ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

有機金属化学

索引 有機金属化学

有機金属化学(ゆうききんぞくかがく、英語:organometallic chemistry)とは金属と炭素との化学結合を含む化合物である有機金属化合物を研究する学問であり、有機金属化学は無機化学と有機化学とが融合した領域である。なお、類似の語である合成有機金属 (organic metal) の場合は、ポリアセチレンなど金属を含まないが電荷移動錯体を形成することで導電性を示す純粋な有機化合物を示し、有機金属化学の範疇外である。 有機金属化合物は「有機パラジウム化合物」のように頭に「有機-」を付けた形で呼ばれる。典型的な有機金属化合物にはクロロ(エトキシカルボニルメチル)亜鉛 (ClZnCH2C(.

56 関係: 半金属卑金属導電性高分子化合物化学結合ノーベル化学賞マーガリンチーグラー・ナッタ触媒ポリアセチレンポール・サバティエメタロセンメタセシス反応リチャード・シュロックルードウィッヒ・モンドルイ・クロード・カデ・ド・ガシクールロバート・グラブスヴィクトル・グリニャールヘンリー・ギルマンヘック反応ヒドロホウ素化ヒ素ツァイゼ塩テトラカルボニルニッケルフェロセンホウ素アルミニウムアルケンイヴ・ショーヴァンエルンスト・フィッシャーカルベン錯体カール・ツィーグラーカップリング反応カコジルキレートギルマン試薬グリニャール試薬ケイ素コバルトシャルル・フリーデルジュリオ・ナッタジェームス・クラフツジェフリー・ウィルキンソン石油化学炭素無機化学白金触媒重合体金属金属カルボニル...英語油脂有効原子番号則有機合成化学有機化学有機金属気相成長法 インデックスを展開 (6 もっと) »

半金属

半金属(はんきんぞく、metalloid)とは、元素の分類において金属と非金属の中間の性質を示す物質のことである。その定義は曖昧であり、決定的な定義や分類基準は存在せず、様々な方法によって分類が試みられている。 一般的にはホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン、テルルの6元素が半金属とされ、セレン、ポロニウム、アスタチンの3元素がしばしば加えられる。炭素やリンなどは通常半金属とはされないものの、その同素体にはグラファイトや黒リンのような半金属性を有しているものが存在する。これらの半金属元素は周期表上において、おおよそホウ素からポロニウムまでを繋ぐライン上に現れるが、その境界線の引き方にもまた多くの議論がある。 半金属に特徴的な性質としては脆性、半導体性、金属光沢、酸化物の示す両性などが挙げられ、半金属のイオン化エネルギーや電気陰性度の値は一定の範囲に収まる。半金属の単体もしくはその化合物は、ガラスや半導体、合金の構成元素として広く利用されている。.

新しい!!: 有機金属化学と半金属 · 続きを見る »

卑金属

卑金属 (ひきんぞく、base metal)とは、貴金属の対義語である。 貴金属ではない金属のこと。 古くは金、銀以外の金属全般を指していた。 化学的には、イオン化傾向が水素より大きく(安定性が低い)、空気中で熱したりすると容易に酸化される金属を指す。アルカリ金属、アルカリ土類金属、アルミニウム、亜鉛などがこれに属する。こちらの定義では、銅、水銀は貴金属に分類される。 貿易においては卑金属と貴金属の区別は関税に大きく影響するので、明確にしている。 卑金属は、鉄鋼、銅、アルミニウム、鉛、亜鉛、すず、タングステン、インジウム、モリブデン、クロム、ゲルマニウム、タンタル、マグネシウム、コバルト、カドミウム、チタン、ジルコニウム、バナジウム、ガリウム、アンチモン、マンガン、ニッケル、ベリリウム、ハフニウム、ニオブ、ビスマス、レニウム、タリウムが該当する。 ただし、銅については通常は卑金属とされるが、特性から貴金属として取り扱われる場合もある。 非金属と書くものもあるが、非金属とは、金属でない、石や岩などのことである。.

新しい!!: 有機金属化学と卑金属 · 続きを見る »

導電性高分子

導電性高分子(どうでんせいこうぶんし)または、導電性ポリマー(conductive polymers、intrinsically conducting polymers、ICPs)とは、電気伝導性を持つ高分子化合物の呼称である。共役したポリエン系がエネルギー帯を形成し伝導性を示すと考えられている。代表的な物質としてはポリアセチレン、ポリチオフェン類などが挙げられる。「導電性」と呼ばれているが、実際の性質は導体というより半導体であり、高分子半導体などと呼ぶ場合もある。.

新しい!!: 有機金属化学と導電性高分子 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: 有機金属化学と化合物 · 続きを見る »

化学結合

化学結合(かがくけつごう)は化学物質を構成する複数の原子を結びつけている結合である。化学結合は分子内にある原子同士をつなぎ合わせる分子内結合と分子と別の分子とをつなぎ合わせる分子間結合とに大別でき、分子間結合を作る力を分子間力という。なお、金属結晶は通常の意味での「分子」とは言い難いが、金属結晶を構成する結合(金属結合)を説明するバンド理論では、分子内結合における原子の数を無限大に飛ばした極限を取ることで、金属結合の概念を定式化している。 分子内結合、分子間結合、金属結合のいずれにおいても、化学結合を作る力は原子の中で正の電荷を持つ原子核が、別の原子の中で負の電荷を持つ電子を電磁気力によって引きつける事によって実現されている。物理学では4種類の力が知られているが、電磁気力以外の3つの力は電磁気力よりも遥かに小さい為、化学結合を作る主要因にはなっていない。したがって化学結合の後述する細かな分類、例えば共有結合やイオン結合はどのような状態の原子にどのような形で電磁気力が働くかによる分類である。 化学結合の定式化には、複数の原子がある場合において電子の軌道を決定する必要があり、そのためには量子力学が必須となる。しかし多くの簡単な化合物や多くのイオンにおいて、化学結合に関する定性的な説明や簡単な定量的見積もりを行う分には、量子力学で得られた知見に価電子や酸化数といった分子の構造と構成を使って古典力学的考察を加える事でも可能である。 それに対し複雑な化合物、例えば金属複合体では価電子理論は破綻し、その振る舞いの多くは量子力学を基本とした理解が必要となる。これに関してはライナス・ポーリングの著書、The Nature of the Chemical Bondで詳しく述べられている。.

新しい!!: 有機金属化学と化学結合 · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

新しい!!: 有機金属化学とノーベル化学賞 · 続きを見る »

マーガリン

マーガリン (margarine) は、植物性油脂(もしくは動物性油脂)を原料とし、バターに似せて作った加工食品である。.

新しい!!: 有機金属化学とマーガリン · 続きを見る »

チーグラー・ナッタ触媒

チーグラー・ナッタ触媒(—しょくばい、Ziegler-Natta catalyst)は、オレフィンの重合に用いる触媒。ツィーグラー・ナッタ触媒とも言う。 通常、四塩化チタンまたは三塩化チタンをトリエチルアルミニウムやメチルアルミノキサン(en:Methylaluminoxane) (n, MAO) のような有機アルミニウム化合物と混合し調製する。エチレンやプロピレン、ブタジエン、イソプレン、アセチレン等の重合や、エチレン-プロピレンの共重合に用いられる。 1953年、ドイツのマックス・プランク研究所において、科学者カール・ツィーグラー(Karl Ziegler)がそれまで高圧が必要だったエチレンの重合反応の研究中に四塩化チタンを用いて発見した。この触媒によって、エチレンの常圧重合が可能になった。その後、イタリアのミラノ工科大学のジュリオ・ナッタ(Giulio Natta)が、三塩化チタンを用いることによって、それまで重合が困難と考えられていたプロピレンの重合に成功した。二人は、これらの業績により1963年、揃ってノーベル化学賞を受賞した(ただし、ツィーグラーがナッタの改良を軽視して、業績を全面的に自分に帰するよう求める発言を行ったため、二人の関係は険悪であったと言われている)。 重合触媒として石油化学工業に多大な功績があったばかりでなく、その反応機構の研究からは有機金属化学が盛んになるきっかけを与えた。.

新しい!!: 有機金属化学とチーグラー・ナッタ触媒 · 続きを見る »

ポリアセチレン

ポリアセチレン (polyacetylene) とは、アセチレンからなる共役系高分子である。共役ポリエン系を持ち、ヨウ素などの電子受容体をドープすると大きな電気伝導性を示すことが知られている。 白川英樹が導電性ポリアセチレンを発見し、2000年、ノーベル化学賞を受賞した。.

新しい!!: 有機金属化学とポリアセチレン · 続きを見る »

ポール・サバティエ

ポール・サバティエ(Paul Sabatier, 1854年11月5日 - 1941年8月14日)は、フランス・カルカソンヌ出身の化学者。1905年に理学部学部長となるまで、化学の教授として講義を行っていた。 1877年に高等師範学校を卒業し、1880年にはコレージュ・ド・フランスに移っている。硫黄と金属硫酸塩の熱化学の研究を行い、この業績によって博士号を得た。 トゥールーズに移ってからは硫化物、塩化物、クロム酸塩や銅化合物について研究を行った。また、窒素酸化物やニトロソジスルホン酸およびその塩の研究から、分配係数と吸収スペクトルの基礎研究を行った。 サバティエは水素化の工業利用を大いに容易にした。1897年、アメリカの化学者ジェームズ・ボイスの生化学の成果に基づき、サバティエは触媒として微量のニッケルを使うと、アルケン等の炭素化合物の分子に容易に水素を付加できることを発見した。これによって、魚油などを固形の硬化油にすることが可能となった。 サバティエの業績でも最も知られているのが二酸化炭素と水素を反応させてメタンを得るサバティエ反応と La Catalyse en Chimie Organique(有機化学における触媒、1913年)などの著作である。微細な金属粒子を用いる有機化合物の水素化法の開発によって1912年にヴィクトル・グリニャールと共にノーベル化学賞を受賞している。 トゥールーズにて死去。生涯に4度結婚している。 トゥールーズ第三大学はポール・サバティエの名を冠している。また、サバティエは数学者トーマス・スティルチェスと共に Annales de la Faculté des Sciences de Toulouse という学術誌を創刊した。 弟子には、久保田勉之助(1885年–1961年、平田義正の師)がいる。.

新しい!!: 有機金属化学とポール・サバティエ · 続きを見る »

メタロセン

メタロセン (metallocene) とは、シクロペンタジエニルアニオン (C5H5&minus) 2個をη5-配位子として有する有機金属化合物の総称である。金属は必ずしも2配位である必要はなく、他の配位子が配位していてもよい。代表例としてフェロセンが挙げられる。金属名の語幹に語尾-オセン (-ocene) を添えて命名する。サンドイッチ化合物に含まれる。 同様の配位形態の可能な インデニル配位子、ペンタメチルシクロペンタジエニル配位子のような、置換シクロペンタジエニル配位子を持つ化合物もメタロセンと呼ばれる。 1950年代、フェロセンについて合成と構造決定がなされたのが最初のメタロセンの例である。ジルコノセンやチタノセン、ハフノセンなどには重合によるポリエチレン合成の触媒として知られるものがあり、カミンスキー触媒 (Kaminsky catalyst) と呼ばれる。.

新しい!!: 有機金属化学とメタロセン · 続きを見る »

メタセシス反応

メタセシス反応(メタセシスはんのう Olefin metathesis)とは、狭義には、二種類のオレフィン間で結合の組換えが起こる触媒反応のことである。すなわち以下のような反応のことである。 「メタセシス」の語は「位置を交換する」という意味のギリシャ語に由来する。メタセシスは複分解を指す語でもあり、また同様に結合が組み変わるアルカンメタセシスやアルキンメタセシス反応も存在するため、特にこの反応を指すことを明らかにしたい場合にはオレフィン・メタセシスと呼ぶ。.

新しい!!: 有機金属化学とメタセシス反応 · 続きを見る »

リチャード・シュロック

リチャード・ロイス・シュロック(Richard Royce Schrock、1945年1月4日 - )はアメリカ合衆国の化学者。有機金属錯体の分野、特にカルベン錯体での業績が著名である。.

新しい!!: 有機金属化学とリチャード・シュロック · 続きを見る »

ルードウィッヒ・モンド

ルードウィッヒ・モンド(Ludwig Mond, 1839年3月7日 - 1909年12月11日)は、ドイツ出身のイギリスの化学者・実業家。イギリスの実業家・政治家のの父親でもある。.

新しい!!: 有機金属化学とルードウィッヒ・モンド · 続きを見る »

ルイ・クロード・カデ・ド・ガシクール

ルイ・クロード・カデ・ド・ガシクール(Louis Claude Cadet de Gassicourt, 1731年7月24日 - 1799年10月17日)は、初めて有機金属を合成したフランスの化学者である。 彼は、酢酸カリウムと三酸化二ヒ素の反応により赤色の液体を得た。この液体は「カデの発煙液体」として知られ、カコジルと酸化カコジルの2つの構造を含む。 カデは、パリ大学の附属校にあたるコレージュ・デ・キャトル・ナシオンで学び、パリのオテル・デ・ザンヴァリッドの薬剤師となった。 1771年にルイ15世の愛妾だったマリー・テレーズ・フランソワーズ・ボワスルと結婚したが、この時点で彼女にはルイ15世との間に2歳の息子がいた。この息子はカデの養子となり、シャルル・ルイ・カデと名付けられた。.

新しい!!: 有機金属化学とルイ・クロード・カデ・ド・ガシクール · 続きを見る »

ロバート・グラブス

バート・ハワード・グラブス(Robert Howard Grubbs, 1942年2月27日 - )はアメリカ合衆国の化学者。2005年にオレフィンメタセシスの研究業績によりイヴ・ショーヴァン、リチャード・シュロックとともにノーベル化学賞を受賞した。.

新しい!!: 有機金属化学とロバート・グラブス · 続きを見る »

ヴィクトル・グリニャール

フランソワ・オーギュスト・ヴィクトル・グリニャール(François Auguste Victor Grignard, 1871年5月6日 – 1935年12月13日)はフランス・マンシュ県のシェルブール出身の化学者。.

新しい!!: 有機金属化学とヴィクトル・グリニャール · 続きを見る »

ヘンリー・ギルマン

ヘンリー・ギルマン(Henry Gilman, 1893年3月19日 - 1986年11月7日)はアメリカ合衆国の化学者。 マサチューセッツ州ボストンに生まれる。1919年から1962年までアイオワ州立大学で化学の教授を務めた。同大学の化学科の校舎は彼の名を冠している。また、ランドグラントのある大学から全米科学アカデミーの会員となった最初の化学者である。 有機金属化学の父としても知られ、彼の名を冠するギルマン試薬を開発した。 1938年に有機化学における最初の大きな教科書、Organic chemistry, an advanced treatise 全2巻を出版した。これは1943年、1953年に増補された。.

新しい!!: 有機金属化学とヘンリー・ギルマン · 続きを見る »

ヘック反応

ヘック反応(ヘックはんのう、Heck reaction)あるいは溝呂木・ヘック反応(みぞろきヘックはんのう、Mizoroki-Heck reaction)は、パラジウム錯体を触媒として塩基存在下、ハロゲン化アリールまたはハロゲン化アルケニルでアルケンの水素を置換する反応である。反応名は、本反応の発見者である溝呂木勉およびリチャード・ヘックに因む。2010年、ヘックはこの反応の発見および開発の功績により、ノーベル化学賞を授与された。 ヘック反応はパラジウム触媒存在下で行われる。ハロゲン化物 (I, Br, Cl) あるいはトリフラートは、アリル、ベンジル、ビニル化合物が用いられる。アルケンは、少なくとも一つの水素原子を有し、電子不足であるアクリラート、エステル、アクリロニトリル等のオレフィンが用いられる。触媒としては、テトラキス(トリフェニルホスフィン)パラジウム(0)、塩化パラジウム(II)、酢酸パラジウム(II)、配位子としてはトリフェニルホスフィンやBINAP、塩基としてはトリエチルアミン、炭酸カリウム、酢酸ナトリウム等が使用される。 例:ヨードベンゼンを酢酸パラジウムを触媒としてアクリル酸メチルと反応させると、アクリル酸メチルのβ位の水素がフェニル基で置換されてケイ皮酸メチルが生成する。 詳細は総説を参照されたい。.

新しい!!: 有機金属化学とヘック反応 · 続きを見る »

ヒドロホウ素化

ヒドロホウ素化(ヒドロホウそか)あるいはホウ水素化(ホウすいそか)、ハイドロボレーション (hydroboration) は1956年にハーバート・ブラウンらによって報告された化学反応で、ボランがアルケンまたはアルキンに付加する反応である。この反応の開発によりブラウンは1979年のノーベル化学賞を受賞した。.

新しい!!: 有機金属化学とヒドロホウ素化 · 続きを見る »

ヒ素

ヒ素(砒素、ヒそ、arsenic、arsenicum)は、原子番号33の元素。元素記号は As。第15族元素(窒素族元素)の一つ。 最も安定で金属光沢があるため金属ヒ素とも呼ばれる「灰色ヒ素」、ニンニク臭があり透明なロウ状の柔らかい「黄色ヒ素」、黒リンと同じ構造を持つ「黒色ヒ素」の3つの同素体が存在する。灰色ヒ素は1気圧下において615 で昇華する。 ファンデルワールス半径や電気陰性度等さまざまな点でリンに似た物理化学的性質を示し、それが生物への毒性の由来になっている。.

新しい!!: 有機金属化学とヒ素 · 続きを見る »

ツァイゼ塩

ツァイゼ塩(Zeise's salt)は、K.

新しい!!: 有機金属化学とツァイゼ塩 · 続きを見る »

テトラカルボニルニッケル

テトラカルボニルニッケル (tetracarbonylnickel) またはニッケルカルボニル (nickel carbonyl) は、ニッケルの一酸化炭素錯体である。化学式 Ni(CO) で表される、無色もしくは黄色で揮発性の液体である。毒性が非常に高く、「死の液体 (liquid death)」の異名を持つ。歴史、応用、理論の各方面で重要な化合物である。毒物及び劇物取締法により毒物に指定されている。.

新しい!!: 有機金属化学とテトラカルボニルニッケル · 続きを見る »

フェロセン

フェロセン (ferrocene) は、化学式が Fe(C5H5)2 で表される鉄のシクロペンタジエニル錯体である。水には不溶である。可燃性であり、人体への刺激性が強いので取り扱いには注意を要する。鉄(II)イオンにシクロペンタジエニルアニオンが上下2個配位結合している。このように上下から中央の原子を挟んだ形状の化合物は、サンドイッチ化合物と呼ばれている。 フェロセンは極めて安定な酸化還元特性を示すため、Fe(III)/Fe(II) の酸化還元電位はサイクリック・ボルタンメトリー測定の際に基準として用いられる。.

新しい!!: 有機金属化学とフェロセン · 続きを見る »

ホウ素

ホウ素(ホウそ、硼素、boron、borium)は、原子番号 5、原子量 10.81、元素記号 B で表される元素である。高融点かつ高沸点な硬くて脆い固体であり、金属元素と非金属元素の中間の性質を示す(半金属)。1808年にゲイ.

新しい!!: 有機金属化学とホウ素 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: 有機金属化学とアルミニウム · 続きを見る »

アルケン

アルケン(、)は化学式 CnH2n (n≧2) で表される有機化合物で、C-C間の二重結合を1つ持つ。すなわち、不飽和炭化水素の一種。エチレン系炭化水素、オレフィン (olefin)、オレフィン系炭化水素とも呼ばれる。C-C二重結合を構成している2つπ結合1つとσ結合1つから成り立っており、このうちπ結合の結合エネルギーはC-H結合のものよりも小さく、付加反応が起こりやすい。例えばエテン(エチレン)と塩素の混合物に熱を与えると 1,2-ジクロロエタンが生成する。.

新しい!!: 有機金属化学とアルケン · 続きを見る »

イヴ・ショーヴァン

イヴ・ショーヴァン(Yves Chauvin、1930年10月10日 - 2015年1月28日)はフランスの化学者。フランス石油研究所の名誉研究部長を務め、フランス科学アカデミーの会員であった。ベルギー・ウェスト=フランデレン州メーネン出身。 1970年代初頭にオレフィンメタセシスの反応機構を提案した。この業績により2005年にロバート・グラブス、リチャード・シュロックとともにノーベル化学賞を受賞した。 2015年、トゥールで死去。84歳没。.

新しい!!: 有機金属化学とイヴ・ショーヴァン · 続きを見る »

エルンスト・フィッシャー

*.

新しい!!: 有機金属化学とエルンスト・フィッシャー · 続きを見る »

カルベン錯体

ルベン錯体(カルベンさくたい)とは、カルベンを配位子として持つと考えられる有機金属錯体のことである。すなわち金属と直接結合している炭素の金属以外との結合の数が2つしかないような構造を持つ錯体である。.

新しい!!: 有機金属化学とカルベン錯体 · 続きを見る »

カール・ツィーグラー

ール・ツィーグラー(Karl Ziegler, 1898年11月26日 - 1973年8月11日)は、ドイツ帝国カッセル近郊ヘルザ出身の化学者。エチレンなどの二重結合を持つアルケンを配位アニオン重合させる触媒、チーグラー・ナッタ触媒を発見した功績で知られる。この功績により、1963年のノーベル化学賞を受賞。それ以外にも有機化学の反応を多く研究した。.

新しい!!: 有機金属化学とカール・ツィーグラー · 続きを見る »

カップリング反応

ップリング反応(coupling reaction)とは、2つの化学物質を選択的に結合させる反応のこと。特に、それぞれの物質が比較的大きな構造(ユニット)を持っているときに用いられることが多い。天然物の全合成などで多用される。.

新しい!!: 有機金属化学とカップリング反応 · 続きを見る »

カコジル

ル (Cacodyl) はヒ素化合物の1つで、テトラメチルジアルサン、またはフランスの化学者ルイ・クロード・カデ・ド・ガシクールの名からカデ液とも呼ばれる。ニンニク臭を持つ有毒の油状液体で、化学式は (CH3)2As-As(CH3)2 である。 乾燥空気中で自然発火する。.

新しい!!: 有機金属化学とカコジル · 続きを見る »

キレート

EDTAの金属キレート複合体。赤の点線が配位結合を表す。金属に電子対を供給する酸素、窒素が八面体状に取りまいている。 エチレンジアミンのキレート 化学においてキレート とは、複数の配位座を持つ配位子(多座配位子)による金属イオンへの結合(配位)をいう。このようにしてできている錯体をキレート錯体と呼ぶ。キレート錯体は配位子が複数の配位座を持っているために、配位している物質から分離しにくい。これをキレート効果という。分子の立体構造によって生じた隙間に金属を挟む姿から、「蟹のハサミ」を意味する chela (ラテン語 chēla、ギリシャ語 chēlē)に由来する。.

新しい!!: 有機金属化学とキレート · 続きを見る »

ギルマン試薬

ルマン試薬(ギルマンしやく、Gilman Reagent)はヘンリー・ギルマンによって発見された有機金属試薬の一つで、一般式R2CuLiで表される。銅のアート錯体(クプラート、cuprate)の代表例である。.

新しい!!: 有機金属化学とギルマン試薬 · 続きを見る »

グリニャール試薬

リニャール試薬(グリニャールしやく、Grignard reagent)はヴィクトル・グリニャールが発見した有機マグネシウムハロゲン化物で、一般式が R−MgX と表される有機金属試薬である(R は有機基、X はハロゲンを示す)。昨今の有機合成にはもはや欠かせない有機金属化学の黎明期を支えた試薬であり、今もなおその多彩な用途が広く利用される有機反応試剤として、近代有機化学を通して非常に重要な位置を占めている。 その調製は比較的容易であり、ハロゲン化アルキルにエーテル溶媒中で金属マグネシウムを作用させると、炭素-ハロゲン結合が炭素-マグネシウム結合に置き換わりグリニャール試薬が生成する。生成する炭素-マグネシウム結合では炭素が陰性、マグネシウムが陽性に強く分極しているため、グリニャール試薬の有機基は強い求核試薬 (形式的には R−)としての性質を示す。 また、強力な塩基性を示すため、酸性プロトンが存在すると、酸塩基反応によりグリニャール試薬は炭化水素になってしまう。そのため、水の存在下では取り扱うことができず、グリニャール試薬を合成する際には原料や器具を十分に乾燥させておく必要がある。これらの反応性や取り扱いはアルキルリチウムと類似している。.

新しい!!: 有機金属化学とグリニャール試薬 · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: 有機金属化学とケイ素 · 続きを見る »

コバルト

バルト (cobalt、cobaltum) は、原子番号27の元素。元素記号は Co。鉄族元素の1つ。安定な結晶構造は六方最密充填構造 (hcp) で、強磁性体。純粋なものは銀白色の金属である。722 K以上で面心立方構造 (fcc) に転移する。 鉄より酸化されにくく、酸や塩基にも強い。.

新しい!!: 有機金属化学とコバルト · 続きを見る »

シャルル・フリーデル

ャルル・フリーデル シャルル・フリーデル(Charles Friedel, 1832年3月12日 – 1899年4月20日)は、フランスの化学者、鉱物学者である。出生地はフランスのストラスブール。パリ大学の化学教授だった。 1877年、ジェームス・クラフツと共にフリーデル・クラフツ反応を開発した。また、人工ダイヤモンドを製作することを試みていた。 息子のジョルジュ・フリーデル(1865年-1933年)は鉱物学者になってコンクリートの成分の一つフリーデル氏塩(Ca2Al(OH)6(Cl, OH) · 2 H2O)を発見し、孫のエドモン・フリーデル(1895年-1972年)は液晶の命名を行った。ひ孫のジャック・フリーデル(1921年-)は物理学者になった。 ケイ酸塩鉱物のフリーデル鉱(Friedelite、(Mn, Fe)8Si6O15(OH, Cl)10)に命名されている。.

新しい!!: 有機金属化学とシャルル・フリーデル · 続きを見る »

ジュリオ・ナッタ

ュリオ・ナッタ(Giulio Natta, 1903年2月26日 - 1979年5月2日)はイタリアの化学者。高分子化学における研究で1963年にカール・ツィーグラーと共にノーベル化学賞を受賞した。 インペリアに生まれ、1924年にミラノ工科大学化学工学科を卒業した。1927年、同大学で教授就任試験に合格した。1933年にパヴィア大学の一般化学研究所の所長・教授に就任した。1935年にはローマ大学で物理化学の教授となった。1936年から1938年までのあいだトリノ工科大学工業化学研究所の所長・教授であった。1938年にミラノ工科大学化学工学科の学科長に就いたが、これは前任者であるマリオ・レヴィ (Mario Giacomo Levi) が当時ファシズムに支配されていたイタリアのユダヤ人差別により降格させられたためである。 工科大学における彼の研究によりツィーグラーの初期研究が改良され、ツィーグラー・ナッタ触媒の開発へとつながった。.

新しい!!: 有機金属化学とジュリオ・ナッタ · 続きを見る »

ジェームス・クラフツ

ジェームス・クラフツ ジェームズ・メイソン・クラフツ(James Mason Crafts, 1839年3月8日 – 1917年6月20日)はアメリカ合衆国の化学者。1877年、シャルル・フリーデルと共にフリーデル・クラフツ反応を開発したことで知られる。 マサチューセッツ州ボストンに生まれ、1858年にハーバード大学を卒業した。博士号を取得することはなかったが、ドイツで3年間、ついでパリで1865年まで化学を学んだのちアメリカに戻り、1868年、ニューヨーク州イサカで新しく設立されたコーネル大学で初めての教授に就任した。イサカの冬があまりにも厳しすぎたためマサチューセッツ工科大学に移り、1897年から1900年までの間学長を務めた。 Category:アメリカ合衆国の化学者 Category:19世紀の自然科学者 Category:マサチューセッツ工科大学の教員 Category:ボストン出身の人物 Category:1839年生 Category:1917年没.

新しい!!: 有機金属化学とジェームス・クラフツ · 続きを見る »

ジェフリー・ウィルキンソン

ェフリー・ウィルキンソン(Geoffrey Wilkinson, 1921年7月14日 – 1996年9月26日)は、イギリスの化学者。1973年、有機金属錯体に関する研究の功績で、エルンスト・オットー・フィッシャーと共にノーベル化学賞を受賞した。.

新しい!!: 有機金属化学とジェフリー・ウィルキンソン · 続きを見る »

石油化学

石油化学(せきゆかがく、英語:petrochemistry)または石油化学工業とは、石油、または天然ガスなどを原料として、合成繊維や合成樹脂などを作る化学工業の一分野である。生成物が燃料や潤滑用油など、より上流に位置する石油精製業に属している場合はここには含まない。.

新しい!!: 有機金属化学と石油化学 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: 有機金属化学と炭素 · 続きを見る »

無機化学

無機化学(むきかがく、英語:inorganic chemistry)とは、研究対象として元素、単体および無機化合物を研究する化学の一分野である。通常有機化学の対概念として無機化学が定義されている為、非有機化合物を研究対象とする化学と考えて差し支えない。.

新しい!!: 有機金属化学と無機化学 · 続きを見る »

白金

白金(はっきん、platinum)は原子番号78の元素。元素記号は Pt。白金族元素の一つ。 学術用語としては白金が正しいが、現代日本の日常語においてはプラチナと呼ばれることもある。白金という言葉はオランダ語の witgoud(wit.

新しい!!: 有機金属化学と白金 · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

新しい!!: 有機金属化学と触媒 · 続きを見る »

重合体

重合体(じゅうごうたい)またはポリマー(polymer)とは、複数のモノマー(単量体)が重合する(結合して鎖状や網状になる)ことによってできた化合物のこと。このため、一般的には高分子の有機化合物である。現在では、高分子と同義で用いられることが多くなっている。ポリマー(polymer)の poly- は接頭語で「たくさん」を意味する。 2種類以上の単量体からなる重合体のことを特に共重合体と言う。 身近なものとしては、繊維に用いられるナイロン、ポリ袋のポリエチレンなどの合成樹脂がある。また、生体内のタンパク質は、アミノ酸の重合体である。.

新しい!!: 有機金属化学と重合体 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 有機金属化学と金属 · 続きを見る »

金属カルボニル

鉄ペンタカルボニル5個の CO 配位子が鉄原子と結合ししている。 金属カルボニル(きんぞくカルボニル、metal carbonyl)は、一酸化炭素を配位子にもつ遷移金属錯体である。これにはニッケルカルボニル Ni(CO)4 のようなホモレプティックな(CO 配位子のみを含む)錯体があるが、一般的には金属カルボニルは Re(CO)3(2,2'-bipyridine)Cl のように複数の配位子をもつ。一酸化炭素はヒドロホルミル化のような多くの化合物の合成における重要な原料である。金属カルボニル触媒はその利用において中心的な位置を占める。ヘモグロビンと結合してカルボキシヘモグロビンを与え、ヘモグロビンを酸素と結合できなくさせる性質のため、金属カルボニルは有毒であるElschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim.

新しい!!: 有機金属化学と金属カルボニル · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 有機金属化学と英語 · 続きを見る »

油脂

油脂(ゆし)とは脂肪酸とグリセリンとのエステルで普通はトリグリセリド(トリ-O-アシルグリセリン)の形態を取るもの。いわゆる「あぶら」。一般に常温で液体のものを「脂肪油」(中国語の漢字「油」による)、固体のものを「脂肪」(中国語の漢字「脂」による)と呼び分ける。 生物から分離される脂質には原料の違いから動物油脂と植物油脂、また組成および物性の違い(不飽和脂肪酸が多く液状、飽和脂肪酸が多く常温で個体)から、それぞれ植物油・動物油(液体)と植物脂・動物脂(個体)に分けられる。ヤシ油やパーム油などが植物脂で、牛脂・豚脂・バターが固形の動物脂で、魚油や鯨油が液体で動物油である。 脂肪油で酸化を受けて固まりやすい順に乾性油、半乾性油、不乾性油と分類される。 食用、工業用など様々な用途で利用されている。.

新しい!!: 有機金属化学と油脂 · 続きを見る »

有効原子番号則

有効原子番号則(ゆうこうげんしばんごうそく)とは、金属錯体の性質が中心金属の持つ電子数と配位子から金属へ供与されている電子の和(有効原子番号)によって決定されるという法則である。.

新しい!!: 有機金属化学と有効原子番号則 · 続きを見る »

有機合成化学

有機合成化学(ゆうきごうせいかがく、英語:organic synthetic chemistry)とは、有機化合物の新規な合成方法を研究する学問であり、有機化学の一大分野である。時として合成有機化学(synthetic organic chemistry)、あるいは「有機」の語が略されて単に合成化学と呼ばれる場合もある。.

新しい!!: 有機金属化学と有機合成化学 · 続きを見る »

有機化学

有機化学(ゆうきかがく、英語:organic chemistry)は、有機化合物の製法、構造、用途、性質についての研究をする化学の部門である。 構造有機化学、反応有機化学(有機反応論)、合成有機化学、生物有機化学などの分野がある。 炭素化合物の多くは有機化合物である。また、生体を構成するタンパク質や核酸、糖、脂質といった化合物はすべて炭素化合物である。ケイ素はいくぶん似た性質を持つが、炭素に比べると Si−Si 結合やSi.

新しい!!: 有機金属化学と有機化学 · 続きを見る »

有機金属気相成長法

有機金属気相成長法(ゆうききんぞくきそうせいちょうほう、英語:metal organic chemical vapor deposition、略称:MOCVD)は、原料として有機金属やガスを用いた結晶成長方法、及びその装置である。結晶成長という観点を重視してMOVPE (metal-organic vapor phase epitaxy) とも言う。 化合物半導体結晶を作製するのに用いられ、MOCVDでは原子層オーダで膜厚を制御することができるため、半導体レーザを初めとするナノテクノロジーといった数nmの設計が必要な分野で用いられる。代表的な半導体結晶成長装置である分子線エピタキシー法 (MBE) と比較し、面内での膜厚の偏差が少なく、高速成長が可能であるほか、超高真空を必要としないために装置の大型化が容易である為、大量生産用の結晶成長装置としてLEDや半導体レーザを初めとした光デバイスの商用製品の作製に多く用いられている。.

新しい!!: 有機金属化学と有機金属気相成長法 · 続きを見る »

ここにリダイレクトされます:

有機金属有機金属化合物

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »