ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

楕円体

索引 楕円体

楕円体(だえんたい、ellipsoid)とは楕円を三次元へ拡張したような図形であり、その表面は二次曲面である。楕円面の方程式は である。ここで a, b, c はそれぞれx軸、y軸、z軸方向の径の半分の長さに相当する。なお a.

16 関係: 双曲面対称性二次曲面体積パラメトリック方程式回転体回転楕円体図形表面積誤差極座標系楕円楕円積分方程式

双曲面

数学における双曲面(そうきょくめん、Hyperboloid)は、二次曲面の一種で、三次元空間内の曲面として あるいは によって記述される。楕円双曲面 (elliptical hyperboloid) とも呼ぶ。a.

新しい!!: 楕円体と双曲面 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 楕円体と対称性 · 続きを見る »

二次曲面

二次超曲面(にじちょうきょくめん、quadric surface)とは、円錐曲線の概念を一般次元ユークリッド空間 Rn に拡張したものであり、2次多項式の零点集合として表されるような超曲面のことをさす。3次元空間における二次超曲面は二次曲面ともよばれる。.

新しい!!: 楕円体と二次曲面 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: 楕円体と体積 · 続きを見る »

初等幾何学における図形の径(けい、diameter)は、その図形の差し渡しをいう。διάμετρος(「亙りの」+ 「大きさ」) に由来する。 円の直径は、その円の中心を通り、両端点がその円周上にある任意の線分であり、またその円の最長のでもある。球体の直径についても同様。 より現代的な用法では、任意の直径の(一意な)長さ自身も同じく「直径」と呼ばれる(一つの円に対して線分の意味での直径は無数にあるが、その何れも同じ長さを持つことに注意する。それゆえ(量化を伴わず)単に円の直径といった場合、ふつうは長さとしての意味である)。長さとして、直径は半径 (radius) の二倍に等しい。 平面上の凸図形に対して、その径は図形の両側から接する二本の平行線の間の最長距離として定義される(同様の最小距離は幅 (width) と呼ばれる)。径(および幅)はを用いて効果的に計算することができる。ルーローの三角形のような定幅図形では、任意の平行接線が同じ長さを持つから、径と幅は一致する。.

新しい!!: 楕円体と径 · 続きを見る »

パラメトリック方程式

バタフライ曲線はパラメトリック方程式で定義される曲線の一例である。 パラメトリック方程式(パラメトリックほうていしき、英: parametric equation)とは、関数を媒介変数(パラメータ)を使って表したもの、またはその手法である。単純な運動学的例として、時間を媒介変数として位置、速度、その他の運動体に関する情報を表す場合が挙げられる。 抽象的には、関係は1つの方程式の形で表され、ユークリッド空間 Rn の項からなる関数のイメージとしても表される。したがって、より正確には媒介変数表示(英: parametric representation)として定義される。.

新しい!!: 楕円体とパラメトリック方程式 · 続きを見る »

回転体

数学、工学および製造業における回転体(かいてんたい、solid of revolution)は、適当な平面曲線を同平面内の直線をとして回転させることにより得られる立体図形である。 母線となる曲線が軸と交わらないものとすれば、回転体の体積は表面積とによって記述される円周の長さとの積に等しい(パップスの第二中心軌跡定理)。 代表円板 (representative disk) は回転体の三次元体素を言う。この体素は回転の軸から 単位離れた位置にある長さ の線素を回転させることによって得られ、従って 単位の円筒体積を囲む。.

新しい!!: 楕円体と回転体 · 続きを見る »

回転楕円体

回転楕円体(扁球) 回転楕円体(長球) 回転楕円体(かいてんだえんたい、spheroid)は、楕円をその長軸または短軸を回転軸として得られる回転体をいう。あるいは、3径のうち2径が等しい楕円体とも定義できる。 回転楕円体は「地球の形」を近似するのに用いられるために重要であり、この回転楕円体を地球楕円体 (Earth ellipsoid) と呼ぶ。様々な地球楕円体のうち、個々の測地系が準拠すべき地球楕円体を特に準拠楕円体 (reference ellipsoid) と呼ぶ。.

新しい!!: 楕円体と回転楕円体 · 続きを見る »

図形

図形(ずけい、shape)は、一定の決まりによって定められる様々な形状のことであり、様々な幾何学における基本的な対象である。 ものの視覚認識によって得られる直観的な「かたち」を、まったく感覚によらず明確な定義と公理のみを用いて、演繹的に研究する論理的な学問としての幾何学の一つの典型は、ユークリッドの原論に見られる。ユークリッド幾何学においては、図形は定木とコンパスによって作図され、点、直線と円、また平面や球、あるいはそれらの部分から構成される。 1872年、クラインによって提出されたエルランゲン目録は、それまでの古典的なユークリッド幾何学、非ユークリッド幾何学、射影幾何学などの種々の幾何学に対して、変換という視点を通して統一的に記述することを目的とした。クラインのこの立場からは、図形は運動あるいは変換と呼ばれる操作に関して不変であるような性質によって記述される点集合のことであると言うことができる。 同時期にリーマンは、ガウスによって詳しく研究されていた曲面における曲率などの計量を基礎に、曲面をそれが存在する空間に拠らない一つの幾何学的対象として扱うことに成功し、リーマン幾何学あるいはリーマン多様体の概念の基礎を築いた。この立場において図形は、空間内の点集合という概念ではなく(一般には曲がったり重なったりした)空間そのものを指すと理解できる。.

新しい!!: 楕円体と図形 · 続きを見る »

球(きゅう、ball)とは、.

新しい!!: 楕円体と球 · 続きを見る »

表面積

表面積(ひょうめんせき)は、立体図形の表面の面積。 ユークリッド空間では、図形が a 倍に拡大されると、体積が a3 倍になるのに対し、表面積は a2 倍になる。ただし、3軸それぞれについて a、b、c 倍に拡大された場合は、体積は abc 倍になるが、表面積の変化は図形による。 せん断成分のある変形に対しては、体積は一定だが表面積は一般に異なる。たとえば、底面が合同で高さが同じ平行六面体と直方体は、体積が等しいが表面積は異なる。 表面積は、一般には積分を使って計算される。対称性の高い図形のみ、初等数学で求まる公式が得られる。楕円体のように、体積は簡単に求まるが表面積を求めるには複雑な計算が必要な図形もある。.

新しい!!: 楕円体と表面積 · 続きを見る »

誤差

誤差(ごさ、error)は、測定や計算などで得られた値 M と、指定値あるいは理論的に正しい値あるいは真値 T の差 ε であり、 で表される。.

新しい!!: 楕円体と誤差 · 続きを見る »

極座標系

極座標系(きょくざひょうけい、polar coordinates system)とは、n 次元ユークリッド空間 R 上で定義され、1 個の動径 r と n − 1 個の偏角 θ, …, θ からなる座標系のことである。点 S(0, 0, x, …,x) を除く直交座標は、局所的に一意的な極座標に座標変換できるが、S においてはヤコビアン が 0 となってしまうから、一意的な極座標表現は不可能である。それは、S に於ける偏角が定義できないことからも明らかである。.

新しい!!: 楕円体と極座標系 · 続きを見る »

楕円

楕円(だえん、橢円とも。ellipse)とは、平面上のある2定点からの距離の和が一定となるような点の集合から作られる曲線である。基準となる2定点を焦点という。円錐曲線の一種である。 2つの焦点が近いほど楕円は円に近づき、2つの焦点が一致したとき楕円はその点を中心とした円になる。そのため円は楕円の特殊な場合であると考えることもできる。 楕円の内部に2焦点を通る直線を引くとき、これを長軸という。長軸の長さを長径という。長軸と楕円との交点では2焦点からの距離の差が最大となる。また、長軸の垂直二等分線を楕円の内部に引くとき、この線分を短軸という。短軸の長さを短径という。.

新しい!!: 楕円体と楕円 · 続きを見る »

楕円積分

以下の積分をそれぞれ、第一種、第二種、第三種の楕円積分(だえんせきぶん、elliptic integral)という。 F(x,k) &.

新しい!!: 楕円体と楕円積分 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 楕円体と方程式 · 続きを見る »

ここにリダイレクトされます:

楕円面

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »