ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

液体窒素

索引 液体窒素

液体窒素(えきたいちっそ、liquid nitrogen)は、冷却された窒素の液体である。液化窒素とも呼ばれ液化空気の分留により工業的に大量に製造される。純粋な窒素が液相状態になったものである(液体の密度は三重点で0.807 g/mL)。.

52 関係: 労働安全衛生法卵細胞増幅器密度三重点人体冷凍保存低温物理学ヘリウムヘイケ・カメルリング・オネステルル化カドミウム水銀ドライアイスベンゼンイボオランダオーバークロックケルビンスーパーコンピュータセルシウス度センサ冷却CCDカメラ冷凍保存冷凍サイクル凍傷凝固点CPU皮膚科学窒素精子爆弾炭素鋼生物学熱雑音ETAシステムズ華氏血液食品高圧ガス保安法高温超伝導蘇生走査型電子顕微鏡蒸留腫瘍酸素酸素欠乏危険作業主任者酸素欠乏症透過型電子顕微鏡液体液体酸素液体水素...時限爆弾1906年 インデックスを展開 (2 もっと) »

労働安全衛生法

労働安全衛生法(ろうどうあんぜんえいせいほう、昭和47年法律第57号)は、労働者の安全と衛生についての基準を定めた日本の法律である。.

新しい!!: 液体窒素と労働安全衛生法 · 続きを見る »

卵細胞

卵細胞(らんさいぼう、、複数形: )は、雌性で不動の配偶子である。卵(らん)または卵子(らんし)とも呼ばれる。.

新しい!!: 液体窒素と卵細胞 · 続きを見る »

増幅器

増幅器(ぞうふくき、 アンプリファイアー) 増幅器とは信号を増幅するもの(機器、装置 等々)のことである。信号の波の形や特性は、おおむねそのままに、その大きさを大きくする。.

新しい!!: 液体窒素と増幅器 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: 液体窒素と密度 · 続きを見る »

三重点

純物質の三重点(さんじゅうてん、triple point)とは、その物質の三つの相が共存して熱力学的平衡状態にある温度と圧力である。三相を指定しないで単に三重点というときには、気相、液相、固相の三相が共存して平衡状態にあるときの三重点を指す。水を例にとるならば、水蒸気、水、氷が共存する温度、圧力が水の三重点である。.

新しい!!: 液体窒素と三重点 · 続きを見る »

人体冷凍保存

人体冷凍保存(じんたいれいとうほぞん、cryonics)は、現在の医療技術で治療が不可能な人体を、死後に冷凍保存することである。未来の医療技術が発展することに夢を託し、蘇生する技術が完成した時点で解凍、治療しようという考え方である。有名な事例では、アメリカの有名メジャーリーガー、テッド・ウィリアムズが保存されている。日本には保存する施設はまだないが、日本トランスライフ協会が遺体を冷却し、アメリカ、ロシアの保存施設へ空輸するサービスを開始している。 世界全体で約350人が冷凍保存されている(2016年時点)。イギリスの高等法院は2016年、癌で死期が迫り死後の冷凍保存を希望した少女(当時14歳)による訴えを認め、少女はアメリカで冷凍保存された。費用は推定3万7000ポンド(約500万円)。ただし高等法院は冷凍保存の是非や科学的有効性については判断せず、反対した父親との家族間の争いとして審理した。技術的には死亡直後に体液を不凍液と入れ替え、零下196℃の液体窒素で腐敗などによる損壊を防ぐ措置が施された。 現在の技術では、人体に含まれる水分が冷凍されることで膨張し、細胞膜を破壊してしまうなどの問題がある。現在の人体冷凍保存は、将来的なナノテクノロジー技術などの発展によって細胞膜を補修することが可能になることを期待している。この問題に対しては、水分を事前に何らかの方法で不凍液などに置換し、冷凍時における細胞膜の破壊を防ぐなどの技術が模索されている。 クライオニクスの処置は、法的な死亡の宣告が為されるまでは始められない。その宣告は通常は心拍の停止を基準に為される(脳活動の測定を基準にするものはごく稀である)。心臓が停止し、血流が止まると虚血による損傷が始まる。酸素と栄養を奪われ、細胞、組織、臓器の劣化が始まる。数分も過ぎて再び心臓を動かせば、再流入した酸素は、酸化ストレスによって更に深刻な損傷を招く。この現象を再かん流傷害と言う。クライオニキスト達は、死の宣告が為された後に、できるだけ迅速に(心肺蘇生法のような)心肺補助と冷却を始めることにより、虚血と再かん流傷害を最小限に抑えようと努力している。ヘパリンのような抗凝血剤や抗酸化剤が用いられていると思われる。フロリダに拠点を置くサスペンデット・アニメーション lnc.は、クライオニクス救助における虚血傷害を最小限に食い止めるため、最適な処理手順の研究とその実施に専門的に取り組んでいる。.

新しい!!: 液体窒素と人体冷凍保存 · 続きを見る »

低温物理学

低温物理学(ていおんぶつりがく)は、絶対零度に非常に近い超低温領域における物理学の1分野である。この様な超低温では、熱的な擾乱が小さくなるために、凝縮系内の微小な相互作用や巨視的な量子効果による特異な現象が現れてくる。.

新しい!!: 液体窒素と低温物理学 · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: 液体窒素とヘリウム · 続きを見る »

ヘイケ・カメルリング・オネス

ヘイケ・カマリン・オンネス(Heike Kamerlingh Onnes, 1853年9月21日-1926年2月21日) はオランダの物理学者である。日本ではカーメルリング・オンネス、カマリン・オンネス、カマリン・オネスなど様々にカナ表記されている。ヘリウムの液化に成功、超伝導の発見など、低温物理学の先駆者として知られている。1913年にノーベル物理学賞を受賞した。.

新しい!!: 液体窒素とヘイケ・カメルリング・オネス · 続きを見る »

テルル化カドミウム水銀

テルル化カドミウム水銀(テルルかカドミウムすいぎん、Mercury cadmium telluride、MCT、HgCdTe)は、水銀、カドミウム、テルルから成る3元合金である。半導体であるため、光起電型の光検出器として赤外線の検出などに用いられている。.

新しい!!: 液体窒素とテルル化カドミウム水銀 · 続きを見る »

ドライアイス

昇華して直接気体の二酸化炭素になる。 二酸化炭素の固体の分子構造模式図 ドライアイスは、水に入れると大量の白煙を発生する。 取り扱いが容易なペレット状のドライアイス。 ドライアイス()は、固体二酸化炭素の商品名である。生鮮食品の冷温保管・輸送などに用いられる。固形炭酸、固体炭酸とも言う。.

新しい!!: 液体窒素とドライアイス · 続きを見る »

ベンゼン

ベンゼン (benzene) は分子式 C6H6、分子量 78.11 の最も単純な芳香族炭化水素である。原油に含まれており、石油化学における基礎的化合物の一つである。分野によっては慣用としてドイツ語 (Benzol:ベンツォール) 風にベンゾールと呼ぶことがある。ベンジン(benzine)とはまったく別の物質であるが、英語では同音異綴語である。.

新しい!!: 液体窒素とベンゼン · 続きを見る »

イボ

リチル酸で軟化した角質の下に隠れている小さい斑点(赤褐色) イボ(疣)とは、皮膚にできる出来物である。.

新しい!!: 液体窒素とイボ · 続きを見る »

オランダ

ランダ(Nederland 、; Nederlân; Hulanda)は、西ヨーロッパに位置する立憲君主制国家。東はドイツ、南はベルギーおよびルクセンブルクと国境を接し、北と西は北海に面する。ベルギー、ルクセンブルクと合わせてベネルクスと呼ばれる。憲法上の首都はアムステルダム(事実上の首都はデン・ハーグ)。 カリブ海のアルバ、キュラソー、シント・マールテンと共にオランダ王国を構成している。他、カリブ海に海外特別自治領としてボネール島、シント・ユースタティウス島、サバ島(BES諸島)がある。.

新しい!!: 液体窒素とオランダ · 続きを見る »

オーバークロック

ーバークロック (Overclocking) とは、クロック同期設計の機器の動作クロックの周波数を定格の最高を上回る周波数にすること。主にパーソナルコンピュータで行われる。ここではそれについて説明する。 消費電力や発熱の増加、信頼性・安定性の低下のリスクがあるが、それでもより高い処理能力を得るために行われる。.

新しい!!: 液体窒素とオーバークロック · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 液体窒素とケルビン · 続きを見る »

スーパーコンピュータ

ーパーコンピュータ(supercomputer)は、科学技術計算を主要目的とする大規模コンピュータである。日本国内での略称はスパコン。また、計算科学に必要となる数理からコンピュータシステム技術までの総合的な学問分野を高性能計算と呼ぶ。スーパーコンピュータでは計算性能を最重要視し、最先端の技術が積極的に採用されて作られる。.

新しい!!: 液体窒素とスーパーコンピュータ · 続きを見る »

セルシウス度

ルシウス度(セルシウスど、、記号: )は、温度の単位である。その単位の大きさはケルビンと同一である。国際単位系 (SI) では、次のように定義されている『国際単位系(SI)』2.1.1.5 熱力学温度の単位(ケルビン)、pp.24-25。 すなわち、「セルシウス度」()は単位の名称であり、ケルビンの大きさに等しい温度間隔を表す。一方、「セルシウス温度」()は量の名称であり、(ケルビンで計った値と273.15だけ異なる)温度の高さを表す。しかし、一般にはこの違いが意識されず、混同されることが多い。.

新しい!!: 液体窒素とセルシウス度 · 続きを見る »

センサ

ンサまたはセンサー(sensor)は、自然現象や人工物の機械的・電磁気的・熱的・音響的・化学的性質あるいはそれらで示される空間情報・時間情報を、何らかの科学的原理を応用して、人間や機械が扱い易い別媒体の信号に置き換える装置のことをいい、センサを利用した計測・判別を行うことを「センシング」という。検知器(detector)とも呼ばれる。.

新しい!!: 液体窒素とセンサ · 続きを見る »

冷却CCDカメラ

冷却CCDカメラ(れいきゃくシーシーディーカメラ)は、CCDイメージセンサを低温で動作させ、高感度・低ノイズの画像を得ることを目的にしたデジタルカメラの一種である。.

新しい!!: 液体窒素と冷却CCDカメラ · 続きを見る »

冷凍保存

冷凍保存、低温保存は、細胞・組織やその他の物質を0℃以下に冷却することにより、化学反応や時間経過による損傷から保護する技術である。.

新しい!!: 液体窒素と冷凍保存 · 続きを見る »

冷凍サイクル

冷凍サイクル(れいとうサイクル)とは、熱力学的サイクルの一種であり、熱機関サイクルを逆にしたもの。 動力・熱などのエネルギーを用いて低温熱源から吸熱し、高温熱源に排熱する熱力学的サイクルである。広義には圧縮式のもののほか、吸収式のもの、ケミカル式、吸着式などの多くの方式のサイクルの総称。 理論的には逆カルノーサイクルが最高効率である。 単に冷凍サイクルといった場合、蒸気圧縮冷凍サイクルをさすことが多い。.

新しい!!: 液体窒素と冷凍サイクル · 続きを見る »

凍傷

凍傷(とうしょう)は、低温が原因で生じる皮膚や皮下組織の傷害である。極度の低温はもちろん、0℃を少々下回る程度の温度でも長時間さらされると生じ、痛みを伴う。.

新しい!!: 液体窒素と凍傷 · 続きを見る »

凝固点

凝固点(ぎょうこてん、英語:freezing point)とは、液体が凝固し固化する温度のことを言い、相転移点の一種である。なお、水が凍る温度のことは氷点(ひょうてん)とも言う。ヒステリシスが無い場合には融点(固体が融解する温度)と一致する。.

新しい!!: 液体窒素と凝固点 · 続きを見る »

CPU

Intel Core 2 Duo E6600) CPU(シーピーユー、Central Processing Unit)、中央処理装置(ちゅうおうしょりそうち)は、コンピュータにおける中心的な処理装置(プロセッサ)。 「CPU」と「プロセッサ」と「マイクロプロセッサ」という語は、ほぼ同義語として使われる場合も多いが、厳密には以下に述べるように若干の範囲の違いがある。大規模集積回路(LSI)の発達により1個ないしごく少数のチップに全機能が集積されたマイクロプロセッサが誕生する以前は、多数の(小規模)集積回路(さらにそれ以前はディスクリート)から成る巨大な電子回路がプロセッサであり、CPUであった。大型汎用機を指す「メインフレーム」という語は、もともとは多数の架(フレーム)から成る大型汎用機システムにおいてCPUの収まる主要部(メイン)、という所から来ている。また、パーソナルコンピュータ全体をシステムとして見た時、例えば電源部が制御用に内蔵するワンチップマイコン(マイクロコントローラ)は、システム全体として見た場合には「CPU」ではない。.

新しい!!: 液体窒素とCPU · 続きを見る »

皮膚科学

膚科学(ひふかがく、cutaneous condition)は、主に皮膚を中心とした疾患を治療・研究する医学の一分科。外用薬、内服などの内科的治療の薬物療法に加えて、手術などの外科的治療も行う。.

新しい!!: 液体窒素と皮膚科学 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: 液体窒素と窒素 · 続きを見る »

精子

精子(せいし)とは、雄性の生殖細胞の一つ。動物、藻類やコケ植物、シダ植物、一部の裸子植物(イチョウなど)にみられる。 卵子(右下)に到達した精子 頭部と尾部が見分けられる '''精子の構造''' 細胞核からなる頭部(青)、ミトコンドリアを含みエネルギーを生成する中片部、推進運動を行う尾部からなる。.

新しい!!: 液体窒素と精子 · 続きを見る »

爆弾

対地普通爆弾(500LB爆弾) 爆弾(ばくだん、Bombe)は、爆発による熱や衝撃などによって対象とする生物や物体を殺傷、破壊するための兵器である。一般に、爆薬とそれを装填する容器、信管などの発火装置で構成される。なお、兵器以外でも、発破などの民間利用に用いられる同様の装置を指して爆弾と呼ぶことがある。 軍事利用の面では、特に航空機から投下される航空機搭載爆弾を指して爆弾の語が使われる。他にも爆薬を使った兵器として、小型で人力により投射される手榴弾、水中に投下される機雷や爆雷、大砲から投射するものを榴弾、推進装置を持つ物をロケット弾、さらに誘導装置まで持つものをミサイルと呼ぶ。ただし、推進装置は持たないが誘導装置を持つ物は一般的に誘導爆弾に分類される。.

新しい!!: 液体窒素と爆弾 · 続きを見る »

炭素鋼

炭素鋼(たんそこう、carbon steel)とは、鉄と炭素の合金である鋼の一種で、炭素以外の含有元素の量が合金鋼に分類されない量以下である鋼である。加工が容易で廉価なので一般的によく使用される鉄鋼材料である。.

新しい!!: 液体窒素と炭素鋼 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

新しい!!: 液体窒素と生物学 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: 液体窒素と熱 · 続きを見る »

熱雑音

熱雑音(ねつざつおん、thermal noise)は、抵抗体内の自由電子の不規則な熱振動(ブラウン運動)によって生じる雑音のことをいう。1927年にこの現象を発見した二人のベル研究所の研究者ジョン・バートランド・ジョンソン及びハリー・ナイキストの名前からジョンソン・ノイズまたはジョンソン-ナイキスト・ノイズとも呼ばれる。 抵抗体内で発生する雑音の電圧Vn 、電流In は次式で与えられる。 ここでk B はボルツマン定数、T は導体の温度、Δf は帯域幅、R は抵抗値である。 従ってノイズの大きさPn は次式で与えられる。 また、雑音元(信号元)から回路に入力される雑音電力を入力雑音電力と言い、電気通信分野での増幅器雑音計算には専らこちらが使用される。入力雑音電力N i は次式で与えられる。 入力雑音電力がこの数式で与えられるのは、雑音元を、起電力が上記のV_、内部抵抗がRの電源と考え、負荷につないだときに負荷で消費される電力として計算するからである。入力された電力を、反射することなく負荷で完全に消費するには、負荷のインピーダンスがRである必要があり、その結果として上記の入力雑音電力N_\mathrmが導出される。 ノイズの大きさは温度で決まる。室温(300K)のノイズ(入力雑音電力)の大きさP をデシベル単位(dBm)で表すと である。 熱雑音が問題になるような領域は極めて小さい信号を扱う場合で、そのような場合は、増幅器を極低温まで冷却して極限まで雑音性能を高めることなどがされる。 熱雑音が有効活用される例として、コンピュータの乱数発生器に熱雑音を用いる物がある。.

新しい!!: 液体窒素と熱雑音 · 続きを見る »

ETAシステムズ

ETAシステムズ (ETA Systems) は、1983年にコントロール・データ・コーポレーション (CDC) からのスピンオフによって設立されたアメリカ合衆国のスーパーコンピュータ企業。ETA10という高性能マシンをリリースすることに成功したが、赤字を出し続けたため、CDCはこの会社を1989年にたたんだ。.

新しい!!: 液体窒素とETAシステムズ · 続きを見る »

華氏

氏度(カしど、、記号: )は、数種ある温度のうちのひとつであり、ケルビンの1.8分の1 である。真水の凝固点を32カ氏温度、沸騰点を212カ氏温度とし、その間を180等分して1カ氏度としたことに由来する。 ドイツの物理学者ガブリエル・ファーレンハイトが1724年に提唱した。カ氏度は他の温度と同様「度」の単位がつけられ、他の温度による値と区別するためにファーレンハイトの頭文字を取って“”と書き表される。「32 」は日本語では「カ氏32度」、英語では“32 degrees Fahrenheit”または“32 F”と表現される。.

新しい!!: 液体窒素と華氏 · 続きを見る »

血液

血液 血液(けつえき、blood)は、動物の体内を巡る主要な体液で、全身の細胞に栄養分や酸素を運搬し、二酸化炭素や老廃物を運び出すための媒体である生化学辞典第2版、p.420 【血液】。.

新しい!!: 液体窒素と血液 · 続きを見る »

食品

食品(しょくひん、食べ物、、)は、人間が食事で摂取する物。広辞苑第5版最初の食品は母乳。広辞苑第5版地域や時代において広く用いられる食品として、ペミカンや缶詰が挙げられる。 食品と同義であり明確な線引はないが、肉類や野菜類、果実類など主食品以外の食べ物品目、または調理前の食品を食料品(しょくりょうひん)とすることもある。 人間は生きるために、食品を食べて栄養素の摂取している。医療を目的としたものは薬とよび、食品と区別される事が多いが、薬とは定義されない健康食品と呼ばれるものもある。 生物は食品を味わうことは快楽になるので、嗜好品としての要素もある。.

新しい!!: 液体窒素と食品 · 続きを見る »

高圧ガス保安法

圧ガス保安法(こうあつガスほあんほう、昭和26年法律第204号)は、日本の法律。高圧ガスによる災害を防止するため、高圧ガスの製造、貯蔵、販売、輸入、移動、消費、廃棄等を規制するとともに、民間事業者及び高圧ガス保安協会による高圧ガスに関する自主的な活動を促進し、公共の安全を確保することを目的とする。昭和26年6月7日に公布、高圧ガス取締法施行令(昭和26年政令第350号)第1条(現在は条名が削除され本則)により同年12月6日施行。 1997年(平成9年)4月1日に高圧ガス取締法から改題された。.

新しい!!: 液体窒素と高圧ガス保安法 · 続きを見る »

高温超伝導

温超伝導(こうおんちょうでんどう、high-temperature superconductivity)とは、高い転移温度 で起こる超伝導である。.

新しい!!: 液体窒素と高温超伝導 · 続きを見る »

蘇生

蘇生(そせい、甦生)とは、一度死亡した、あるいはそれに類する状態になった人間が再び生命を取り戻すことである。前者は「復活」、「黄泉がえり」などとも呼ばれる。心臓の鼓動が停止したり、呼吸が止まったりした者に対し、人工呼吸や心臓マッサージを行うが、その方法をまとめて、心肺蘇生法という。.

新しい!!: 液体窒素と蘇生 · 続きを見る »

走査型電子顕微鏡

走査型電子顕微鏡(そうさがたでんしけんびきょう、Scanning Electron Microscope、SEM)は電子顕微鏡の一種である。電子線を絞って電子ビームとして対象に照射し、対象物から放出される二次電子、反射電子(後方散乱電子、BSE)、透過電子、X線、カソードルミネッセンス(蛍光)、内部起電力等を検出する事で対象を観察する。通常は二次電子像が利用される。透過電子を利用したものはSTEM(走査型透過電子顕微鏡)と呼ばれる。 TEMでは主にサンプルの内部、SEMでは主にサンプル表面の構造を微細に観察する。.

新しい!!: 液体窒素と走査型電子顕微鏡 · 続きを見る »

蒸留

実験室レベルにおける典型的な蒸留装置の模式図。1,熱源(ガスバーナー)、2,蒸留用フラスコ(丸底フラスコ)、3,ト字管、4,温度計、5,冷却器、6,冷却水(入)、7,冷却水(出)8,蒸留液を溜めるフラスコ、9,真空ポンプ、10,真空用アダプター 蒸留(じょうりゅう、Distillation)とは、混合物を一度蒸発させ、後で再び凝縮させることで、沸点の異なる成分を分離・濃縮する操作をいう。通常、目的成分が常温で液体であるか、融点が高々100℃程度の固体の場合に用いられる。共沸しない混合物であれば、蒸留によりほぼ完全に単離・精製することが可能であり、この操作を特に分留という。.

新しい!!: 液体窒素と蒸留 · 続きを見る »

腫瘍

腫瘍(しゅよう、Tumor)とは、組織、細胞が生体内の制御に反して自律的に過剰に増殖することによってできる組織塊のこと。腫瘍ができたことにより、身体に影響を及ぼすことがある。 病理学的には、新生物(しんせいぶつ、Neoplasm)と同義である。なお、Neoplasmはギリシャ語のNeoplasia(新形成)からできた単語である。.

新しい!!: 液体窒素と腫瘍 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 液体窒素と酸素 · 続きを見る »

酸素欠乏危険作業主任者

酸素欠乏危険作業主任者(さんそけつぼうきけんさぎょうしゅにんしゃ)とは、労働安全衛生法に定められた作業主任者(国家資格)のひとつであり、酸素欠乏危険作業主任者技能講習または酸素欠乏・硫化水素危険作業主任者技能講習を修了した者の中から事業者により選任される。 また、主任者となるための技能講習を修了した者すなわち資格取得者のこと、あるいは資格そのものを指すこともある。.

新しい!!: 液体窒素と酸素欠乏危険作業主任者 · 続きを見る »

酸素欠乏症

酸素欠乏症(さんそけつぼうしょう、Anoxia、通称:酸欠、さんけつ)は、人体が酸素の濃度18%未満である環境におかれた場合に生ずる症状。一般の空気中の酸素濃度は約21%であり、発症は個人差がある。 労働災害などを防ぐため、酸素欠乏症等防止規則(昭和46年、労働省令第26号)が定められており、作業主任者の選任が必要である。 酸素の不足に対して、最も敏感に反応を示すのは、脳の大脳皮質であり、機能低下からはじまり、機能喪失、脳の細胞の破壊につながり、非常に危険である。ちなみに脳の酸素消費量は、全身の約25%に及ぶ。.

新しい!!: 液体窒素と酸素欠乏症 · 続きを見る »

透過型電子顕微鏡

透過型電子顕微鏡(とうかがたでんしけんびきょう、Transmission Electron Microscope; TEM)とは、電子顕微鏡の一種である。観察対象に電子線をあて、透過してきた電子線の強弱から観察対象内の電子透過率の空間分布を観察するタイプの電子顕微鏡のこと。また、電子の波動性を利用し、試料内での電子の回折の結果生じる干渉像から観察対象物の構造を観察する場合もある。物理学、化学、工学、生物学、医学などで幅広く用いられている。.

新しい!!: 液体窒素と透過型電子顕微鏡 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: 液体窒素と液体 · 続きを見る »

液体酸素

液体酸素(えきたいさんそ)とは、液化した酸素のこと。酸素の沸点は−183℃、凝固点は−219℃である。製鉄や医療現場の酸素源やロケットの酸化剤として利用され、LOX (Liquid OXygen)、LO2のように略称される。有機化合物に触れると爆発的に反応することがある。.

新しい!!: 液体窒素と液体酸素 · 続きを見る »

液体水素

液体水素用タンク 液体水素(えきたいすいそ)とは、液化した水素のこと。沸点は-252.6℃で融点は-259.2℃である(重水素では、沸点-249.4℃)。水素の液化は、1896年にイギリスのジェイムズ・デュワーが初めて成功した。.

新しい!!: 液体窒素と液体水素 · 続きを見る »

時限爆弾

時限爆弾(じげんばくだん、Time bomb)とは、設定された時間(タイマーが0)になると自動的に爆発する爆弾のこと。.

新しい!!: 液体窒素と時限爆弾 · 続きを見る »

1906年

記載なし。

新しい!!: 液体窒素と1906年 · 続きを見る »

ここにリダイレクトされます:

エキタイチッソ液体窒素温度液化窒素

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »