸は許容慣用名であり、系統名はエタン酸 (ethanoic acid) である。純粋なものは冬に凍結することから氷酢酸(ひょうさくさん)と呼ばれる。2分子の酢酸が脱水縮合すると別の化合物の無水酢酸となる。 食酢(ヴィネガー)に含まれる弱酸で、強い酸味と刺激臭を持つ。遊離酸・塩・エステルの形で植物界に広く分布する。酸敗したミルク・チーズのなかにも存在する。 試薬や工業品として重要であり、合成樹脂のアセチルセルロースや接着剤のポリ酢酸ビニルなどの製造に使われる。全世界での消費量は年間およそ6.5メガトンである。このうち1.5メガトンが再利用されており、残りは石油化学原料から製造される。生物資源からの製造も研究されているが、大規模なものには至っていない。.

新しい!!: 溶媒効果と酢酸 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: 溶媒効果と酸 · 続きを見る »

酸解離定数

酸解離定数(さんかいりていすう、acidity constant)は、酸の強さを定量的に表すための指標のひとつ。酸性度定数ともいう。酸から水素イオンが放出される解離反応を考え、その平衡定数 Ka またはその負の常用対数 によって表す。 が小さいほど強い酸であることを示す(Ka が大きいことになる)。 同様に、塩基に対しては塩基解離定数 pKb が使用される。共役酸・塩基の関係では、酸解離定数と塩基解離定数のどちらかが分かれば、溶媒の自己解離定数を用いることで、互いに数値を変換することができる。 酸解離定数は、通常は電離すると考えない有機化合物の水素に対しても使用することができる。アルドール反応など、水素の引き抜きを伴う有機化学反応を考える際に有効となる。.

新しい!!: 溶媒効果と酸解離定数 · 続きを見る »

電磁相互作用

電磁相互作用(でんじそうごさよう)は、電場あるいは磁場から電荷が力を受ける相互作用のことをいい、基本相互作用の一つである。電磁気学によって記述される。場の理論においてラグランジアンに対してU(1)ゲージ対称性を付与することで現れるU(1)ゲージ場の成分が電磁気学におけるいわゆるスカラーポテンシャル及びベクトルポテンシャルと対応し、また自身についても対応する自由ラグランジアンを持っている。ラグランジュ形式で議論することで、物質に対応する変数でオイラーラグランジュ方程式を解くことで電磁場から物質に対しての影響を、逆に電磁場に対応する変数でオイラーラグランジュ方程式を解くことで物質側から電磁場に与える影響を導き出すことができ、それぞれ、通常の力学でのローレンツ力とマクスウェル方程式のうちのガウスの法則とアンペールマクスウェル方程式を導出することになる。.

新しい!!: 溶媒効果と電磁相互作用 · 続きを見る »

電気双極子

電気双極子()とは、大きさの等しい正負の電荷が対となって存在する状態のことである。.

新しい!!: 溶媒効果と電気双極子 · 続きを見る »

P-トルエンスルホン酸

p-トルエンスルホン酸(p-トルエンスルホンさん、p-toluenesulfonic acid)は、示性式 CH3C6H4SO3H、分子量 172.20の芳香族スルホン酸である。トシル酸(tosic acid)と通称される。PTSA、TSA、TsOH と略記されることもある。室温では白色の固体で、多くは一水和物として市販されている。無水物の CAS登録番号は 、一水和物では 。水や多くの有機溶媒に可溶で、水溶液は強酸性を示す。.

新しい!!: 溶媒効果とP-トルエンスルホン酸 · 続きを見る »

SN1反応

SN1反応(エスエヌワンはんのう)とは、有機化学における置換反応の一種である。 "SN"は求核置換反応であることを示し、"1"は律速段階(英語版)がであることを示している。したがって、反応速度式は求電子剤の濃度の1乗、求核剤の濃度の0乗に比例した式になる。これは求核剤がカルボカチオン中間体に比べて過剰にある場合でも成り立つが、この場合反応速度式はを用いてより正確に記述することができる。反応にはカルボカチオン中間体が関わっており、二級や三級のハロゲン化アルキルが強塩基下または強酸下で第二級ないし第三級のアルコールと反応する際に観察される。一級のハロゲン化アルキルについては代わりにSN2反応が起きる。無機化学では、SN1反応は「」としばしば呼ばれる。解離の経路についてはによって記述される。SN1反応の反応機構はクリストファー・ケルク・インゴルドらによって1940年に提唱された。 この反応はSN2反応ほど求核剤の強さに依存しない。.

新しい!!: 溶媒効果とSN1反応 · 続きを見る »

SN2反応

CH3IのSN2反応の球棒モデル表現 SN2反応の遷移状態 SN2反応(エスエヌツーはんのう)は有機化学で一般的な反応機構の一つである。この反応では、結合が1本切れ、それに合わせて結合が1本生成する。SN2反応は求核置換反応である。"SN" は求核置換反応であることを示し、"2" は律速段階(英語版)がであることを示している。そのほかの主な求核置換反応としてSN1反応がある。 また、「2分子求核置換反応」とも呼ばれる。無機反応の場合はあるいは交換機構 (interchange mechanism) とも呼ばれる。.

新しい!!: 溶媒効果とSN2反応 · 続きを見る »

Tert-ブチルクロリド

tert-ブチルクロリド(tert-butyl chloride)は化学式(CH3)3CClで表される有機塩素化合物である。クロロホルム臭のある無色可燃性液体。水には難溶で、徐々に加水分解を受けて''tert''-ブチルアルコールと塩化水素となる。.

新しい!!: 溶媒効果とTert-ブチルクロリド · 続きを見る »

極性

極性.

新しい!!: 溶媒効果と極性 · 続きを見る »

比誘電率

比誘電率(ひゆうでんりつ、relative permittivity、 dielectric constant)とは媒質の誘電率と真空の誘電率の比 ε / ε0.

新しい!!: 溶媒効果と比誘電率 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 溶媒効果と水 · 続きを見る »

水素結合

doi.

新しい!!: 溶媒効果と水素結合 · 続きを見る »

求核剤

求核剤(きゅうかくざい、nucleophile)とは、電子密度が低い原子(主に炭素)へ反応し、多くの場合結合を作る化学種のことである。広義では、求電子剤と反応する化学種を求核剤と見なす。求核剤が関与する反応はその反応様式により求核置換反応あるいは求核付加反応などと呼称される。求核剤は、反応機構を図示する際に英語名の頭文字をとり、しばしばNuと略記される。 求核剤として反応性の高い化学種のほとんどは孤立電子対を持つ。アニオンであることも多い。例として、各種カルバニオン、アミンまたはその共役塩基(アミド)、アルコールまたはその共役塩基(アルコキシド)、ハロゲン化物イオンなど、多数が挙げられる。 一方、求核剤が攻撃対象とする炭素原子(反応中心炭素)の多くは、電気陰性度が高い原子(酸素、ハロゲンなど)に隣接するなどの理由によりその電子密度が低下している。例として、カルボニル基、ハロゲン化アルキル、シアノ基 などの炭素原子が挙げられる。これらは、後述する有機金属試薬を求核剤として作用させると、反応して炭素-炭素結合を作る。カルボニル基を攻撃する求核剤をハード求核剤、飽和した炭素を攻撃するものをソフト求核剤という。 求核的反応において孤立電子対の授受に着目すると、求核剤はルイス塩基として、反応中心炭素はルイス酸と見なすことができる。 求核的反応は、溶媒効果、隣接基効果、あるいは立体効果(立体障害)などの影響を受けることがある。溶媒効果は求核種の反応性に影響を与える。隣接基効果や立体効果は、反応速度や、生成物の選択性に影響する。また、求核的反応の反応性を評価、予測する経験則として、HSAB則、ハメット則が知られる。有機電子論の項目も参照されたい。 グリニャール試薬や有機リチウム化合物を代表とする各種有機金属試薬は、多様な基質に対し高い反応性を示すことから、有機合成法上、炭素-炭素結合を得たいときに用いられる重要な求核剤である。特に立体特異的な求核置換反応(SN2反応)や求核付加反応は選択的立体制御を可能にすることから不斉合成において多用される。.

新しい!!: 溶媒効果と求核剤 · 続きを見る »

溶媒

水は最も身近で代表的な溶媒である。 溶媒(ようばい、solvent)は、他の物質を溶かす物質の呼称。工業分野では溶剤(ようざい)と呼ばれることも多い。最も一般的に使用される水のほか、アルコールやアセトン、ヘキサンのような有機物も多く用いられ、これらは特に有機溶媒(有機溶剤)と呼ばれる。 溶媒に溶かされるものを溶質(solute)といい、溶媒と溶質を合わせて溶液(solution)という。溶媒としては、目的とする物質を良く溶かすこと(溶解度が高い)、化学的に安定で溶質と化学反応しないことが最も重要である。目的によっては沸点が低く除去しやすいことや、可燃性や毒性、環境への影響などを含めた安全性も重視される。水以外の多くの溶媒は、きわめて燃えやすく、毒性の強い蒸気を出す。また、化学反応では、溶媒の種類によって反応の進み方が著しく異なることが知られている(溶媒和効果)。 一般的に溶媒として扱われる物質は常温常圧では無色の液体であり、独特の臭気を持つものも多い。有機溶媒は一般用途としてドライクリーニング(テトラクロロエチレン)、シンナー(トルエン、テルピン油)、マニキュア除去液や接着剤(アセトン、酢酸メチル、酢酸エチル)、染み抜き(ヘキサン、石油エーテル)、合成洗剤(オレンジオイル)、香水(エタノール)あるいは化学合成や樹脂製品の加工に使用される。また抽出に用いる。.

新しい!!: 溶媒効果と溶媒 · 続きを見る »

溶媒和

溶媒和(ようばいわ)とは、溶質分子もしくは溶質が電離して生じたイオンと溶媒分子とが、静電気力や水素結合などによって結びつき取り囲むことで溶質が溶媒中に拡散する現象のことである。 溶媒が水である場合、特に水和という。 極性溶媒にイオン性物質や極性物質が溶けやすいのは溶媒和による。一方、無極性物質が溶けにくいのは溶媒和がほとんど起こらないためである。 無極性溶媒の場合、溶媒和はほとんど見られない。.

新しい!!: 溶媒効果と溶媒和 · 続きを見る »

溶解度

溶解度(ようかいど、solubility)とはある溶質が一定の量の溶媒に溶ける限界量をいう。飽和溶液の濃度である。通常、Sという記号で表される。 固体の溶解度は、一定温度で、溶媒100 gに溶ける溶質の質量や、飽和溶液100 gに溶けている溶質の質量などで表す。本来は無名数であるが、一般に等の単位を付して表す。この場合、溶媒が水ならとなる。溶解度は温度によって変化し、固体に関しては、例外もあるが、温度が上がると溶解度が上がるものが多い。 気体の溶解度は一定温度で、1 atm(1気圧)の気体が溶媒1 mlに溶ける体積を標準状態(STP)に換算して表す。この溶解度は温度によって変化する。 化学の金言として「似たものは似たものを溶かす」と言われる。これが意味するところは、極性分子は極性分子(水)に溶解し、非極性分子は非極性溶媒(例えば油)に溶解するという傾向のことである。このため溶媒同士でも水と油は溶けあわず分離し、水とエタノールではよく混和する。.

新しい!!: 溶媒効果と溶解度 · 続きを見る »

溶液

溶液(ようえき、solution)とは、2つ以上の物質から構成される液体状態の混合物である。一般的には主要な液体成分の溶媒(ようばい、solvent)と、その他の気体、液体、固体の成分である溶質(ようしつ、solute)とから構成される。 溶液は巨視状態においては安定な単一、且つ均一な液相を呈するが、溶質成分と溶媒成分とは単分子が無秩序に互いに分散、混合しているとは限らない。すなわち溶質物質が分子間の相互作用により引き合った次に示す集合体.

新しい!!: 溶媒効果と溶液 · 続きを見る »

摩擦

フラクタル的な粗い表面を持つ面どうしが重なり、静止摩擦がはたらいている様子のシミュレーション。 摩擦(まさつ、friction)とは、固体表面が互いに接しているとき、それらの間に相対運動を妨げる力(摩擦力)がはたらく現象をいう。物体が相対的に静止している場合の静止摩擦と、運動を行っている場合の動摩擦に分けられる。多くの状況では、摩擦力の強さは接触面の面積や運動速度によらず、荷重のみで決まる。この経験則はアモントン=クーロンの法則と呼ばれ、初等的な物理教育の一部となっている。 摩擦力は様々な場所で有用なはたらきをしている。ボルトや釘が抜けないのも、結び目や織物がほどけないのも摩擦の作用である。マッチに点火する際には、マッチ棒の頭とマッチ箱の側面との間の摩擦熱が利用される。自動車や列車の車輪が駆動力を得るのも、地面との間にはたらく摩擦力(トラクション)の作用である。 摩擦力は基本的な相互作用ではなく、多くの要因が関わっている。巨視的な物体間の摩擦は、物体表面の微細な突出部()がもう一方の表面と接することによって起きる。接触部では、界面凝着、表面粗さ、表面の変形、表面状態(汚れ、吸着分子層、酸化層)が複合的に作用する。これらの相互作用が複雑であるため、第一原理から摩擦を計算することは非現実的であり、実証研究的な研究手法が取られる。 動摩擦には相対運動の種類によって滑り摩擦と転がり摩擦の区別があり、一般に前者の方が後者より大きな摩擦力を生む。また、摩擦面が流体(潤滑剤)を介して接している場合を潤滑摩擦といい、流体がない場合を乾燥摩擦という。一般に潤滑によって摩擦や摩耗は低減される。そのほか、流体内で運動する物体が受けるせん断抵抗(粘性)を流体摩擦もしくは摩擦抵抗ということがあり、また固体が変形を受けるとき内部の構成要素間にはたらく抵抗を内部摩擦というが、固体界面以外で起きる現象は摩擦の概念の拡張であり、本項の主題からは離れる。 摩擦力は非保存力である。すなわち、摩擦力に抗して行う仕事は運動経路に依存する。そのような場合には、必ず運動エネルギーの一部が熱エネルギーに変換され、力学的エネルギーとしては失われる。たとえば木切れをこすり合わせて火を起こすような場合にこの性質が顕著な役割を果たす。流体摩擦(粘性)を受ける液体の攪拌など、摩擦が介在する運動では一般に熱が発生する。摩擦熱以外にも、多くのタイプの摩擦では摩耗という重要な現象がともなう。摩耗は機械の性能劣化や損傷の原因となる。摩擦や摩耗はトライボロジーという科学の分野の一領域である。.

新しい!!: 溶媒効果と摩擦 · 続きを見る »

1-ブロモブタン

1-ブロモブタン(英語:1-bromobutane)は、化学式CH3(CH2)3Brで表される有機臭素化合物である。臭化n-ブチル、あるいは単純に臭化ブチルとも呼ばれる。通常は無色液体であるが、不純物を含むと黄色くなる。水には不溶であるが、多くの有機溶媒と混和する。有機合成において、''n''-ブチル基を導入する反応に利用されている。.

新しい!!: 溶媒効果と1-ブロモブタン · 続きを見る »

2,4-ジニトロフェノール

'2,4-ジニトロフェノール(英:、2,4-Dinitrophenol、DNP)は有機化合物の一つ。黄色結晶性固体で、甘く黴臭い臭気を持つ。昇華性がある。ほとんどの有機溶媒や、アルカリ性の溶液に溶ける。酸化的リン酸化を脱共役化し、ATPの発生しないエネルギーの急速な消費を行う。自然界には存在しない人工の化合物である。 2,4-ジニトロクロロベンゼンの加水分解によって合成されるGerald Booth "Nitro Compounds, Aromatic" in "Ullmann's Encyclopedia of Industrial Chemistry" 2007; Wiley-VCH, Weinheim.

新しい!!: 溶媒効果と2,4-ジニトロフェノール · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »