ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

核分裂炉

索引 核分裂炉

核分裂炉(かくぶんれつろ)は、原子炉の一種で、核分裂反応の連鎖反応を制御し一定量の核分裂を継続的に行うことにより熱エネルギーを得るシステムである。.

44 関係: 加圧水型原子炉加速器駆動未臨界炉原子力工学原子力発電原子炉原子炉圧力容器原子炉格納容器中性子中性子線保安装置マグノックス炉ロシア型加圧水型原子炉トリウム制御棒ウラン235エネルギーガス冷却重水炉システムタービン冷却材CANDU炉熱交換器韓国標準型原子炉非常用炉心冷却装置高速増殖炉高速中性子超高温原子炉軽水炉黒鉛炉黒鉛減速沸騰軽水圧力管型原子炉蒸気発生器 (原子力)重水炉MOX燃料核分裂反応核燃料沸騰水型原子炉減速材溶融塩原子炉新型転換炉改良型加圧水型軽水炉改良型ガス冷却炉改良型沸騰水型軽水炉放射性物質

加圧水型原子炉

加圧水型原子炉(かあつすいがたげんしろ、Pressurized Water Reactor, PWR)は、原子炉の一種。核分裂反応によって生じた熱エネルギーで、一次冷却材である加圧水(圧力の高い軽水)を300℃以上に熱し、一次冷却材を蒸気発生器に通し、そこにおいて発生した二次冷却材の軽水の高温高圧蒸気によりタービン発電機を回す方式。発電炉として、原子力発電所の大型プラントのほか、原子力潜水艦、原子力空母などの小型プラントにも用いられる。.

新しい!!: 核分裂炉と加圧水型原子炉 · 続きを見る »

加速器駆動未臨界炉

加速器駆動未臨界炉(かそくきくどうみりんかいろ、accelerator-driven subcritical reactor、ADS)とは、加速器で未臨界状態の核燃料体系を駆動させるシステムをいう。より具体的には、加速器によって加速された陽子線をターゲットに照射して核破砕反応を起こし、それによって生成された中性子を臨界量に達しない核燃料を装荷した原子炉に照射することで核分裂反応を起こしてエネルギーを発生させる原子炉システムである。 原子炉自体は未臨界であるため、異常時には加速器を停止すれば急速に出力が低下するという利点があるが、技術的課題および同様のシステムの運転経験が無いことなど開発課題も多い。研究開発は進められているものの、2009年時点で全体として「基礎研究段階」にあるとされる。.

新しい!!: 核分裂炉と加速器駆動未臨界炉 · 続きを見る »

原子力工学

原子力工学(げんしりょくこうがく、)は原子力の工業利用を研究する工学の一分野。.

新しい!!: 核分裂炉と原子力工学 · 続きを見る »

原子力発電

浜岡原子力発電所 泊発電所 島根原子力発電所 チェルノブイリ原子力発電所 原子力発電(げんしりょくはつでん、nuclear electricity generation)とは、原子力を利用した発電のことである。現代の多くの原子力発電は、原子核分裂時に発生する熱エネルギーで高圧の水蒸気を作り、蒸気タービンおよびこれと同軸接続された発電機を回転させて発電する。ここでは主に軍事用以外の商業用の原子力発電の全般について説明する。.

新しい!!: 核分裂炉と原子力発電 · 続きを見る »

原子炉

建設中の沸騰水型原子炉(浜岡原子力発電所)国土航空写真 原子力工学における原子炉(げんしろ、nuclear reactor)とは、制御された核分裂連鎖反応を維持することができるよう核燃料などを配置した装置を言う。.

新しい!!: 核分裂炉と原子炉 · 続きを見る »

原子炉圧力容器

原子炉圧力容器(げんしろあつりょくようき、、、以下「圧力容器」)とは、原子炉の炉心を収めた状態で内部の圧力を保持する容器である。.

新しい!!: 核分裂炉と原子炉圧力容器 · 続きを見る »

原子炉格納容器

原子炉格納容器(げんしろかくのうようき)とは、冷却材喪失時などに圧力障壁となるとともに放射性物質の放散に対する障壁を形成するための施設。.

新しい!!: 核分裂炉と原子炉格納容器 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

新しい!!: 核分裂炉と中性子 · 続きを見る »

中性子線

原子核物理学における中性子線(ちゅうせいしせん、neutron beam)とは中性子の粒子線を言う。.

新しい!!: 核分裂炉と中性子線 · 続きを見る »

保安装置

保安装置(ほあんそうち)とは、システムを安全に運用するために装置を組み合わせたものである。 設計段階で考えられる全ての場合に安全側動作するように考慮され、確実に動作するように(不要な動作をしないように)、定期的な点検・保守が行われていなければならない。.

新しい!!: 核分裂炉と保安装置 · 続きを見る »

マグノックス炉

マグノックス炉とは、核分裂により生じた熱エネルギーを、高温の炭酸ガスとして取り出す、英国が開発した原子炉である。黒鉛減速炭酸ガス冷却型原子炉。2015年12月のウィルファ原子力発電所1号機の運転終了をもってすべての炉が閉鎖された。.

新しい!!: 核分裂炉とマグノックス炉 · 続きを見る »

ロシア型加圧水型原子炉

ア型加圧水型原子炉(ロシア語:Водо-водяной энергетический реактор, Voda Voda Energo Reactor (VVER))はソ連で開発された商業発電用の原子炉であり、基本的な原理、構造はアメリカ合衆国で開発されたPWRと同じである。初期のVVERはアメリカ型(ウェスティングハウス系)のPWRと比較すると、炉心を構成する燃料集合体の断面が正方形でなく正六角形になっている、原子炉圧力容器が通常より縦長になっている、制御棒の挿入速度が遅い、蒸気発生器が横置きになっている、原子炉格納容器がない(一部例外)などの違いがある。 原子炉格納容器が無いだけでなく、冷却材の喪失という最悪の事故から炉心を守るための非常用炉心冷却装置(ECCS)の性能が十分でないことなど、安全性に問題がある点は西欧諸国や国際原子力機関(IAEA)からも指摘され、三世代目のVVERで改良された。十分な安全設計が成されたのは、この三世代目以降のVVERからで、現在では他の炉型と十分に競争しうる安全性および経済性を持つ原子炉となっている。なお、世界ではおよそ30機が稼働している。.

新しい!!: 核分裂炉とロシア型加圧水型原子炉 · 続きを見る »

トリウム

トリウム (thorium 、漢字:釷) は原子番号90の元素で、元素記号は Th である。アクチノイド元素の一つで、銀白色の金属。 1828年、スウェーデンのイェンス・ベルセリウスによってトール石 (thorite、ThSiO4) から発見され、その名の由来である北欧神話の雷神トールに因んで命名された。 モナザイト砂に多く含まれ、多いもので10 %に達する。モナザイト砂は希土類元素(セリウム、ランタン、ネオジム)資源であり、その副生産物として得られる。主な産地はオーストラリア、インド、ブラジル、マレーシア、タイ。 天然に存在する同位体は放射性のトリウム232一種類だけで、安定同位体はない。しかし、半減期が140.5億年と非常に長く、地殻中にもかなり豊富(10 ppm前後)に存在する。水に溶けにくく海水中には少ない。 トリウム系列の親核種であり、放射能を持つ(アルファ崩壊)ことは、1898年にマリ・キュリーらによって発見された。 トリウム232が中性子を吸収するとトリウム233となり、これがベータ崩壊して、プロトアクチニウム233となる。これが更にベータ崩壊してウラン233となる。ウラン233は核燃料であるため、その原料となるトリウムも核燃料として扱われる。.

新しい!!: 核分裂炉とトリウム · 続きを見る »

制御棒

制御棒(せいぎょぼう、英語:control rod)とは、原子炉の出力を制御するための棒状または板状の物体である。.

新しい!!: 核分裂炉と制御棒 · 続きを見る »

ウラン235

ウラン235(uranium-235, U)はウランの同位体の一つ。1935年にArthur Jeffrey Dempsterにより発見された。ウラン238とは違いウラン235は核分裂の連鎖反応をおこす。ウラン235の原子核は中性子を吸収すると2つに分裂する。また、この際に2個ないし3個の中性子を出し、それによってさらに反応が続く。原子力発電では多量の中性子を吸収するホウ素、カドミウム、ハフニウムなどでできた制御棒で反応を制御している。核兵器では反応は制御されず、大量のエネルギーが一気に解放され核爆発を起こす。 ウラン235の核分裂で発生するエネルギーは一原子当たりでは200 MeVであり、1モル当たりでは18 TJである。 自然に存在するウランの内ウラン235は0.72パーセントであり長倉三郎ほか編、『』、岩波書店、1998年、項目「ウラン」より。ISBN 4-00-080090-6、残りの大部分はウラン238である。この濃度では軽水炉で反応を持続させるのには不十分であり、濃縮ウランが使われる。一方、重水炉では濃縮していないウランでも使用できる。核爆発を起こさせるためには90パーセント程度の純度が求められる。.

新しい!!: 核分裂炉とウラン235 · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: 核分裂炉とエネルギー · 続きを見る »

ガス冷却重水炉

冷却重水炉(ガスれいきゃくじゅうすいろ、HWGCR:Heavy Water Gas Cooled Reactor、GCHWR:Gas Cooled Heavy Water Reactor)は、原子炉の形式の一つ。 冷却材として炭酸ガスを、減速材として重水を使用し、核分裂反応により生じた熱エネルギーを高温のガスとして取り出す。 減速材に重水を用いることで燃料の燃焼効率および燃料転換率の向上を図り、冷却材にガスを用いることで高価な重水の漏洩や濃度低下を防止できるという考えのもと開発された。これまで4基が建設されたが、中性子吸収が少なく高温にも耐え、炭酸ガスと反応しない燃料被覆管材料として期待されたベリリウム合金の開発が進まず、全て運転を終了している。保有国は、フランス、ドイツ、スイス、スロバキア。.

新しい!!: 核分裂炉とガス冷却重水炉 · 続きを見る »

システム

テム(system)は、相互に影響を及ぼしあう要素から構成される、まとまりや仕組みの全体。一般性の高い概念であるため、文脈に応じて系、体系、制度、方式、機構、組織といった多種の言葉に該当する。系 (自然科学) の記事も参照。 それ自身がシステムでありながら同時に他のシステムの一部でもあるようなものをサブシステムという。.

新しい!!: 核分裂炉とシステム · 続きを見る »

タービン

タービン()とは、流体がもっているエネルギーを有用な機械的動力に変換する回転式の原動機の総称ブリタニカ百科事典。.

新しい!!: 核分裂炉とタービン · 続きを見る »

冷却材

冷却材(れいきゃくざい)とは、核分裂によって放出される熱を、原子炉から取り出す役割を果たす流体のこと。.

新しい!!: 核分裂炉と冷却材 · 続きを見る »

CANDU炉

CANDU炉()とは、中性子の減速及び燃料の冷却に、主に重水を使用することを特徴とする原子炉のことである。減速材に重水を使用することから重水炉に分類される。CANDUとはCanadian deuterium uraniumの略である。1960年代にカナダ政府と民間企業との合弁企業によって設計された。.

新しい!!: 核分裂炉とCANDU炉 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: 核分裂炉と熱 · 続きを見る »

熱交換器

熱交換器(ねつこうかんき)は、保有する熱エネルギーの異なる2つの流体間で熱エネルギーを交換するために使用する機器 特許庁。温度の高い物体から低い物体へ効率的に熱を移動させることで物体の加熱や冷却を行う目的で用いられる。.

新しい!!: 核分裂炉と熱交換器 · 続きを見る »

韓国標準型原子炉

韓国標準型原子炉(かんこくひょうじゅんがたげんしろ)は、大韓民国の韓国電力公社が設計した原子炉(加圧水型原子炉)。略称KSNP。韓国標準型軽水炉と訳されることもある。出力100万kWのOPR1000、140万kWのAPR1400の2つのシステムが存在する。.

新しい!!: 核分裂炉と韓国標準型原子炉 · 続きを見る »

非常用炉心冷却装置

非常用炉心冷却装置(ひじょうようろしんれいきゃくそうち、、、緊急炉心冷却装置)は、水を冷却材として用いる原子炉の炉心で冷却水の喪失が起こった場合に動作する工学的安全施設である。炉心に冷却水を注入することで水位を保ち核燃料を長期に渡って冷却し燃料棒の損壊を防止する。この作動は原子炉の停止を意味する。.

新しい!!: 核分裂炉と非常用炉心冷却装置 · 続きを見る »

高速増殖炉

速増殖炉(こうそくぞうしょくろ、Fast Breeder Reactor、FBR)とは、高速中性子による核分裂連鎖反応を用いた増殖炉のことをいう。簡単に言うと、「増殖炉」とは消費する核燃料よりも新たに生成する核燃料の方が多くなる原子炉のことであり、「高速」の中性子を利用してプルトニウムを増殖するので高速増殖炉という。高速中性子を利用しながら核燃料の増殖を行わない原子炉の形式は、単に高速炉 (Fast Reactor: FR) と呼ばれる。.

新しい!!: 核分裂炉と高速増殖炉 · 続きを見る »

高速中性子

速中性子(こうそくちゅうせいし、Fast Neutron)とは、エネルギー値の高い中性子を指す。厳密な定義は無いがエネルギー値が0.1 - 1.0MeV(メガ電子ボルト)よりも大きいものを指すことが一般的である。 中性子の速度は、そのエネルギー値から求める事が出来る。.

新しい!!: 核分裂炉と高速中性子 · 続きを見る »

超高温原子炉

超高温炉の構造図、図はヘリウム冷却型のもの。 超高温原子炉(ちょうこうおんげんしろ、Very High Temperature Reactor,VHTR)は、1000度近い高温状態で発電を行う第4世代原子炉。ヘリウムを一次冷却材として使う方式が、最も開発が先行して実証炉段階にあるために高温ガス炉として知られているが、他に溶融塩原子炉または鉛冷却高速炉の超高温炉も研究されている。この原子炉は発生熱の出口部分で600 - 1000度近い高温が可能である。熱効率の高いガスタービン複合発電が可能で、ガスタービン原子炉として知られている。また高温ゆえ、原子力水素製造・原子力石炭液化・原子力製鉄などの工業熱源に使用可能で化石燃料枯渇後の工業熱源として期待されており、熱電併給により揚水発電を不要にできる。そして、冷媒が水でないため水素/水蒸気爆発しにくいなど、従来の軽水炉の欠点の多くを改善・一新する新世代炉である。.

新しい!!: 核分裂炉と超高温原子炉 · 続きを見る »

軽水炉

軽水炉(けいすいろ)は、減速材に軽水(普通の水)を用いる原子炉である。 水は安価で大量に入手でき、高速中性子の減速能力が大きく、冷却材を兼ねることも出来る。しかし、中性子吸収量が大きいため、運転に必要な余剰反応度を確保するには、濃縮ウランを燃料とする必要がある。 アメリカで開発され、世界の80%以上のシェアを占めている(原子炉基数ベース、1999年時点)。 2007年現在、日本で商用稼動している原子力発電所は全て軽水炉。.

新しい!!: 核分裂炉と軽水炉 · 続きを見る »

黒鉛炉

黒鉛炉(こくえんろ)とは、減速材に黒鉛(炭素)を用いる原子炉のこと。黒鉛減速原子炉 (Graphite moderated reactor)とも言われる。 黒鉛は安価で大量に入手でき、中性子の吸収が少なく減速能力も比較的大きな優秀な減速材である。中性子吸収量が少ないため、黒鉛炉は濃縮していない天然ウランを燃料として使用できる。 世界ではこの炉が約12%使われている(原子炉基数ベース、1999年現在)。エンリコ・フェルミの世界最初の原子炉「シカゴ・パイル1号」がこの形式。現在の商用黒鉛炉の直接のルーツはプルトニウム生産炉(原子爆弾の材料を作る為の炉)である。.

新しい!!: 核分裂炉と黒鉛炉 · 続きを見る »

黒鉛減速沸騰軽水圧力管型原子炉

黒鉛減速沸騰軽水圧力管型原子炉(こくえんげんそくふっとうけいすいあつりょくかんがたげんしろ)は、ソビエト連邦(ソ連)が独自に開発した原子炉の形式。ロシア語ではРБМК (Реактор Большой Мощности Канальный) とよぶ。西欧圏ではキリル文字表記をアルファベット読みして頭文字でRBMK(Reaktor Bolshoy Moshchnosti Kanalnyy, 英語直訳:"reactor (of) high power (of the) channel (type)", 日本語直訳:高出力圧力管型原子炉とよび、英語では別の表記としてLWGR: Light Water cooled Graphite moderated Reactor、軽水冷却黒鉛減速炉)がある。ソ連内でだけ作られ、今では旧式になってしまった黒鉛減速動力用原子炉の一形式について、ここで述べることにする。.

新しい!!: 核分裂炉と黒鉛減速沸騰軽水圧力管型原子炉 · 続きを見る »

蒸気発生器 (原子力)

蒸気発生器(じょうきはっせいき)は、原子炉から取り出した熱で蒸気を発生させる装置である。.

新しい!!: 核分裂炉と蒸気発生器 (原子力) · 続きを見る »

重水炉

重水炉(じゅうすいろ、HWR:Heavy Water Reactor)は、減速材に重水を用いる原子炉のこと。加圧水型がほとんどであり、この場合はPHWRとよばれる。 重水は高価で、高速中性子の減速能力は軽水に劣る。しかし、中性子吸収量が小さく(軽水の300分の1)減速材として優れており、燃料として安価な天然ウランを使用できる。このため、天然ウラン資源が豊富なカナダが開発に取り組み、1960年代に重水減速重水冷却圧力管型炉(CANDU炉)を実用化した。 現在商業運転されている重水炉は全てこのCANDU炉およびその発展型であり、2010年1月末現在、運転中43基、建設中7基、計画中4基となっている。.

新しい!!: 核分裂炉と重水炉 · 続きを見る »

MOX燃料

MOX燃料(モックスねんりょう)とは混合酸化物燃料の略称であり、原子炉の使用済み核燃料中に1%程度含まれるプルトニウムを再処理により取り出し、二酸化プルトニウム(PuO2)と二酸化ウラン(UO2)とを混ぜてプルトニウム濃度を4-9%に高めた核燃料である。主として高速増殖炉の燃料に用いられるが、既存の軽水炉用燃料ペレットと同一の形状に加工し、適切な核設計を行ったうえで適切な位置に配置することにより、軽水炉のウラン燃料の代替として用いることができる。これをプルサーマル利用と呼ぶ。MOXとは(Mixed OXide 「混合された酸化物」の意)の頭文字を採ったものである。.

新しい!!: 核分裂炉とMOX燃料 · 続きを見る »

核分裂反応

核分裂反応(かくぶんれつはんのう、nuclear fission)とは、不安定核(重い原子核や陽子過剰核、中性子過剰核など)が分裂してより軽い元素を二つ以上作る反応のことを指す。オットー・ハーンとフリッツ・シュトラスマンらが天然ウランに低速中性子(slow neutron)を照射し、反応生成物にバリウムの同位体を見出したことにより発見され、リーゼ・マイトナーとオットー・ロベルト・フリッシュらが核分裂反応であると解釈し、fission(核分裂)と命名した。.

新しい!!: 核分裂炉と核分裂反応 · 続きを見る »

核燃料

核燃料(かくねんりょう、nuclear fuel)とは、核分裂連鎖反応を起こし、エネルギーを発生させるために相当期間原子炉に入れて使うものを言う。ウラン233 (U)、ウラン235 (U)、プルトニウム239 (Pu) などを指す。.

新しい!!: 核分裂炉と核燃料 · 続きを見る »

沸騰水型原子炉

沸騰水型原子炉(ふっとうすいがたげんしろ、Boiling Water Reactor、BWR)は、核燃料を用いた原子炉のうち、純度の高い水が減速材と一次冷却材を兼ねる軽水炉の一種である。.

新しい!!: 核分裂炉と沸騰水型原子炉 · 続きを見る »

減速材

減速材(げんそくざい、)とは原子力発電において核分裂後に放出される中性子の速度を下げる役割を果たすもの。.

新しい!!: 核分裂炉と減速材 · 続きを見る »

溶融塩原子炉

溶融塩原子炉(ようゆうえんげんしろ、molten salt reactor, MSR)は、溶融塩を一次冷却材として使用する原子炉である。 多数の設計が行われたがそのうち少数が建設された。第4世代原子炉としてのひとつの概念である。 フッ化ウラン(IV) (UF4) など溶融状態のフッ化物塩を一次冷却剤としてそこへ核分裂物質を混合させ、黒鉛を減速材とした炉心に低圧で送り臨界に到達させる。高温の溶融塩は炉心の外へ循環させ二次冷却材と熱を交換させる。燃料の設計はさまざまである。液体燃料原子炉特有の複雑な問題の発生を回避するため、溶融塩内に核分裂生成物を含まない構造の新型高温原子炉 (AHTR) も設計されている。.

新しい!!: 核分裂炉と溶融塩原子炉 · 続きを見る »

新型転換炉

新型転換炉(しんがたてんかんろ、Advanced Thermal Reactor, ATR)は、原子炉の形式の一つ。.

新しい!!: 核分裂炉と新型転換炉 · 続きを見る »

改良型加圧水型軽水炉

改良型加圧水型原子炉(かいりょうがたかあつすいがたけいすいろ、Advanced Pressurized Water Reactor、APWR)は加圧水型原子炉 (PWR) の技術をもとに三菱重工が開発した第3世代原子炉である。中性子経済性、効率、安全性の向上などの改良がおこなわれた。前世代に対し、パッシブ・アクティブを組み合わせた安全装置などが採用されている。 標準型APWRは日本での認可作業中で、本方式を採用した日本原電敦賀発電所3・4号機 (1,538MWe) が建設中である。次のAPWR+は出力1,700 MWe、プルサーマル対応となる。 アメリカ向け改良型加圧水型原子炉 (US-APWR) は日本向けをもとにアメリカ法規に合致するよう改良され、テキサス州を拠点とするTXU社がコマンチェピーク原子力発電所を含む複数の発電所での採用を決めている。.

新しい!!: 核分裂炉と改良型加圧水型軽水炉 · 続きを見る »

改良型ガス冷却炉

改良型ガス冷却炉 (Advanced Gas-cooled Reactor, AGR) は英国が独自に開発した黒鉛減速炭酸ガス冷却型炉である。核分裂反応によって生じた熱エネルギーを、高温の炭酸ガスとして取り出す原子炉のことで、商業用発電原子炉として利用されている。 同炉は、マグノックス炉(東海発電所の原型)の改良型であり、冷却材出口温度は約1.5倍に、出力密度は約2倍に、熱効率は約10%増など、あらゆる点での性能向上を実現し、さらに経済性も大幅に向上している。 中国政府は、次世代原子炉「高速ガス炉」を国家事業として進めている。この炉心に使われる複合材黒鉛を東洋炭素(大阪)と住友商事が、2008年11月5日受注している。本格運転の前段階として実際に発電を行う「実証炉」を建設中。.

新しい!!: 核分裂炉と改良型ガス冷却炉 · 続きを見る »

改良型沸騰水型軽水炉

改良型沸騰水型軽水炉(かいりょうがたふっとうすいがたけいすいろ、Advanced Boiling Water Reactor、ABWR)は、沸騰水型原子炉(BWR)の改良型。沸騰水型原子炉で原子炉圧力容器の外に設置していた原子炉再循環ポンプを圧力容器の中に設置し、ポンプ回りの配管をなくして単純化したほか、制御棒駆動源として水圧駆動に電動駆動を加えて多様化する等の改良を図っている。現在日立GEニュークリア・エナジーと東芝が提供している。.

新しい!!: 核分裂炉と改良型沸騰水型軽水炉 · 続きを見る »

放射性物質

放射性物質(ほうしゃせいぶっしつ、長倉三郎ほか編、『 』、岩波書店、1998年、項目「放射性物質」より。ISBN 4-00-080090-6)とは、放射能を持つ物質の総称である。主に、ウラン、プルトニウム、トリウムのような核燃料物質、放射性元素もしくは放射性同位体、中性子を吸収又は核反応を起こして生成された放射化物質を指す。.

新しい!!: 核分裂炉と放射性物質 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »