ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

極 (複素解析)

索引 極 (複素解析)

数学の一分野の複素解析において、有理型函数の極 (pole) は、 の における特異点のような振る舞いをする特異点の一種である。点 が函数 の極であるとき、 が に近づくと函数は無限遠点へ近づく。.

16 関係: 可除特異点リーマン球面ローラン級数テイラー展開分岐点 (数学)真性特異点無限遠点留数特異点 (数学)複素多様体複素平面複素解析開集合零点正則関数有理型関数

可除特異点

複素解析学における可除特異点(かじょとくいてん、removable singularity)、除去可能な特異点、あるいは見かけの特異点 (cosmetic singularity) とは、その点において定義されない正則函数に対してその点での値を適当に定めれば、延長された函数がその点の近傍において正則となるようにすることができるような点をいう。 例えば函数 は z.

新しい!!: 極 (複素解析)と可除特異点 · 続きを見る »

リーマン球面

リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。 数学においてリーマン球面(リーマンきゅうめん、Riemann sphere)は、無限遠点を一点追加して複素平面を拡張する一手法であり、ここに無限遠点 は、少なくともある意味で整合的かつ有用である。 19 世紀の数学者ベルンハルト・リーマンから名付けられた。 これはまた、以下の通りにも呼ばれる。.

新しい!!: 極 (複素解析)とリーマン球面 · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: 極 (複素解析)とローラン級数 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 極 (複素解析)とテイラー展開 · 続きを見る »

分岐点 (数学)

数学の一分野、複素解析学において、多価関数の分岐点(ぶんきてん、branch point)とは、その点を中心とする任意の閉曲線に沿って一周するときその函数(の、もとの点における値が周回前と周回後で一致しないという意味で)不連続となるような点をいう。多価函数をきちんと扱うにはリーマン面の概念が必要であり、従って分岐点の厳密な定義も同概念が用いられる。 分岐点は、代数分岐点、超越分岐点、対数分岐点の三種類に大別することができる。代数分岐点は、例えば の函数としての に関する方程式 を解くといった場合のように、根の選び方に任意性があるような函数から最もよく現れる分岐点である。ここでは原点が分岐点となっており、実際任意の解に対して、それを原点周りの閉曲線に沿って解析接続することで異なる函数が得られる(すなわち、ここに非自明なモノドロミーがある)。ただ、この函数 は原点が代数分岐点であるとはいえ、多価函数として矛盾無く定義可能であり、かつ(適当な意味で)原点において連続である。この点は超越分岐点や対数分岐点(つまり多価函数が非自明なモノドロミーだけでなく真性特異性をも持つ場合)とは対照的である。 ただし、などでは(限定のための修飾辞を付けずに)単に「分岐点」と言えば(先述した意味での分岐点よりも限定して)代数分岐点の意味になるのが普通であるし、複素解析学の別の分科では もっと一般の超越型の分岐点をさしている場合もある。.

新しい!!: 極 (複素解析)と分岐点 (数学) · 続きを見る »

真性特異点

数学の複素解析の分野において、ある関数の真性特異点(しんせいとくいてん、)とは、その近くで関数が極端な挙動を取るような「悪い」特異点のことを言う。 真性特異点が分類されるカテゴリーは、「残り物」あるいは「特に取り扱いづらい」特異点の集団である。すなわち定義によると、ある方法で取り扱うことの出来る二つの特異点のカテゴリーである可除特異点と極に分類されないものが、真性特異点である。.

新しい!!: 極 (複素解析)と真性特異点 · 続きを見る »

無限遠点

無限遠点(むげんえんてん、point at infinity)とは、限りなく遠いところ(無限遠)にある点のことである。日常的な意味の空間を考えている限り無限遠点は仮想的な概念でしかないが、無限遠点を実在の点とみなせるように空間概念を一般化することができる。そのようにすることで理論的な見通しが立てやすくなったり、空間概念の応用の幅が拡がったりする。 例えば、通常、平面上の二直線の位置関係は一点で交わるか平行であるかのどちらかであるとされている。これを、平行な二直線は無限遠点で交わるのだと考えることにすると、平面上の二直線は必ず一点で交わるという簡明な性質が得られることになる。(この例について、詳しくは非ユークリッド幾何学などを参照のこと) ユークリッド平面上の互いに平行な 2 直線の交点のことである。厳密にはこの交点はユークリッド平面の中には存在しないから、無限遠点はユークリッド平面の外に存在する。 無限遠点の全体は無限遠直線を描く。.

新しい!!: 極 (複素解析)と無限遠点 · 続きを見る »

留数

数学、殊に複素解析学における留数(りゅうすう、residue)は、孤立特異点を囲む経路に沿う有理型関数の複素線積分により得られる複素数である。.

新しい!!: 極 (複素解析)と留数 · 続きを見る »

特異点 (数学)

数学において、特異性(とくいせい、singularity)とは、適当な枠組みの下で考えている数学的対象が「定義されない」「よく振舞わない」などと言ったことを理由に除外されること、もの、およびその基準である。特異性を示す点を特異点(とくいてん、singular point)という。 これに対して、ある枠組みの中で、よく振舞う (well-behaved) ならば非特異 (non-singular) または正則 (regular) であると言われる。.

新しい!!: 極 (複素解析)と特異点 (数学) · 続きを見る »

複素多様体

微分幾何学で複素多様体(ふくそたようたい、complex manifold)とは、多様体上の各点の開近傍が、Cn の中の単位開円板への正則な座標変換を持つ多様体のことを言う。座標変換が正則である場合には、Cn の中で、コーシー・リーマンの方程式の制約を受ける。 複素多様体という言葉は、上の意味で可積分複素多様体として特徴づけることができる。 One must use the open unit disk in Cn as the model space instead of Cn because these are not isomorphic, unlike for real manifolds.

新しい!!: 極 (複素解析)と複素多様体 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: 極 (複素解析)と複素平面 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

新しい!!: 極 (複素解析)と複素解析 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 極 (複素解析)と開集合 · 続きを見る »

零点

複素解析における正則函数 の零点(れいてん、ぜろてん、zero)は函数が非自明でない限り孤立する。零点が孤立することは、一致の定理あるいは解析接続の一意性の成立において重要である。 孤立零点には重複度 (order of multiplicity) が定まる。代数学における類似の概念として非零多項式の根の重複度(あるいは重根)が定義されるが、多項式函数はその不定元を複素変数と見れば整函数を定めるから、これはその一般化である。.

新しい!!: 極 (複素解析)と零点 · 続きを見る »

正則関数

複素解析において、正則関数(せいそくかんすう、regular analytic function)あるいは整型函数(せいけいかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数のことである。.

新しい!!: 極 (複素解析)と正則関数 · 続きを見る »

有理型関数

複素解析において、有理型関数(ゆうりけいかんすう、ゆうりがたかんすう、meromorphic function)あるいは、関数が有理型(ゆうりけい、)であるとは、複素数平面あるいは連結リーマン面のある領域で定義され、その中で極(仮性特異点)以外の特異点を持たない解析関数(特異点以外では正則な関数)のことを指す。 有理型関数は正則関数の商として表すことができ、その分母となる正則関数の零点が元の有理型関数の極となる(分母は定数関数 0 ではない)。.

新しい!!: 極 (複素解析)と有理型関数 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »