ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

最小作用の原理

索引 最小作用の原理

最小作用の原理(さいしょうさようのげんり、principle of least action)は、物理学における基礎原理の一つ。特に解析力学の形成において、その基礎付けを与えた力学の原理を指す。最小作用の原理に従って、物体の運動(時間発展)は、作用積分と呼ばれる量を最小にするような軌道に沿って実現される。 物理学における最大の指導原理の一つであり、電磁気学におけるマクスウェルの方程式や相対性理論におけるアインシュタイン方程式ですら、対応するラグランジアンとこの法則を用いて導出される。また、量子力学においても、この法則そのものは、ファインマンの経路積分の考え方によって理解できる。物体は運動において様々な運動経路(軌道)をとる事が可能であるが、作用積分が極値(鞍点値)をとる(すなわち最小作用の原理を満たす)経路が最も量子力学的な確率密度が高くなる事が知られている。.

30 関係: 力学原理変分原理対蹠地屈折率マクスウェルの方程式ハミルトニアンラグランジュ力学リチャード・P・ファインマンピエール・ルイ・モーペルテュイフェルマーの原理アインシュタイン方程式オイラー=ラグランジュ方程式確率分布経路積分物体物理学相対性理論鞍点運動 (物理学)運動エネルギー運動量解析力学軌道量子力学電磁気学極値正準座標最小作用の原理1747年

力学

力学(りきがく、英語:mechanics)とは、物体や機械(machine)の運動、またそれらに働く力や相互作用を考察の対象とする学問分野の総称である。物理学で単に「力学」と言えば、古典力学またはニュートン力学のことを指すことがある。 自然科学・工学・技術の分野で用いられることがある言葉であるが、社会集団や個人の間の力関係のことを比喩的に「力学」と言う場合もある。.

新しい!!: 最小作用の原理と力学 · 続きを見る »

原理

原理(げんり、principium、principe、principle、Prinzip)とは、哲学や数学において、学問的議論を展開する時に予め置かれるべき言明。 そこから他のものが導き出され規定される始原。他を必要とせず、なおかつ他が必要とする第一のものである。.

新しい!!: 最小作用の原理と原理 · 続きを見る »

変分原理

変分原理(へんぶんげんり、英語:variational principle)は、変分法を用いた物理学の原理。 特に、.

新しい!!: 最小作用の原理と変分原理 · 続きを見る »

対蹠地

対蹠地(たいせきち、たいしょち)は、地球あるいは他の天体上で、ある場所とは180°逆に位置する場所である。地球においては俗にいう「地球の裏側」である。対蹠点(たいせきてん、たいしょてん)とも言う。数学では3次元のいわゆる球以外の、抽象的な球面に対しても対蹠点という表現を使う。なお、対称点(たいしょうてん)は誤り。 「対蹠」の「蹠」は、「足裏」を意味する語である。従って、「対蹠」とは、「足裏を対する」という意味で、即ち「正反対」を意味する語である。英語の「antipode」は、“anti”(反対)と“pode”(足)の合成語で、「足を対した所」を意味する。日本で「蹠」を「しょ」と読むのは慣用読みであり、本来の漢音は「せき」である。 本項では、特に断らないかぎり地球の対蹠地について記述し、地球を球で近似する。.

新しい!!: 最小作用の原理と対蹠地 · 続きを見る »

屈折率

屈折率(くっせつりつ、)とは、真空中の光速を物質中の光速(より正確には位相速度)で割った値であり、物質中での光の進み方を記述する上での指標である。真空を1とした物質固有の値を絶対屈折率、2つの物質の絶対屈折率の比を相対屈折率と呼んで区別する場合もある。.

新しい!!: 最小作用の原理と屈折率 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 最小作用の原理とマクスウェルの方程式 · 続きを見る »

ハミルトニアン

ハミルトニアン(Hamiltonian)あるいはハミルトン関数、特性関数(とくせいかんすう)は、物理学におけるエネルギーに対応する物理量である。各物理系の持つ多くの性質は、ハミルトニアンによって特徴づけられる。名称はイギリスの物理学者ウィリアム・ローワン・ハミルトンに因む。 ここでは、古典力学(解析力学)と量子力学の2つの体系に分けて説明するが、量子力学が古典力学から発展した経緯から、両者は密接に関連する。ハミルトニアンはそれぞれの体系に応じて関数または演算子もしくは行列の形式をとる。例えば、古典力学においてはハミルトニアンは正準変数の関数であり、量子力学では正準変数を量子化した演算子(もしくは行列)の形をとる。.

新しい!!: 最小作用の原理とハミルトニアン · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: 最小作用の原理とラグランジュ力学 · 続きを見る »

リチャード・P・ファインマン

リチャード・フィリップス・ファインマン(Richard Phillips Feynman, 1918年5月11日 - 1988年2月15日)は、アメリカ合衆国出身の物理学者である。.

新しい!!: 最小作用の原理とリチャード・P・ファインマン · 続きを見る »

ピエール・ルイ・モーペルテュイ

ピエール=ルイ・モロー・ド・モーペルテュイ(Pierre-Louis Moreau de Maupertuis、1698年9月28日 – 1759年7月27日)はフランスの数学者、著述家である。物理学の基礎原理である最小作用の原理の提唱者であり、地球の形状を調査するラップランド観測隊を指揮し極地に赴いた経験を持つ。またダーウィン以前に生物の進化について論じた人物でもある。.

新しい!!: 最小作用の原理とピエール・ルイ・モーペルテュイ · 続きを見る »

フェルマーの原理

フェルマーの原理(フェルマーのげんり)とは、幾何光学における基礎原理のひとつ。 光は光学的距離が最短になる経路、すなわち進むのにかかる時間の停留点になる経路を通る、という原理。この原理からスネルの法則などの幾何光学の法則が導かれる。 1661年にフェルマーが発見したため、この名がある。 変分原理のひとつ。.

新しい!!: 最小作用の原理とフェルマーの原理 · 続きを見る »

アインシュタイン方程式

一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、)アインシュタインの重力場方程式(じゅうりょくばのほうていしき、Einstein's field equations;EFE)とも呼ばれる。は、万有引力・重力場を記述する場の方程式である。アルベルト・アインシュタインによって導入された。 アイザック・ニュートンが導いた万有引力の法則を、強い重力場に対して適用できるように拡張した方程式であり、中性子星やブラックホールなどの高密度・大質量天体や、宇宙全体の幾何学などを扱える。.

新しい!!: 最小作用の原理とアインシュタイン方程式 · 続きを見る »

オイラー=ラグランジュ方程式

イラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単に、オイラー方程式、ラグランジュ方程式とも呼ばれる。 ニュートン力学における運動方程式をより数学的に洗練された方法で定式化しなおしたもので、物理学上重要な微分方程式である。 オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。.

新しい!!: 最小作用の原理とオイラー=ラグランジュ方程式 · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: 最小作用の原理と確率分布 · 続きを見る »

経路積分

経路積分(けいろせきぶん)あるいは径路積分は、リチャード・P・ファインマンが考案した量子力学の理論手法である。ファインマンの経路積分とも呼ばれる。.

新しい!!: 最小作用の原理と経路積分 · 続きを見る »

物体

物体(ぶったい)とは、ものとして認知しうる対象物である。すなわち、実物または実体として宇宙空間において存在するものが物体である。物理学および哲学の主要な研究対象の一つである。 物体と物質は次のように区別される。.

新しい!!: 最小作用の原理と物体 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 最小作用の原理と物理学 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: 最小作用の原理と相対性理論 · 続きを見る »

鞍点

鞍点(あんてん、)は、多変数実関数の変域の中で、ある方向で見れば極大値だが別の方向で見れば極小値となる点である。 鞍部点、峠点とも言う。微分可能な関数については極値を取らない停留点とも言う。.

新しい!!: 最小作用の原理と鞍点 · 続きを見る »

運動 (物理学)

物理学における運動(うんどう、motion)とは、物体の参照系との位置関係が変化することである。 地球の表面では、常に重力が働いていること、ベアリングなど、それなりに使い物になる摩擦をわずかにする技術や工学の発展は中世より後であったこと、空気抵抗の存在などから、いわゆる「アリストテレス力学」と呼ばれるそれのような、極めて思弁的哲学的なある種の独特な科学的論理に基づく「運動」観すら古代にはあった。 その後時代が過ぎるにつれ、そのような「神学」からの離脱に成功した哲学や、やがては科学により、またケプラーやガリレイやニュートンといった人々により、相対速度(ガリレイ変換)・慣性(運動の第1法則)・質量と加速度と力の関係(運動の第2法則)・作用と反作用(運動の第3法則)といった力学の(運動の)基本原理がうちたてられていった。後述する相対論的力学に対して、ニュートン力学という(なお、古典力学という語は相対論までをも含み、量子力学に対する語である)。 しかし、ニュートンには『光学』という著書もあるように、その当時から既に物理学の対象であった光の速さは、人類には謎であった。ニュートン力学の基本的な考え方とされる「絶対時間と絶対空間」についても、むしろ仮定であったと見る向きもある。やがて光速が測定され、マクスウェルによって示された電磁方程式により電磁波の速度がわかると、それが光速と一致すること、そして、どんな場合でもその速度が同じ、という、それまでの物理学における考え方からはどうしても奇妙な現象をどう説明するか、に悩まされることになった。 (詳細は特殊相対性理論の記事を参照)各種の測定結果という事実をなんとかして説明する理論はあれこれと提案されはしたが、時間も空間も相対的である、という驚くべき転回により全てを説明したのはアインシュタインだった。ニュートン力学における運動は、3次元ユークリッド空間内における位置と、時刻、という独立した2要素で指定できるものと言えるが、相対論的には運動は、時間と空間が互いに関連したミンコフスキー時空における線のようなものとなる。アインシュタインによるこれに続く、加速度による見掛けの重力と万有引力による重力を同じもの(等価原理)とした一般相対性理論により、古典力学は完成を見た。 * Category:力学 Category:物理学の概念.

新しい!!: 最小作用の原理と運動 (物理学) · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

新しい!!: 最小作用の原理と運動エネルギー · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: 最小作用の原理と運動量 · 続きを見る »

解析力学

解析力学(かいせきりきがく、英語:analytical mechanics)とは、ニュートン力学を数学の解析学の手法を用いて記述する、数学的に洗練された形式。解析力学の体系は基本的にはラグランジュ力学とハミルトン力学により構成される。 力のつりあいについてのダランベールの原理から始め、つりあいを微小な変位による仕事の関係式に置き換える仮想仕事の原理によってエネルギーの問題に移した。 幾何光学における変分原理であるフェルマーの原理からの類推で、古典力学において最小作用の原理(モーペルテューイの原理)が発見された。これにより、力学系の問題は、作用積分とよばれる量を最小にするような軌道をもとめる数学の問題になった。 座標を一般化座標に拡張し、ラグランジュ方程式が導き出された。 さらに、ラグランジアンから一般化運動量を定め、座標と運動量のルジャンドル変換によって、ハミルトン力学が導かれた。 ラグランジュ方程式は微分方程式を与えるのに対して、ハミルトンの正準方程式は積分を与える。 さらにこれから、ハミルトン・ヤコビの偏微分方程式が、得られる。 ラグランジュ形式は微分幾何学とも相性がよく、相対性理論の分野では必須である。 ハミルトン形式はその後の量子力学とくに行列力学へと続く。.

新しい!!: 最小作用の原理と解析力学 · 続きを見る »

軌道

軌道(きどう).

新しい!!: 最小作用の原理と軌道 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 最小作用の原理と量子力学 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: 最小作用の原理と電磁気学 · 続きを見る »

極値

数学において、関数の局所的な(つまり、ある点の近傍における)最大値または最小値のことをそれぞれ極大値(きょくだいち、maximal, local maximum)、極小値(きょくしょうち、minimal, local minimum)といい、これらを併せて極値(きょくち)と総称する。 極値は局所的な概念であるため、ある点で極値をとってもその点が全域的な最大・最小値を取るとは限らないが、極値自体が適当な区間における最大・最小値の候補と考えることができるため、関数の振る舞いを知る上で重要である。極値を調べる方法としては、微分を利用することで極値をとるための必要条件を求めることができる。.

新しい!!: 最小作用の原理と極値 · 続きを見る »

正準座標

数学や古典力学において、正準座標(canonical coordinates)は、任意に与えられた点の(相空間の中の系を特定する)ある時間での物理系を記述することのできる座標系である。正準座標は、古典力学でのハミルトン定式化で使われる。密接に関連する考え方は、量子力学の中にも現れる。詳細は、(Stone–von Neumann theorem)や正準交換関係を参照。 ハミルトン力学を一般化してシンプレクティック幾何学とし、正準変換を一般化し(contact transformation)とすると、古典力学の正準座標の 19世紀での定義は、20世紀の多様体上の余接バンドルのより抽象的な定義へ一般化することができる。.

新しい!!: 最小作用の原理と正準座標 · 続きを見る »

最小作用の原理

最小作用の原理(さいしょうさようのげんり、principle of least action)は、物理学における基礎原理の一つ。特に解析力学の形成において、その基礎付けを与えた力学の原理を指す。最小作用の原理に従って、物体の運動(時間発展)は、作用積分と呼ばれる量を最小にするような軌道に沿って実現される。 物理学における最大の指導原理の一つであり、電磁気学におけるマクスウェルの方程式や相対性理論におけるアインシュタイン方程式ですら、対応するラグランジアンとこの法則を用いて導出される。また、量子力学においても、この法則そのものは、ファインマンの経路積分の考え方によって理解できる。物体は運動において様々な運動経路(軌道)をとる事が可能であるが、作用積分が極値(鞍点値)をとる(すなわち最小作用の原理を満たす)経路が最も量子力学的な確率密度が高くなる事が知られている。.

新しい!!: 最小作用の原理と最小作用の原理 · 続きを見る »

1747年

記載なし。

新しい!!: 最小作用の原理と1747年 · 続きを見る »

ここにリダイレクトされます:

モーペルテュイの原理作用積分最小作用原理

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »