ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

楕円曲線

索引 楕円曲線

数学における楕円曲線(だえんきょくせん、elliptic curve)とは種数 の非特異な射影代数曲線、さらに一般的には、特定の基点 を持つ種数 の代数曲線を言う。 楕円曲線上の点に対し、積に関して、先述の点 を単位元とする(必ず可換な)群をなすように、積を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、 は実は射影平面の「無限遠点」である。 また、の標数が でも でもないとき、楕円曲線は、アフィン平面上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が や のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義は以下を参照)。 が重根を持たない三次多項式として、 とすると、種数 の非特異平面曲線を得るので、これは楕円曲線である。が次数 でとすると、これも種数 の平面曲線となるが、しかし、単位元を自然に選び出すことができない。さらに一般的には、単位元として働く有理点を少なくとも一つ持つような種数 の代数曲線を楕円曲線と呼ぶ。例えば、三次元射影空間へ埋め込まれた二つの二次曲面の交叉は楕円曲線である。 楕円関数論を使い、複素数上で定義された楕円曲線はトーラスのへの埋め込みに対応することを示すことができる。トーラスもアーベル群で、実はこの対応は群同型かつ位相的に同相にもなっている。したがって、位相的には複素楕円曲線はトーラスである。 楕円曲線は、数論で特に重要で、現在研究されている主要な分野の一つである。例えば、アンドリュー・ワイルズにより(リチャード・テイラーの支援を得て)証明されたフェルマーの最終定理で重要な役割を持っている(モジュラー性定理とフェルマーの最終定理への応用を参照)。また、楕円曲線は、楕円暗号(ECC) や素因数分解への応用が見つかっている。 楕円曲線は、楕円ではないことに注意すべきである。「楕円」ということばの由来については楕円積分、楕円関数を参照。 このように、楕円曲線は次のように見なすことができる。.

117 関係: Annals of Mathematics可換体双有理幾何学同値関係合同ゼータ関数合同数変曲点対称性対数尖点射影多様体射影平面上半平面一般化されたリーマン予想一意化定理平面曲線平方数幾何学二次曲面互いに素代数多様体の特異点代数学代数幾何学代数体代数的閉包代数曲線位相同型佐藤・テイト予想体の拡大ミレニアム懸賞問題ハッセ・ヴェイユのゼータ函数バーチ・スウィンナートン=ダイアー予想モーデルの定理モジュラー形式モジュラー曲線ユークリッドの互除法リチャード・テイラー (数学者)リーマン予想リーマン・フルヴィッツの公式リーマンゼータ関数リーマン面ヴァイエルシュトラスの楕円函数ヴェイユ予想トーラスディリクレのL関数ディオファントス近似フェルマーの最終定理ニコラ・ブルバキベイカーの定理判別式...分解体アラン・ベイカーアルゴリズムアンドリュー・ワイルズアーベル多様体アーベル群エドワーズ曲線デジタル署名アルゴリズムエタール・コホモロジーオイラー積カール・ポメランスカール・ワイエルシュトラスカール・ジーゲルガロワ加群クレイ数学研究所ケン・リベットゲルハルト・フライコンパクト空間シュプリンガー・サイエンス・アンド・ビジネス・メディアジャン=ピエール・セールジョン・テイトサージ・ラング冪級数函数等式種数素因数分解素数群 (数学)群同型絶対収束絶対値無限遠点無限降下法特異点 (数学)複素数解析接続谷山–志村予想足立恒雄超越数部分群離散対数J-不変量暗号理論捩れ部分群楕円楕円函数楕円積分楕円曲線のハッセの定理楕円曲線ディフィー・ヘルマン鍵共有楕円曲線DSA楕円曲線暗号楕円曲面標準的高さ標数母関数準同型有理型関数有理点有理関数有限体有限生成アーベル群数学数式処理システムの一覧数論数論力学数論の有効な結果整数環曲線の特異点 インデックスを展開 (67 もっと) »

Annals of Mathematics

Annals of Mathematics (略記は Ann. Math. または、Ann. of Math.) はプリンストン大学及び プリンストン高等研究所から隔月発行される数学誌。インパクトファクターなどの基準では、世界で最も権威ある数学誌に位置づけられる。.

新しい!!: 楕円曲線とAnnals of Mathematics · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 楕円曲線と可換体 · 続きを見る »

双有理幾何学

代数幾何学では、双有理幾何学(birational geometry)の目標は、2つの代数多様体が(多様体の次元)より低い次元の部分を除き、どのようなときに同型となるかを決定することである。このことは、多項式というよりも、有理函数により与えられる写像を研究することを意味し、有理函数が極を持つ場合は(写像を)定義することができないかもしれない。.

新しい!!: 楕円曲線と双有理幾何学 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 楕円曲線と同値関係 · 続きを見る »

合同ゼータ関数

数学において、 個の元をもつ有限体 上で定義された非特異射影代数多様体 の合同ゼータ関数 (congruent zeta function) (または局所ゼータ関数 (local zeta function))とは、 を の 次拡大体 上の の(有理)点の数(定義方程式の解の個数)としたとき、 で定義される。変数変換 を行うと、これは の形式的冪級数として \mathit (V,u).

新しい!!: 楕円曲線と合同ゼータ関数 · 続きを見る »

合同数

合同数(ごうどうすう)とは、辺の長さがすべて有理数である直角三角形の面積のことである。例えば、辺の長さが (3, 4, 5) の直角三角形の面積 6 や、(3/2, 20/3, 41/6) の面積 5 は合同数である。しかし、1, 2, 3, 4 は合同数ではない。.

新しい!!: 楕円曲線と合同数 · 続きを見る »

変曲点

変曲点(へんきょくてん)とは、平面上の曲線で曲がる方向が変わる点のこと。幾何学的にいえば、曲線上で曲率の符号(プラス・マイナス)が変化する点(この点では0となる)をいう。これは幾何学的または解析学的に、次の各定義と同値である。.

新しい!!: 楕円曲線と変曲点 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 楕円曲線と対称性 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 楕円曲線と対数 · 続きを見る »

尖点

平面上で曲線が以下のように微分可能に媒介変数表示されているとする。 x&.

新しい!!: 楕円曲線と尖点 · 続きを見る »

射影多様体

代数幾何学において,代数閉体 上の射影多様体(しゃえいたようたい,projective variety)とは, 上の( 次元)射影空間 の部分集合であって,素イデアルを生成する 係数 変数斉次多項式の有限族の零点集合として書けるものをいう.そのようなイデアルは多様体の定義イデアルと呼ばれる.あるいは同じことだが,代数多様体が射影的であるとは, のザリスキ閉部分多様体として埋め込めるときにいう. 1次元の射影多様体は射影曲線と呼ばれ,2次元だと射影曲面,余次元 1 だと射影超曲面と呼ばれる.射影超曲面は単独の斉次式の零点集合である. 射影多様体 が斉次素イデアル によって定義されているとき,商環 は の斉次座標環と呼ばれる.次数や次元のような基本的な不変量は,この次数環のヒルベルト多項式から読み取ることができる. 射影多様体は多くの方法で生じる.それらはであり,荒っぽく言えば「抜けている」点がない.逆は一般には正しくないが,はこの2つの概念の近い関係を記述する.多様体が射影的であることは直線束や因子を調べることによって示される. 射影多様体の顕著な性質の1つは,層コホモロジーの有限性である.滑らかな射影多様体に対して,セール双対性はポワンカレ双対性の類似と見なせる.それはまた射影曲線,すなわち 1 の射影多様体に対するリーマン・ロッホの定理を導く.射影曲線の理論は特に豊かで,曲線のによる分類を含む.高次元の射影多様体の分類問題は自然に射影多様体のモジュライの構成を導く.ヒルベルトスキームは所定のヒルベルト多項式をもつ の閉部分スキームをパラメトライズする.ヒルベルトスキームは,グラスマン多様体は特別な場合であるが,それ自身射影スキームでもある.幾何学的不変式論は別のアプローチを提供する.古典的なアプローチはタイヒミュラー空間やを含む. 古典にさかのぼる特に豊かな理論が,複素射影多様体,すなわち を定義する多項式が複素係数を持つ場合にある.大まかには,GAGA の原理により,射影複素解析空間(あるいは多様体)の幾何学は射影複素多様体の幾何学と等しい.例えば, 上の正則ベクトル束(より一般に連接解析的層)の理論は,代数的ベクトル束の理論と一致する.Chow の定理により,射影空間の部分集合が正則関数の族の零点集合であることと斉次多項式の零点集合であることは同値である.複素射影多様体に対する解析的な手法と代数的な手法の組合せはホッジ理論のような分野に通じる..

新しい!!: 楕円曲線と射影多様体 · 続きを見る »

射影平面

数学における射影平面(しゃえいへいめん、projective plane)は、初等的な平面の概念を拡張する幾何学的な構成である。通常の平面においては、二直線は典型的には一つの点で交わるが、特定の直線の組(平行線)については交わりを持たない。一つの見方として、射影平面は、通常の平面に平行線の交点として「無限遠点」を追加したものになっている。従って、射影平面では任意の相異なる二直線がただ一点において交わる。 射影平面の定義としてよく用いられるものが二種類ある。ひとつは線型代数学から来るもので、この場合の射影平面は、適当なに対する等質空間として与えられる。この場合の重要な例として、 および が挙げられる。後者はもっと一般のおよび有限幾何学の立場で定義することもできる。これは平面幾何学の接続的性質の研究に適している。 射影平面の概念は、もっと高次元の射影空間の概念に一般化される。射影平面は二次元の射影空間である。.

新しい!!: 楕円曲線と射影平面 · 続きを見る »

上半平面

数学、とくにリーマン幾何学あるいは(局所)コンパクト群の調和解析において上半平面(じょうはんへいめん、upper half plane)は、虚部が正である複素数全体の成す集合をいう。上半平面は連結な開集合であり、それがリーマン球面に埋め込まれているとみなしたとき、その閉包を閉上半平面と呼ぶ。閉上半平面は上半平面に実軸と無限遠点を含めたものである。(開いた)上半平面を慣例的に H や H あるいは \mathfrak と記す(このとき、下半平面は H− や H− などと書かれ、対比的に上半平面を H+ などと記すこともある)。上半平面は、リー群の表現論やロバチェフスキーの双曲幾何学などの舞台として数論・表現論的、幾何学的に重要な役割を果たす。 または.

新しい!!: 楕円曲線と上半平面 · 続きを見る »

一般化されたリーマン予想

数学では、リーマン予想は最も重要な予想の一つである。リーマン予想は、リーマンゼータ函数のゼロ点に関する予想である。様々な幾何学的、数論的対象がいわゆる大域的L-函数により記述することができる。大域的L-函数は形式的にはリーマンゼータ函数と似ているので、これらのL-函数のゼロ点に対しての同じ問いを投げかけると、リーマン予想の様々な一般化が得られる。多くの数学者はこれらの一般化されたリーマン予想が正しいと信じている。(数体の場合ではなく)函数体の場合のみが、すでにこれらの予想が証明されている。 大域的L-函数は、楕円曲線や数体(この場合は、デデキントゼータ函数と呼ばれる)、マース形式やディリクレ指標(この場合はディリクレのL-函数と呼ばれる)に付随している。リーマン予想がデデキントのゼータ函数に対して定式化されているとき、拡張されたリーマン予想(EGH)(extended Riemann hypothesis)として知られていて、ディリクレのL-函数に対して定式化されているときに、一般化されたリーマン予想(GRH)(generalized Riemann hypothesis)として知られている。これらの 2つの予想は以下にさらに詳しく議論する。(多くの数学者は、一般化されたリーマン予想という名称を、ただ単にディリクレのL-函数という特殊な場合だけではなく、全ての大域的なL-函数へリーマン予想を拡張したものとして使う。).

新しい!!: 楕円曲線と一般化されたリーマン予想 · 続きを見る »

一意化定理

一意化定理(uniformization theorem)とは、すべての単連結リーマン面は、開円板、複素平面、リーマン球面の 3つのうちのひとつに共形同値であるという定理である。特に、単連結リーマン面は(constant curvature)のリーマン計量を持つ。この定理は普遍被覆リーマン面を楕円型(正の曲率、正の曲がった曲率をもつ)、放物型(平坦)、双曲型(負曲率)として分類する。 一意化定理はリーマンの写像定理の平面の固有な単連結開部分集合から、任意の単連結はリーマン面への一般化である。 一意化定理は、任意の連結である第二可算の面の同様な結果、定数曲率のリーマン計量を与えることができることを意味している。.

新しい!!: 楕円曲線と一意化定理 · 続きを見る »

平面曲線

初等幾何学における平面曲線(へいめんきょくせん、plane curve, planar curve)は、その像がひとつの平面(特にユークリッド平面、、射影平面など)に全く含まれるような曲線を言う。例えばユークリッド平面曲線は連続写像 \alpha\colon I \to \mathbb^2 によって同定することができる。ここに は実数直線 内の区間である。 特に、 より大きい次元のユークリッド空間に含まれる曲線が平面的 (planar) であるとは、曲線の定義空間に全く含まれる適当な平面が存在して、その曲線の像がその平面に全く含まれるときに言う。平面的でない空間曲線はという。 平面曲線が単純とは、それが自己交叉を持たないこと、すなわち \forall(t_1,t_2) \in I^2, t_1 \ne t_2 \iff \alpha(t_1) \ne \alpha(t_2) となるときに言う。 もっともよく調べられる平面曲線は、微分幾何学において調べられる可微分な場合(滑らかな曲線、区分的に滑らかな曲線)や代数幾何学において調べられる曲線の陰伏方程式が多項式で与えられる場合(代数曲線)である。代数曲線は18世紀以降広汎に研究されてきた。.

新しい!!: 楕円曲線と平面曲線 · 続きを見る »

平方数

平方数(へいほうすう、)とは、自然数の自乗(二乗)で表される整数のことである。正方形の形に点を並べたときにそこに並ぶ点の総数に等しいので、四角数(しかくすう)ともいい、多角数の一種である。最小の平方数として、定義に を加えることができる。平方数は無数にあり、その列は次のようになる。 平方数の列の隣接二項間についての漸化式を考えると、 から連続する正の奇数の総和は平方数に等しい:\sum_^n (2k-1).

新しい!!: 楕円曲線と平方数 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 楕円曲線と幾何学 · 続きを見る »

二次曲面

二次超曲面(にじちょうきょくめん、quadric surface)とは、円錐曲線の概念を一般次元ユークリッド空間 Rn に拡張したものであり、2次多項式の零点集合として表されるような超曲面のことをさす。3次元空間における二次超曲面は二次曲面ともよばれる。.

新しい!!: 楕円曲線と二次曲面 · 続きを見る »

互いに素

二つの整数 が互いに素(たがいにそ、coprime, co-prime, relatively prime, mutually prime)であるとは、 を共に割り切る正の整数が のみであることをいう。このことは の最大公約数 が であることと同値である。 が互いに素であることを、記号で と表すこともある。 例えば と を共に割り切る正の整数は に限られるから、これらは互いに素である。一方で と は共に で割り切れるから、これらは互いに素でない。 互いに素であることの判定は素因数分解を用いて行うこともできるが、二つの整数のうち少なくとも一方が巨大である場合など一般には困難である。素因数分解によって公約数を調べる方法よりも、ユークリッドの互除法によって最大公約数を調べる方法のほうが遥かに高速である。 正の整数 と互いに素となる( から の間の)整数の個数は、オイラー関数 によって与えられる。 三つの整数 が互いに素であるとは、 が成り立つことをいう。また、、、 がすべて に等しいとき、 は対ごとに素(pairwise coprime)またはどの二つも互いに素であるという。一般に、互いに素であるからといって対ごとに素であるとは限らない(例:)。一般の 個の整数についても同様に定義される。.

新しい!!: 楕円曲線と互いに素 · 続きを見る »

代数多様体の特異点

代数幾何学という数学の分野において、代数多様体 V の特異点 (singular point of an algebraic variety) は、この点において多様体の接空間をきちんと決められないという幾何学的な意味で'特別な'(つまり特異な)点 P である。実数体上定義された多様体の場合には、この概念は非の概念を一般化する。代数多様体の特異でない点を正則 (regular) という。特異点を全く持たない代数多様体を非特異 (non singular) あるいは滑らか (smooth) という。 例えば、方程式 の定める平面代数曲線()は、原点 (0,0) で自己交叉し、したがって原点は曲線の二重点である。それは特異である、なぜならばただ1つの接線がそこで正しく定義されないからである。 より一般に F を滑らかな関数として陰関数 で定義される平面曲線がある点で特異であるとは、F のテイラー級数のその点でのが少なくとも 2 であるということである。 その理由は、微分学において、そのような曲線の点 (x0, y0) における接線は、左辺がテイラー展開の一次の項であるような方程式 によって定義されることである。したがって、この項が0であれば、接線は通常の方法では定義できない。接線はそもそも存在しない、あるいは、特別な定義をしなければならない。 一般に超曲面 に対して特異点 (singular point) はすべての偏微分が同時に消えるような点である。いくつかの多項式の共通零点として定義される一般の代数多様体 V に対しては、V の点 P が特異点であるとは多項式の一次の偏微分のヤコビ行列が P において多様体の他の点の行列のランクよりも低いランクをもつということである。 特異でない V の点を非特異 (non-singular) あるいは正則 (regular) という。たいていの点は非特異であるということは次のような意味で常に正しい。非特異点全体は空でない開集合をなす。 (実係数の多項式で定義された多様体の実座標の点の集合である)実多様体の場合には、多様体 (variety) はすべての正則点の近くで多様体 (manifold) である。しかし実多様体 (variety) は多様体 (manifold) であり特異点をもつかもしれないことを注意することは重要である。例えば方程式 y^3 + 2 x^2 y - x^4.

新しい!!: 楕円曲線と代数多様体の特異点 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 楕円曲線と代数学 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 楕円曲線と代数幾何学 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: 楕円曲線と代数体 · 続きを見る »

代数的閉包

数学、特に抽象代数学において、体 K の代数的閉包(だいすうてきへいほう、algebraic closure)は、代数的に閉じている K の代数拡大である。数学においてたくさんある閉包のうちの1つである。 ツォルンの補題を使って、すべての体は代数的閉包をもつMcCarthy (1991) p.21Kaplansky (1972) pp.74-76ことと、体 K の代数的閉包は K のすべての元を固定するような同型の違いを除いてただ1つであることを証明できる。この本質的な一意性のため、an algebraic closure of K よりむしろ the algebraic closure of K と呼ばれることが多い。 体 K の代数的閉包は K の最大の代数拡大と考えることができる。このことを見るためには、次のことに注意しよう。L を K の任意の代数拡大とすると、L の代数的閉包は K の代数的閉包でもあり、したがって L は K の代数的閉包に含まれる。K の代数的閉包はまた K を含む最小の代数的閉体でもある。なぜならば、M が K を含む任意の代数的閉体であれば、K 上代数的な M の元全体は K の代数的閉包をなすからだ。 体 K の代数的閉包の濃度は、K が無限体ならば K と同じで、K が有限体ならば可算無限である。.

新しい!!: 楕円曲線と代数的閉包 · 続きを見る »

代数曲線

数学における代数曲線(だいすうきょくせん、algebraic curve)、特にユークリッド幾何学における平面代数曲線 (plane algebraic curve) は、ユークリッド平面内の点集合であって、各点が適当な二変数多項式函数の零点として与えられるものを言う。.

新しい!!: 楕円曲線と代数曲線 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 楕円曲線と位相同型 · 続きを見る »

佐藤・テイト予想

佐藤・テイト予想(Sato–Tate conjecture)とは、楕円曲線 E と素数 p にたいして定まるある実数 θp の分布に関する予想である。もう少し正確には、有理数体上定義された楕円曲線 E を一つ固定したとき、各素数 p での還元 Ep は有限体 Fp 上の楕円曲線となるが、その楕円曲線 Ep の点の数が p を動かしたときある決まった分布になるというものである。.

新しい!!: 楕円曲線と佐藤・テイト予想 · 続きを見る »

体の拡大

抽象代数学のとくに体論において体の拡大(たいのかくだい、field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。 体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環論あるいは多元環論の範疇に属す)。ただし、非可換体(あるいはもっと一般の環)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼び、元の非可換体を(非可換)拡大体と呼ぶことがある。 以下本項では特に断りの無い限り、体として可換体のみを扱い、単に体と呼称する。.

新しい!!: 楕円曲線と体の拡大 · 続きを見る »

ミレニアム懸賞問題

ミレニアム懸賞問題(ミレニアムけんしょうもんだい、)とは、アメリカのクレイ数学研究所によって2000年に発表された100万ドルの懸賞金がかけられている7つの問題のことである。そのうち1つは解決済み、6つは2015年8月末の時点で未解決である。ミレニアム賞問題、ミレニアム問題とも呼ばれる。.

新しい!!: 楕円曲線とミレニアム懸賞問題 · 続きを見る »

ハッセ・ヴェイユのゼータ函数

ハッセ・ヴェイユのゼータ函数(Hasse–Weil zeta function)とは、数学において最も重要な L-函数のうちの一つである。これは代数体上の代数多様体にたいして定義される複素関数である。これは各素数ごとの因子である局所ゼータ函数の無限積オイラー積として定義される。ハッセ・ヴェイユゼータ函数は、大域的L-函数の 2つの大きなクラスの一つで、他は保型表現に付随する L-函数である。予想としては、ハッセ・ヴェイユのゼータ関数全体と保型表現からさだまる全体の間に対応があると考えられており、これは谷山志村予想の非常に大きな一般化である。 オイラー積の有限個の要素を除外したハッセ・ヴェイユゼータ函数の記述は比較的単純である。これはヘルムート・ハッセ (Helmut Hasse) とアンドレ・ヴェイユ (André Weil) が初めて示唆した。代数多様体が一点の場合、有理数体上ならリーマンゼータ函数、一般の代数体ならデデキントゼータ関数に対応し、これを一般化したものとなる。 話を単純にするため、有理数体上の代数多様体 にたいして、そのハッセ・ヴェイユゼータ函数を説明する。 が非特異射影多様体のとき、素数 に対し、 を法として の還元を考える。 個の元を持つ有限体 上の代数多様体 はまさに の方程式を還元することにより得られる。ほとんど全ての に対して、 は非特異となる。複素変数 のディリクレ級数として局所ゼータ函数 の無限積として を定義する。 すると、 は、定義に従い、有限個の の有理函数による乗法のみを除外して well-defined である。 この有理函数による乗法の不定性は比較的実害がない。たとえば有理型函数として解析接続することができるので、 が有理型函数に解析接続されるという性質はこの不定性に依存しない。また函数等式についても、函数等式の対称軸の正確な位置は悪い因子に依存するものの、函数等式が存在する事自体にはいくつかの因子を除いた事は影響しない。 エタールコホモロジーの発展により、正確な定義が可能となった。とくに、悪い還元に対応するオイラー因子が何かということを説明することができる。分岐理論で理解される一般原理に従うと、悪い素数では導手の理論のような良い情報を持っている。をもつ素数 においてはにより のエタールコホモロジー上のガロア表現 は不分岐である。このため、局所ゼータ函数の定義は、 の特性多項式の項で再現できる。ここの は に対するフロベニウス元である。悪い還元をもつ素数 では、 が に対する惰性群 上非自明な作用をもつ。これらの素数では、惰性群がとして作用するような表現 の最も大きな商をとることによってオイラー因子をさだめる。このようにして、 の定義はほとんど全ての から全ての へ、オイラー積が整合性をもつようにうまくアップグレードすることができる。函数等式の結果は1960年代後半にセール (Serre) とドリーニュ (Deligne) により完成され、函数等式自体は一般的に証明されていない。.

新しい!!: 楕円曲線とハッセ・ヴェイユのゼータ函数 · 続きを見る »

バーチ・スウィンナートン=ダイアー予想

数学において、バーチ・スウィンナートン=ダイアー予想 (Birch and Swinnerton-Dyer conjecture) は数論の分野における未解決問題である。略してBSD予想 (BSD conjecture) と呼ばれる。それは最もチャレンジングな数学の問題の 1 つであると広く認められている。予想はクレイ数学研究所によってリストされた 7 つのミレニアム懸賞問題の 1 つとして選ばれ、最初の正しい証明に対して100万ドルの懸賞金が約束されている。予想は機械計算の助けを借りて1960年代の前半に予想を立てた数学者ブライアン・バーチ (Bryan Birch) とピーター・スウィンナートン=ダイアー (Peter Swinnerton-Dyer) にちなんで名づけられている。、予想の特別な場合のみ正しいと証明されている。 予想は代数体 K 上の楕円曲線 E に伴う数論的データを E の ハッセ・ヴェイユの ''L''-関数 L(E, s) の s.

新しい!!: 楕円曲線とバーチ・スウィンナートン=ダイアー予想 · 続きを見る »

モーデルの定理

数学におけるモーデルの定理(モーデルのていり、Mordell's theorem)とは、有理数体 Q 上の楕円曲線 E の有理点と無限遠点 O のなすアーベル群 E(Q) が有限生成になる、という定理である。有限生成アーベル群の基本定理から有限生成アーベル群は次に同型であることが知られている。 ここで \mathbb は有限アーベル群(ねじれ部分群)である。(r は E の階数(ランク)と呼ばれ、関連する予想にミレニアム懸賞問題のBSD予想がある。) 有限生成アーベル群 E(Q) の場合、ねじれ部分群 A は次のいずれかに同型となる。 モーデルの定理は後にアンドレ・ヴェイユによって代数体上のアーベル多様体の有理点のなす群に関するモーデル・ヴェイユの定理へと拡張された。.

新しい!!: 楕円曲線とモーデルの定理 · 続きを見る »

モジュラー形式

モジュラー形式は、モジュラー群という大きな群についての対称性をもつ上半平面上の複素解析的函数である。歴史的には数論で興味をもたれる対象であり、現代においても主要な研究対象である一方で、代数トポロジーや弦理論などの他分野にも現れる。 モジュラー函数(modular function): ここでいうモジュラー函数以外にも、「モジュラー函数」という術語はいくつか別の意味で用いられることがあるので注意が必要である。例えば、ハール測度の理論に現れる群の共軛作用から定まる函数 Δ(g) もモジュラー函数と呼ばれることがあるが、別な概念である。は重さ 0 、つまりモジュラー群の作用に関して不変であるモジュラー形式のことを言う。そしてそれゆえに、直線束の切断としてではなく、モジュラー領域上の函数として理解することができる。また、「モジュラー函数」はモジュラー群について不変なモジュラー形式であるが、無限遠点で f(z) が正則性を満たすという条件は必要ない。その代わり、モジュラー函数は無限遠点では有理型である。 モジュラー形式論は、もっと一般の場合である保型形式論の特別な場合であり、従って現在では、離散群の豊かな理論のもっとも具体的な部分であると見ることもできる。.

新しい!!: 楕円曲線とモジュラー形式 · 続きを見る »

モジュラー曲線

モジュラー曲線(モジュラーきょくせん)とは複素上半平面 H の合同部分群 Γ の作用による商として定義されるリーマン面のことである。合同部分群 Γ とは、整数の 2 × 2 の行列 SL(2, Z) のある部分群のことである。モジュラー曲線はコンパクトとは限らないが、有限個の Γ のカスプと呼ばれる点を加えることでコンパクト化されたモジュラー曲線 X(Γ) を定めることができる。モジュラー曲線の点は、楕円曲線とそれに付随する群 Γ に関係するある構造をもったものの同型類の集合とみなすことができ、モジュラー曲線を代数幾何的に、また有理数体 Q や円分体の上でモジュラー曲線を定義することもできる。このことからモジュラー曲線は整数論で重要な対象である。.

新しい!!: 楕円曲線とモジュラー曲線 · 続きを見る »

ユークリッドの互除法

ユークリッドの互除法(ユークリッドのごじょほう、)は、2 つの自然数の最大公約数を求める手法の一つである。 2 つの自然数 a, b (a ≧ b) について、a の b による剰余を r とすると、 a と b との最大公約数は b と r との最大公約数に等しいという性質が成り立つ。この性質を利用して、 b を r で割った剰余、 除数 r をその剰余で割った剰余、と剰余を求める計算を逐次繰り返すと、剰余が 0 になった時の除数が a と b との最大公約数となる。 明示的に記述された最古のアルゴリズムとしても知られ、紀元前300年頃に記されたユークリッドの『原論』第 7 巻、命題 1 から 3 がそれである。.

新しい!!: 楕円曲線とユークリッドの互除法 · 続きを見る »

リチャード・テイラー (数学者)

リチャード・テイラー(Richard Lawrence Taylor, 1962年5月19日 - )はイギリスの数学者。プリンストン大学教授。.

新しい!!: 楕円曲線とリチャード・テイラー (数学者) · 続きを見る »

リーマン予想

1.

新しい!!: 楕円曲線とリーマン予想 · 続きを見る »

リーマン・フルヴィッツの公式

数学では、ベルンハルト・リーマン(Bernhard Riemann)とアドルフ・フルヴィッツ(Adolf Hurwitz)の名前の付いたリーマン・フルヴィッツの公式(Riemann–Hurwitz formula)は、一方が他方の分岐被覆(ramified covering)となっているとき、2つの曲面のオイラー標数関係を記述した公式である。従って、この場合には、分岐と代数トポロジーを関連付ける。他にも多くの典型的な結果があるが、リーマン・フルヴィッツの公式はリーマン面(これが発生元である)や代数曲線の理論へ適用される。.

新しい!!: 楕円曲線とリーマン・フルヴィッツの公式 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: 楕円曲線とリーマンゼータ関数 · 続きを見る »

リーマン面

数学、特に複素解析においてリーマン面(Riemann surface)とは、連結な複素 1 次元の複素多様体のことである。ベルンハルト・リーマンにちなんで名付けられた。 リーマン面は、複素平面を変形したものと考えられる。 各点の近くで局所的には、複素平面の部分に似ているが、大域的位相は大きく異なり得る。例えば、球面、トーラス、または互いに糊付けした二枚の面のように見え得る。 リーマン面の主要な意味合いは、正則関数がそこで定義できることである。 今日、リーマン面は正則関数、特に、平方根や自然対数等の多価関数の大域的振る舞いを研究するための自然な土台と考えられている。 全てのリーマン面は向きづけ可能な実 2 次元の実解析的多様体(従って曲面)であって、正則関数を一義的に定義するために必要な追加的構造(特に複素構造)を含む。2 次元実多様体は、それが向き付け可能な場合、かつその場合に限り、(通常は、等価でない複数の方法により)リーマン面にすることができる。従って、球面やトーラスは複素構造を持ち得るが、メビウスの輪、クラインの壺および射影平面は持ち得ない。 リーマン面は、でき得る限り良い特性を有しているという幾何学的事実から、他の曲線、多様体または代数多様体に対し一般化の直感および動機をしばしばもたらす。リーマン・ロッホの定理は、この影響の第一の例である。.

新しい!!: 楕円曲線とリーマン面 · 続きを見る »

ヴァイエルシュトラスの楕円函数

数学におけるヴァイエルシュトラスの楕円函数(ヴァイエルシュトラスのだえんかんすう、Weierstrass's elliptic functions)は、カール・ヴァイエルシュトラスに名を因む、単純な形をした楕円函数の一種である。このクラスの楕円函数は、ペー函数と呼ばれ、一般に なる記号(ヴァイエルシュトラス・ペー)で表される。 ヴァイエルシュトラスのペー函数記号.

新しい!!: 楕円曲線とヴァイエルシュトラスの楕円函数 · 続きを見る »

ヴェイユ予想

ヴェイユ予想(ヴェイユよそう、Weil conjectures)とは、数学者のアンドレ・ヴェイユが発表した、非特異代数多様体上の合同ゼータ関数におけるリーマン予想の類似で(下の(3)がリーマン予想の類似)、アレクサンドル・グロタンディークを経てピエール・ルネ・ドリーニュにより1974年に解決された。.

新しい!!: 楕円曲線とヴェイユ予想 · 続きを見る »

トーラス

初等幾何学におけるトーラス(torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 (に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた に同相な図形の総称として用いられ、 の(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは では不可能で、 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。.

新しい!!: 楕円曲線とトーラス · 続きを見る »

ディリクレのL関数

ディリクレのL-関数(ディリクレのエルかんすう、Dirichlet L-function)は、リーマンゼータ関数を一般化したものである。算術級数中の素数の分布の研究に基本的な関数である。実際ディリクレは、初項と公差が互いに素であるような等差数列には無限に素数が含まれること(算術級数定理)を証明するために、この関数を導入した。最も古典的なL-関数であり、単にL-関数と呼ばれることもあるが、数論の発展に伴って類似の性質を持った数論的関数が多く考え出され、それらにもL-関数の名が付されている。 任意の整数 a に対し複素数を対応させる写像で、自然数 N に関して以下を満たす χ を法Nのディリクレ指標と呼ぶ。 このディリクレ指標について、 と L-関数を定義する。この L-関数はオイラー積 をもつ。 L-関数もゼータ関数と同様、全複素数平面上に解析接続され、関数等式をもつ。また、非自明な零点の実部はすべて 1/2 であるという、リーマン予想と同様な予想が考えられておりこれを一般化されたリーマン予想(Generalised Riemann Hypothesis;GRHと略される)と呼ぶ。 その他にも、L-関数にはジーゲルの零点の存在の問題がある。これは実軸上に正の零点が存在するかもしれないという問題で、存在しても高々一つであることが知られているがいまだに解決されていない。この例外的な実零点は、この問題に大きな結果を残したジーゲルにちなんでジーゲルの零点と呼ばれている。この問題のために、リーマンの素数公式の類似である算術級数中の素数分布の有効な公式を得ることができていない。.

新しい!!: 楕円曲線とディリクレのL関数 · 続きを見る »

ディオファントス近似

ディオファントス近似(ディオファントスきんじ、Diophantine approximation)とはある数(実数など)を別のより単純な構造を持つ数(有理数など)で近似する方法やその値、あるいはそれについて研究する数論の一分野である。アレクサンドリアのディオファントスに因む。 最初の問題は、実数が有理数によってどのぐらいよく近似できるかを知ることであった。この問題のために、有理数 が実数 の「良い」近似であるとは、 と の差の絶対値が、 を分母が小さい別の有理数に置き換えたときに小さくならないこととする。この問題は連分数によって18世紀に解かれた。 与えられた数の「最もよい」近似が分かり、この分野の主要な問題は、上記の差のよい上界と下界の分母の関数としての表示を見つけることである。 これらの上下界は近似される実数の性質の依存すると思われる。有理数の別の有理数による近似に対する下界は代数的数に対しての下界よりも大きい。後者はそれ自身すべての実数に対する下界よりも大きい。したがって代数的数に対する上下界よりもよく近似できる実数はもちろん超越数である。これによりリウヴィルは1844年に最初の明示的な超越数を生み出した。後に や が超越数であることの証明が類似の方法により得られた。 ディオファントス近似は、無理数や超越数の研究と深く関連している。実際、代数的数については次数や高さに依存して近似の精度に限界があることが知られている。また、不定方程式など、数学上の他の問題でもディオファントス近似に帰着することが多い。例えば、ペル方程式 y2.

新しい!!: 楕円曲線とディオファントス近似 · 続きを見る »

フェルマーの最終定理

算術』。 フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、 以上の自然数 について、 となる自然数の組 は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。.

新しい!!: 楕円曲線とフェルマーの最終定理 · 続きを見る »

ニコラ・ブルバキ

ニコラ・ブルバキ(Nicolas Bourbaki, ブールバキとも)は架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日本で出版された38冊に及ぶ数学原論や、定期的に開催されるで有名。.

新しい!!: 楕円曲線とニコラ・ブルバキ · 続きを見る »

ベイカーの定理

ベイカーの定理 (ベイカーのていり、Baker's theorem) とは、1966年-1968年にかけて、アラン・ベイカーによって発表された、対数関数の一次形式に対する線形独立性、および下界の評価に関する一連の定理のことである。 下界の評価が計算可能であることから、数論の様々な分野で応用されている。.

新しい!!: 楕円曲線とベイカーの定理 · 続きを見る »

判別式

代数学において、多項式の判別式(はんべつしき、discriminant)はその係数たちの関数であり、一般には大文字の 'D' あるいは大文字のギリシャ文字デルタ (Δ) で表記される。それは根の性質についての情報を与えてくれる。例えば、二次多項式 の判別式は である。ここで、実数,, に対して、Δ > 0 であれば、多項式は 2 つの実根を持ち、Δ.

新しい!!: 楕円曲線と判別式 · 続きを見る »

分解体

抽象代数学において、与えられた多項式の分解体(ぶんかいたい、splitting field)とは、その多項式を一次式の積に因数分解 (splitting) できるような係数体の拡大体を言う。特にそのような拡大体のうちが最小となる最小分解体 (smallest splitting field) は多項式に対して同型を除いて一意に定まるため、最小分解体のことを指して単に分解体と呼ぶことも多い。.

新しい!!: 楕円曲線と分解体 · 続きを見る »

アラン・ベイカー

アラン・ベイカー(Alan Baker、1939年8月19日 – 2018年2月4日)はロンドン出身のイギリスの数学者。王立協会フェロー。数論、特に超越数の理論の研究で知られる。1970年、31歳の時に、ディオファントス方程式に関する功績により、フィールズ賞を受賞した。彼はユニヴァーシティ・カレッジ・ロンドンのの下で数学の研究を始め、後にケンブリッジ大学に移った。専門は他になどである。教え子にジョン・コーツらがいる。 1966年-1968年にかけて、アラン・ベイカーによって発表された『ベイカーの定理』とは、「対数関数の一次形式に対する線形独立性、および下界の評価に関する定理」で、多くの不定方程式について、整数解が有限個しか存在せず、しかもそれらは有効的に計算可能であることを示した。また、類数が 1, 2 である虚二次体の決定の際にも使用される等、数論の様々なところで応用されている。.

新しい!!: 楕円曲線とアラン・ベイカー · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 楕円曲線とアルゴリズム · 続きを見る »

アンドリュー・ワイルズ

アンドリュー・ワイルズ(Andrew John Wiles, 1953年4月11日 - )は、イギリスの数学者。オックスフォード大学教授(整数論)。「フェルマーの最終定理」を証明したことで知られる。.

新しい!!: 楕円曲線とアンドリュー・ワイルズ · 続きを見る »

アーベル多様体

数学において、特に代数幾何学や複素解析や数論では、アーベル多様体(abelian variety)は、射影代数多様体であり、また正則函数(regular function)により定義することのできる群法則を持つ代数群でもある代数多様体を言う。アーベル多様体は、代数幾何の最も研究されている対象であり、同時に代数幾何学や数論やそれ以外の他の分野の研究の不可欠な道具である。 アーベル多様体は、任意の体に係数を持つ方程式により定義することができる。従って、多様体はその体の上で定義されると言う。歴史的には、最初研究されたアーベル多様体は複素数体上で定義された多様体であった。そのようなアーベル多様体はまさに複素射影空間へ埋め込むことができ複素トーラスであることが判明している。代数体上に定義されたアーベル多様体は、特別であり、数論の観点から重要である。環の局所化のテクニックは、数体上に定義されたアーベル多様体から有限体上や様々な局所体上に定義されたアーベル多様体を自然に導く。 アーベル多様体は代数多様体のヤコビ多様体(ピカール多様体のゼロ点の連結成分として)自然に現れてくる。アーベル多様体の群法則は必然的に可換となり、多様体は非特異となる。楕円曲線のアーベル多様体は次元が 1 である。アーベル多様体は小平次元が 0 である。.

新しい!!: 楕円曲線とアーベル多様体 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 楕円曲線とアーベル群 · 続きを見る »

エドワーズ曲線デジタル署名アルゴリズム

ドワーズ曲線デジタル署名アルゴリズム(えどわーずきょくせんデジタルしょめいあるごりずむ、英称: Edwards-curve Digital Signature Algorithm)、略称:EdDSA)は、公開鍵暗号において、ツイストしたエドワーズ曲線(Twisted Edwards curve)に基づくシュノア署名(Schnorr signature)の一種を用いたデジタル署名の一つである。他のデジタル署名において見つかっている安全性に関する問題を回避した上で、高効率で暗号化処理が行われるように設計されている。エドワーズ曲線電子署名アルゴリズムは、ダニエル・バーンスタインが率いるチームによって開発された 。 -->.

新しい!!: 楕円曲線とエドワーズ曲線デジタル署名アルゴリズム · 続きを見る »

エタール・コホモロジー

タール・コホモロジー(étale cohomology)はアレクサンドル・グロタンディークがヴェイユ予想を証明するための道具として考案したコホモロジー理論であり、位相空間上の定数係数コホモロジー、すなわち特異コホモロジーの類似になっている。エタール・コホモロジーはヴェイユ・コホモロジーの一種であるℓ進コホモロジーを構成する枠組みを与える。代数幾何学における基本的な道具の一つで、非常に多くの応用を持ち、ヴェイユ予想への貢献やフェルマーの最終定理の証明の際にも用いられた。.

新しい!!: 楕円曲線とエタール・コホモロジー · 続きを見る »

オイラー積

イラー積(-せき、Euler product)はディリクレ級数を素数に関する総乗の形で表した無限積である。ディリクレ級数の一種のリーマンのゼータ関数についてこの無限積が成り立つことを証明したレオンハルト・オイラーの名前にちなむ。ディリクレ級数は以下の式の左辺で定義され、右辺がオイラー積表示である。 a(n) は n に関する乗法的関数、p は全ての素数にわたり、変数 s は複素数である。このような表示が成り立つためには a(n) が a(1).

新しい!!: 楕円曲線とオイラー積 · 続きを見る »

カール・ポメランス

ール・ポメランス(Carl Pomerance, 1944年 - )は、アメリカの数学者。専門は数論および暗号理論。ミズーリ州ジョプリン生まれ。 奇完全数は少なくとも7個の相異なる素因数を持つことを証明した論文で、1972年にハーヴァード大学で博士号を取得した。その後、ジョージア大学に勤め、1982年に教授になった。2003年よりダートマス大学教授。 1984年には、RSA などの公開鍵暗号の安全性の根拠となっている素因数分解問題を、準指数時間で解くアルゴリズム(2次ふるい法)を発表している。Adleman-Pomerance-Rumely 素数判定法の発案者でもある。.

新しい!!: 楕円曲線とカール・ポメランス · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

新しい!!: 楕円曲線とカール・ワイエルシュトラス · 続きを見る »

カール・ジーゲル

ール・ルートヴィヒ・ジーゲル(Carl Ludwig Siegel, 1896年12月31日 - 1981年4月4日)は、ドイツの数学者。整数論、複素関数論、保型関数論、天体力学(三体問題)などを専攻。.

新しい!!: 楕円曲線とカール・ジーゲル · 続きを見る »

ガロワ加群

数学において、ガロワ加群 (Galois module) は、G がある体の拡大のガロワ群であるときの ''G''-加群である。G-加群が体上のベクトル空間や環上の自由加群であるときに、用語ガロワ表現 (Galois representation) がしばしば用いられるが、G-加群の同義語としても用いられる。局所体や大域体の拡大のガロワ加群の研究は数論において重要なツールである。.

新しい!!: 楕円曲線とガロワ加群 · 続きを見る »

クレイ数学研究所

レイ数学研究所(クレイすうがくけんきゅうじょ、Clay Mathematics Institute、略称 CMI)は、アメリカ合衆国マサチューセッツ州ケンブリッジに建設された個人的・非営利な施設であり、数学の発展とそれを広めることを目的としている。この研究所は、有望な数学者たちへ様々な賞や賞金を与えている。CMI は、1998年、ハーバード大学の数学者アーサー・ジェイフと、建設の際に投資を行った実業家ランドン・T・クレイによって建設された。.

新しい!!: 楕円曲線とクレイ数学研究所 · 続きを見る »

ケン・リベット

ネス・アラン・“ケン”・リベット(Kenneth Alan Ribet, 1947年6月28日 - )は、アメリカ合衆国の数学者。カリフォルニア大学バークレー校教授。数論と数論的代数幾何学を研究。 1986年夏、フライ・セールのイプシロン予想を解決した(フェルマー予想が谷山・志村予想の系であることを証明)。この際、最後の段階ではバリー・メイザーの助言があったと言われる。 この業績が直接のきっかけとなって、アンドリュー・ワイルズによるフェルマー予想の解決がもたらされた。.

新しい!!: 楕円曲線とケン・リベット · 続きを見る »

ゲルハルト・フライ

ゲルハルト・フライ(Gerhard Frey, 1944年 - )は、数論の研究で知られているドイツの数学者である。フライ曲線はフェルマーの最終定理を解決する有力な手がかりとなった。 テュービンゲン大学で数学と物理学を専攻し、1967年に卒業した。1970年にハイデルベルク大学で博士号を取得し、1973年に大学教授資格 (Habilitation) を得た。1969年から1973年はハイデルベルク大学の講師で、1973年から1975年はエアランゲン大学教授、1975年から1990年はザールブリュッケン大学教授だった。現在はデュースブルク=エッセン大学実験数学研究所の数論の教授である。 彼の研究領域は、数論と代数幾何学の符号化理論および暗号論への適用である。彼はオハイオ州立大学、ハーバード大学、カリフォルニア大学バークレー校、MSRI, ヘブライ大学、リオデジャネイロのIMPAを含むいくつかの大学や研究機関にいる科学者を訪問した。 フライは『Manuscripta Mathematica』の共同制作者だった。1996年にフェルマーの最終定理に関する研究でガウス・メダルを受賞した。1998年以降はゲッティンゲン科学アカデミーの会員である。 Category:ドイツの数学者 Category:数論学者 440000 -440000 Category:デュースブルク=エッセン大学の教員 Category:エアランゲン出身の人物 Category:1944年生 Category:存命人物 Category:数学に関する記事.

新しい!!: 楕円曲線とゲルハルト・フライ · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 楕円曲線とコンパクト空間 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 楕円曲線とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジャン=ピエール・セール

ャン=ピエール・セール(Jean-Pierre Serre, 1926年9月15日 - )はフランスの数学者。もとブルバキのメンバーの一人。 アンリ・カルタンに学び、はじめは複素解析や代数トポロジーを研究した。28歳の若さでフィールズ賞(最年少)を受賞。その後代数幾何学に傾倒していき、グロタンディークに多くの示唆を与え、4&5で作成された道具がヴェイユ予想に大きく貢献した。 業績として代数トポロジーにおけるを発展させた(–)。SerreのC理論による球面のホモトピー群の研究。 GAGA (Géométrie Algébrique et Géométrie Analytique) で代数幾何において複素解析幾何学的手法を導入し、大きな成功を収めた。FAC (Faisceaux algébriques cohérents)を発表し、代数的連接層を構築。層の言葉とホモロジーを用いて代数幾何学、可換環論の書き直し、層係数コホモロジーを構成した。整数論における 進表現論において、楕円曲線、L関数、モジュラー形式、アーベル多様体などに応用し多くの成果をあげた。 進モジュラー形式の理論の構成、類体論への貢献、代数的K-理論への貢献。アーベル多様体にかんするSerre–Tate理論。その他にリー群などにも業績がある。.

新しい!!: 楕円曲線とジャン=ピエール・セール · 続きを見る »

ジョン・テイト

ョン・テイト(John Torrence Tate, 1925年3月13日 - )は、アメリカの数学者。 Emil Artinのもとで1950年プリンストン大学で学位を取得。長年ハーバード大学に勤め、現在はテキサス大学オースティン校教授。ミネソタ州ミネアポリス生まれ。 現在の研究範囲は代数的整数論、類体論、Galois Cohomology、Galois表現、L関数とその特殊値、Modular形式、楕円曲線、Abel多様体.

新しい!!: 楕円曲線とジョン・テイト · 続きを見る »

サージ・ラング

ージ・ラング(Serge Lang, 1927年5月19日 - 2005年9月12日)は、フランスパリ生まれのアメリカの数学者。イェール大学名誉教授。10代の頃に家族でアメリカへ移住し、1946年カリフォルニア工科大学を卒業、1951年プリンストン大学にて博士号を取得。1955年からシカゴ大学教授、コロンビア大学教授、イェール大学教授を歴任した。整数論分野の仕事および多くの教科書の執筆者として知られる。ニコラ・ブルバキのメンバー。.

新しい!!: 楕円曲線とサージ・ラング · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: 楕円曲線と冪級数 · 続きを見る »

函数等式

数学、特に解析的整数論における函数等式(かんすうとうしき、functional equation)は、数論的な ''L''-函数が持っていることを期待される特徴的性質のひとつであり、(未だ多く推測的な内容を含むけれども)「函数等式斯くあるべし」という精巧な理論が存在する。.

新しい!!: 楕円曲線と函数等式 · 続きを見る »

種数

数(しゅすう、genus; ジーナス)は、数学用語で、分野によって似通っているがいくらか異なる意味を持つ。なお、genus の複数形は genera。.

新しい!!: 楕円曲線と種数 · 続きを見る »

素因数分解

素因数分解 (そいんすうぶんかい、prime factorization) とは、ある正の整数を素数の積の形で表すことである。ただし、1 に対する素因数分解は 1 と定義する。 素因数分解には次のような性質がある。.

新しい!!: 楕円曲線と素因数分解 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 楕円曲線と素数 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 楕円曲線と群 (数学) · 続きを見る »

群同型

抽象代数学において、群同型(写像) (group isomorphism) は 2 つの群の間の関数であって与えられた群演算と両立する方法で群の元の間の一対一対応ができるものである。2 つの群の間に同型写像が存在すれば、群は同型 (isomorphic) と呼ばれる。群論の見地からは、同型な群は同じ性質を持っており、区別する必要はない。.

新しい!!: 楕円曲線と群同型 · 続きを見る »

絶対収束

数学において、級数が絶対収束(ぜったいしゅうそく、converge absolutely)するとは、その各項の絶対値を取って得られる級数の和が有限の値になるときにいう。きちんと述べれば、実または複素数の級数 は となるとき、絶対収束すると言う。 絶対収束が無限級数の研究において重要であるのは、それが有限和の場合に成立する(が必ずしも全ての収束級数が持つわけではない)性質を持つようにするためにきわめて強力な条件であるとともに、それ自身が一般的な内容を議論するのに(その強い制約条件にもかかわらず)十分広範な級数のクラスを定めるからである。.

新しい!!: 楕円曲線と絶対収束 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 楕円曲線と絶対値 · 続きを見る »

無限遠点

無限遠点(むげんえんてん、point at infinity)とは、限りなく遠いところ(無限遠)にある点のことである。日常的な意味の空間を考えている限り無限遠点は仮想的な概念でしかないが、無限遠点を実在の点とみなせるように空間概念を一般化することができる。そのようにすることで理論的な見通しが立てやすくなったり、空間概念の応用の幅が拡がったりする。 例えば、通常、平面上の二直線の位置関係は一点で交わるか平行であるかのどちらかであるとされている。これを、平行な二直線は無限遠点で交わるのだと考えることにすると、平面上の二直線は必ず一点で交わるという簡明な性質が得られることになる。(この例について、詳しくは非ユークリッド幾何学などを参照のこと) ユークリッド平面上の互いに平行な 2 直線の交点のことである。厳密にはこの交点はユークリッド平面の中には存在しないから、無限遠点はユークリッド平面の外に存在する。 無限遠点の全体は無限遠直線を描く。.

新しい!!: 楕円曲線と無限遠点 · 続きを見る »

無限降下法

数学における無限降下法(むげんこうかほう、infinite descent)とは、自然数が整列集合であるという性質を利用した、証明の一手法である。背理法の一種であり、数学的帰納法の一型とも見なせる。17世紀の数学者ピエール・ド・フェルマーが創始者であり、彼はこの証明法を好んで用いた。紀元前3世紀にユークリッドが(例えば『原論』7-31で)使用していた、との主張もある。.

新しい!!: 楕円曲線と無限降下法 · 続きを見る »

特異点 (数学)

数学において、特異性(とくいせい、singularity)とは、適当な枠組みの下で考えている数学的対象が「定義されない」「よく振舞わない」などと言ったことを理由に除外されること、もの、およびその基準である。特異性を示す点を特異点(とくいてん、singular point)という。 これに対して、ある枠組みの中で、よく振舞う (well-behaved) ならば非特異 (non-singular) または正則 (regular) であると言われる。.

新しい!!: 楕円曲線と特異点 (数学) · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 楕円曲線と複素数 · 続きを見る »

解析接続

解析学において、解析接続 (かいせきせつぞく、analytic continuation, analytic prolongation) とはリーマン球面 C 上の領域で定義された有理型関数に対して定義域の拡張を行う手法の一つ、あるいは、その拡張によって得られた関数の事である。.

新しい!!: 楕円曲線と解析接続 · 続きを見る »

谷山–志村予想

谷山・志村予想(たにやましむらよそう、Taniyama–Shimura conjecture)は、「すべての有理数体上に定義された楕円曲線はモジュラーであろう」という数学の予想。 証明されて定理となったので、モジュラー性定理またはモジュラリティ定理 (modularity theorem) と呼ばれることもある。(本記事では、この三つの用語を区別することなく使用する) アンドリュー・ワイルズ (Andrew Wiles) は、半安定楕円曲線の谷山・志村予想を証明し、それによってフェルマーの最終定理を証明した。後に、(Christophe Breuil)、(Brian Conrad)、(Fred Diamond)、リチャード・テイラー(Richard Taylor)は、ワイルズのテクニックを拡張し、2001年にモジュラリティ定理を完全に証明した。 モジュラリティ定理は、ロバート・ラングランズ(Robert Langlands)によるより一般的な予想の特別な場合である。ラングランズ・プログラムは、保型形式、あるいは保型表現(automorphic representation)(適切なモジュラ形式の一般化)を、例えば数体上の任意の楕円曲線のような、より一般的な数論的代数幾何学の対象へ関連付けようとする。拡張された予想のうち、ほとんどのケースは未だ証明されていない。しかし、が実二次体上定義された楕円曲線がモジュラーであることを証明した。.

新しい!!: 楕円曲線と谷山–志村予想 · 続きを見る »

足立恒雄

足立 恒雄(あだち のりお、1941年(昭和16年)11月12日 - )は日本の数学者。理学博士。早稲田大学名誉教授。専攻は代数的整数論、数学思想史。 数学が汎宇宙的な普遍性を持つ真理の体系であり、一貫した発展を遂げているという思想に疑問を呈し、数学は人類の種としての固有の財産であり、また時代・民族・個人に大いに依存しているという観点から、『』、『』、『』等の著作を多数著わしている。.

新しい!!: 楕円曲線と足立恒雄 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: 楕円曲線と超越数 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 楕円曲線と部分群 · 続きを見る »

離散対数

代数学における離散対数(りさんたいすう、discrete logarithm)とは、通常の対数の群論的な類似物である。 離散対数を計算する問題は整数の因数分解(en:integer factorization)と以下の点が共通している:.

新しい!!: 楕円曲線と離散対数 · 続きを見る »

J-不変量

数学では、複素変数 τ の函数としたときのフェリックス・クライン(Felix Klein)の j-不変量 (j-invariant)、(もしくは、j-函数と呼ぶこともある)とは、複素数の上半平面上に定義された のウェイト 0 のモジュラー函数を言う。j-不変量は、 であり尖点(カスプ)で一位の極を持つ以外は正則な、一意的な函数である。 の有理函数はモジュラーであり、実はすべてのモジュラー函数を与える。古典的には、-不変量は 上の楕円曲線のパラメータ化として研究されていたが、驚くべきことに、モンスター群の対称性との関係を持っている(この関係はモンストラス・ムーンシャインと呼ばれる)。 j\left(e^\right).

新しい!!: 楕円曲線とJ-不変量 · 続きを見る »

暗号理論

暗号理論(あんごうりろん)の記事では暗号、特に暗号学に関係する理論について扱う。:Category:暗号技術も参照。.

新しい!!: 楕円曲線と暗号理論 · 続きを見る »

捩れ部分群

アーベル群の理論において、アーベル群 A の捩れ部分群(ねじれぶぶんぐん、torsion subgroup) AT は A の部分群であって有限の位数をもつすべての元からなるものである。アーベル群 A が捩れ (torsion) 群(あるいは'''周期的''' (periodic) 群であるとは、A のすべての元の位数が有限であることで、torsion-free であるとは、単位元を除く A のすべての元の位数が無限であることである。 AT が加法で閉じていることの証明は加法の可換性によっている(例の節を見よ)。 A がアーベル群であれば、捩れ部分群 T は A の fully characteristic subgroup であり、剰余群 A/T は torsion-free である。すべての群をその捩れ部分群に送りすべての準同型をその捩れ部分群への制限に送る、アーベル群の圏から捩れ群の圏への共変関手が存在する。すべての群をその捩れ部分群による商に送りすべての準同型をその明らかな誘導写像(well-defined であることは容易に確かめられる)に送る、アーベル群の圏から torsion-free な群の圏への共変関手も存在する。 A が有限生成アーベル群であれば、その捩れ部分群 T と torsion-free な部分群の直和として書くことができる(しかしこれはすべての非有限生成アーベル群に対して正しくない)。A の捩れ部分群 S と torsion-free な部分群の直和としての任意の分解において、S は T と等しくなければならない(しかし torsion-free 部分群は一意的には定まらない)。これは有限生成アーベル群の分類において重要なステップである。.

新しい!!: 楕円曲線と捩れ部分群 · 続きを見る »

楕円

楕円(だえん、橢円とも。ellipse)とは、平面上のある2定点からの距離の和が一定となるような点の集合から作られる曲線である。基準となる2定点を焦点という。円錐曲線の一種である。 2つの焦点が近いほど楕円は円に近づき、2つの焦点が一致したとき楕円はその点を中心とした円になる。そのため円は楕円の特殊な場合であると考えることもできる。 楕円の内部に2焦点を通る直線を引くとき、これを長軸という。長軸の長さを長径という。長軸と楕円との交点では2焦点からの距離の差が最大となる。また、長軸の垂直二等分線を楕円の内部に引くとき、この線分を短軸という。短軸の長さを短径という。.

新しい!!: 楕円曲線と楕円 · 続きを見る »

楕円函数

数学の一分野、複素解析における楕円函数(だえんかんすう、elliptic function)は、二方向に周期を持つ有理型のことをいう。歴史的には、楕円函数は楕円積分の逆函数として、ニールス・アーベルによって発見された(楕円積分は楕円の周長を求める問題に関連して研究されていたものである)。.

新しい!!: 楕円曲線と楕円函数 · 続きを見る »

楕円積分

以下の積分をそれぞれ、第一種、第二種、第三種の楕円積分(だえんせきぶん、elliptic integral)という。 F(x,k) &.

新しい!!: 楕円曲線と楕円積分 · 続きを見る »

楕円曲線のハッセの定理

楕円曲線のハッセの定理(Hasse's theorem on elliptic curves)は、ハッセの境界とも呼ばれ、有限体上の楕円曲線の持つ点の数の、上と下からの評価を与える。 位数 q の有限体上の楕円曲線 E の点の数が N であるとき、ヘルムート・ハッセ(Helmut Hasse)の結果は、その個数が であることを示している。つまり、この解釈は、N が q + 1 (これは同じ体の上の射影直線(projective line)の点の数である)と異なっていれば、この差「エラー項」は、絶対値が \sqrt である2つの複素数の和である。 |N - (q+1)| \le 2 \sqrt.

新しい!!: 楕円曲線と楕円曲線のハッセの定理 · 続きを見る »

楕円曲線ディフィー・ヘルマン鍵共有

楕円曲線ディフィー・ヘルマン鍵共有(Elliptic curve Diffie–Hellman key exchange, ECDH)は、安全でない通信経路を用いて匿名鍵共有を行うプロトコルであり、ディフィー・ヘルマン鍵共有を楕円曲線を使うように変更した、楕円曲線暗号の一つである。 両者で共有した秘密の値はそのまま、あるいは何かしらの変換をかけて、共通鍵暗号の鍵として用いることができる。.

新しい!!: 楕円曲線と楕円曲線ディフィー・ヘルマン鍵共有 · 続きを見る »

楕円曲線DSA

楕円曲線DSA(だえんきょくせんDSA、Elliptic Curve Digital Signature Algorithm、Elliptic Curve DSA、楕円DSA、ECDSA)は、Digital Signature Algorithm (DSA) について楕円曲線暗号を用いるようにした変種である。.

新しい!!: 楕円曲線と楕円曲線DSA · 続きを見る »

楕円曲線暗号

楕円曲線暗号(だえんきょくせんあんごう、Elliptic Curve Cryptography: ECC)とは、楕円曲線上の離散対数問題 (EC-DLP) の困難性を安全性の根拠とする暗号。1985年頃に ビクタ・ミラー (Victor Miller) とニール・コブリッツ (Neal Koblitz) が各々発明した。 具体的な暗号方式の名前ではなく、楕円曲線を利用した暗号方式の総称である。DSAを楕円曲線上で定義した楕円曲線DSA (ECDSA)、DH鍵共有を楕円化した楕円曲線ディフィー・ヘルマン鍵共有 (ECDH) などがある。公開鍵暗号が多い。 EC-DLPを解く準指数関数時間アルゴリズムがまだ見つかっていないため、それが見つかるまでの間は、RSA暗号などと比べて、同レベルの安全性をより短い鍵で実現でき、処理速度も速いことをメリットとして、ポストRSA暗号として注目されている。ただしP.

新しい!!: 楕円曲線と楕円曲線暗号 · 続きを見る »

楕円曲面

数学では、楕円曲面(だえんきょくめん、elliptic surface)は楕円ファイバーを持つ曲面であり、言い換えると、曲面からの代数曲線への連結な射が、ほとんどの点上のファイバーを楕円曲線とするような曲面である。 ファイバーが楕円曲線とならない点を特異ファイバー (singular fibers) と呼び、小平邦彦により分類された。弦理論の脈絡では、楕円ファイバーも特異ファイバーも (F-theory) を使う記述にとっても重要である。 楕円曲面は、曲面の興味深い例の多くを含む、曲面の大きなクラスで、複素幾何学の観点からも滑らかな(smooth) 4次元多様体の理論の観点からも、比較的良く理解されている。楕円曲面は代数体上の楕円曲線に似ている(つまり、類似している)。.

新しい!!: 楕円曲線と楕円曲面 · 続きを見る »

標準的高さ

数論では、ネロン・テイトの高さ(Néron–Tate height)(もしくは、標準的高さ (canonical height) ともいう)は、大域体上に定義されたアーベル多様体の有理点の上の二次形式である。この命名は、(André Néron)とジョン・テイト(John Tate)にちなんでいる。.

新しい!!: 楕円曲線と標準的高さ · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: 楕円曲線と標数 · 続きを見る »

母関数

数学において、母関数(ぼかんすう、generating function; 生成関数)は、(自然数で添字付けられた)数列 に関する情報を内包した係数を持つ、形式的冪級数である。母関数は、一般線型回帰問題の解決のためにド・モアブルによって1730年に初めて用いられた。複数の自然数で添字付けられる数の配列(多重数列)の情報を取り込んだ多変数冪級数を同様に考えることもできる。 母関数には、通常型母関数、指数型母関数、ランベルト級数、ベル級数、ディリクレ級数 など様々なものがある。これらについては定義と例を後述する。原理的にはあらゆる列についてそれぞれの種類の母関数が存在する(ただし、ランベルト級数とディリクレ型は添字を 1 から始めることが必要)が、扱い易さについてはそれぞれの種類で相当異なるかもしれない。どの母関数が最も有効かは、その列の性質と解くべき問題の詳細に依存する。 母関数を、形式的冪級数に対する演算・操作を用いるなどして(級数の形ではなく)の式で表すこともよく行われる。このような母関数の表示は、母関数の不定元を x とすれば、四則演算、母関数のx に関する微分、他の母関数へ代入すること、などを行った結果として得られる。これらの操作は関数に対しても定義されるものであるし、結果として得られる式もやはり x の関数であるかのように見える。実際、母関数を x の(十分小さい)具体的な値で評価することのできる関数として解釈することができる場合も少なくない(このとき、母関数の冪級数表示は、母関数の閉じた形の式のテイラー級数と解釈される)のであり、それがこの式が「母関数」と呼ばれる所以でもある。しかし、形式的冪級数は x に何らかの数値を代入したときに収束するかどうかは問題にしないのであって、母関数についてそのような関数としての解釈が可能であるということは必ずしも要求されるものではないし、同様に x の関数として意味を持つ式がいずれも形式的冪級数に対して意味を持つわけではない。 慣例的に母「関数」と呼ばれてはいるが、始域から終域への写像という関数の厳密な意味に照らして言えば母関数は関数ではなく、今日的には生成級数(母級数)と呼ぶこともしばしばである。.

新しい!!: 楕円曲線と母関数 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: 楕円曲線と準同型 · 続きを見る »

有理型関数

複素解析において、有理型関数(ゆうりけいかんすう、ゆうりがたかんすう、meromorphic function)あるいは、関数が有理型(ゆうりけい、)であるとは、複素数平面あるいは連結リーマン面のある領域で定義され、その中で極(仮性特異点)以外の特異点を持たない解析関数(特異点以外では正則な関数)のことを指す。 有理型関数は正則関数の商として表すことができ、その分母となる正則関数の零点が元の有理型関数の極となる(分母は定数関数 0 ではない)。.

新しい!!: 楕円曲線と有理型関数 · 続きを見る »

有理点

数論において有理点(ゆうりてん、rational point)とは、各座標の値が全て有理数であるような空間の点を言う。 例えば、点 (3, −67/4) は 3 も −67/4 も有理数であるため、2次元空間内の有理点である。有理点の特別な場合は、(integer point)、つまり、その座標が全て整数の点である。例えば、(1, −5, 0) は 3次元空間内の整数点である。より一般的に K を任意の体とするとき、K-有理点は点の各々の座標が体 K に属するような点と定義される。K-有理点に対応する特別な場合は K-整数点、すなわち各座標が(数体) K 内の代数的整数の環の元である場合である。.

新しい!!: 楕円曲線と有理点 · 続きを見る »

有理関数

数学における有理関数(ゆうりかんすう、rational function)は、二つの多項式をそれぞれ分子と分母に持つ分数として書ける関数の総称である。抽象代数学においては変数と不定元とを区別するので、後者の場合を有理式と呼ぶ。.

新しい!!: 楕円曲線と有理関数 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: 楕円曲線と有限体 · 続きを見る »

有限生成アーベル群

抽象代数学において、アーベル群 (G,+) が有限生成 (finitely generated) であるとは、G の有限個の元 x1,...,xs が存在して、G のすべての元 x が n1,...,ns を整数として の形に書けるということである。この場合、集合 を G の生成系、生成集合 (generating set) あるいは x1,..., xs は G を 生成する (generate) という。 明らかに、すべての有限アーベル群は有限生成である。有限生成アーベル群はわりと単純な構造をもっており、完全に分類することができて、以下で説明される。.

新しい!!: 楕円曲線と有限生成アーベル群 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 楕円曲線と数学 · 続きを見る »

数式処理システムの一覧

本項は数式処理システムの一覧(すうしきしょりシステムのいちらん)である。.

新しい!!: 楕円曲線と数式処理システムの一覧 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 楕円曲線と数論 · 続きを見る »

数論力学

数論力学(すうろんりきがく、Arithmetic dynamics)は、数学における力学系と数論という二つの領域を融合した分野である。 is a field that amalgamates two areas of mathematics, dynamical systems and number theory.--> 離散力学とは、古典的には複素平面や実直線の自己写像の反復合成の研究のことである。数論力学は、多項式や有理函数の繰り返しの適用の下で、整数点、有理点、-進点、あるいは、代数的点の数論的な性質を研究することである。数論力学の基本的な目標は、数論的な性質をその基礎にある幾何学的な構造のことばで記述することにある。 p-adic, and/or algebraic points under repeated application of a polynomial or rational function.

新しい!!: 楕円曲線と数論力学 · 続きを見る »

数論の有効な結果

数論の結果をディオファントス方程式の解法へ応用するためには、論理が計算可能か否かを、数学の他の分野より精密に精査する。これには歴史的理由がある。整数の一覧が有限であると主張されているとき、問題はその一覧を原理的に計算機で計算した後にプリントアウトできるかどうかでということある。.

新しい!!: 楕円曲線と数論の有効な結果 · 続きを見る »

整数環

数学において,代数体 の整数環(せいすうかん,ring of integers)とは, に含まれるすべての整な元からなる環である.整な元とは有理整数係数の単多項式 の根である.この環はしばしば あるいは \mathcal O_K と書かれる.任意の有理整数は に属し,その整元であるから,環 はつねに の部分環である. 環 は最も簡単な整数環である.すなわち, ただし は有理数体である.

新しい!!: 楕円曲線と整数環 · 続きを見る »

曲線の特異点

幾何学において、曲線の特異点(とくいてん、singular point)は曲線がパラメーターの滑らかな埋め込みによって与えられていない点である。特異点の正確な定義は研究している曲線のタイプに依存する。.

新しい!!: 楕円曲線と曲線の特異点 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »