ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

時間微分

索引 時間微分

時間微分(じかんびぶん、time derivative, derivative with respect to time)とは、引数に時間を持つ関数もしくは汎関数の時間に関する導関数、または時間に関する微分そのものを指す。ある関数の時間微分は、元の関数の時間的な変化の割合を表すので、速度の名を冠することが多い。例えば物体の運動速度や、化学反応における反応速度などは、それぞれ位置の時間微分と物質量の時間微分を指す。 時間微分は、その対象の時間的な変化の度合いを調べる目的のほかに、元の関数の性質を調べる上で、その導関数の扱いが容易である場合に用いられる。あるいは、一般の微分方程式と同様に、未知の関数に対する時間発展を時間に関する微分方程式によって与える際に現れる。 数学や物理学などにおいては、ある種の変換に対する対称性や不変性がしばしば興味の対象となる。特に時間変化に対する不変性は重要な意味を持ち、時間微分が恒等的に 0 であるような量は保存量と呼ばれる。このとき元の量は時間的変化に対して不変である。ネーターの定理に示唆されるように、保存量やそれを与える保存則は、系が備える基本的な性質の反映であると考えられるので、自然科学の分野において基礎となるモデルを考える上で重要である。.

42 関係: 加速度反応速度対称性交換関係 (量子力学)引数位置作用素微分微分の記法微分法微分方程式保存則保存系化学反応ネーターの定理ハミルトン力学ハミルトニアンハイゼンベルクの運動方程式ハイゼンベルク描像ポアソン括弧モデル (自然科学)ラグランジュ力学プランク定数ディラック定数ドット符号ニュートン力学ニュートンの記法エルミート作用素円周率系 (自然科学)物体物理学物質量躍度関数 (数学)量子力学速度虚数単位汎函数数学時間時間発展

加速度

加速度(かそくど、acceleration)は、単位時間当たりの速度の変化率。速度がベクトルなので、加速度も同様にベクトルとなる。加速度はベクトルとして平行四辺形の法則で合成や分解ができるのは力や速度の場合と同様であるが、法線加速度、接線加速度に分解されることが多い。法線加速度は向きを変え、接線加速度は速さを変える。 速度を v とすれば、加速度 a は速度の時間 t についての微分であり, と定義される。 平面運動を極座標(r,θ)で表した場合、動径方向・角方向成分はそれぞれ となる。 一般に「減速度(げんそくど)」と言われるのは、負(進行方向と反対)の加速度の事である。また、進行方向を変える(曲がる)のは、進行方向とは異なる方向への加速度を受けるという事である。 遠心力による加速度を遠心加速度という。 物体に加速度がかかることと、力が加わることとは等価である。(運動の第2法則) ちなみに、加速度の単位時間当たりの変化率は、加加速度あるいは躍度とよばれる。.

新しい!!: 時間微分と加速度 · 続きを見る »

反応速度

反応速度(はんのうそくど、reaction rate)とは化学反応の反応物あるいは生成物に関する各成分量の時間変化率を表す物理量。通常、反応速度を表現する式は濃度のべき関数として表現される。.

新しい!!: 時間微分と反応速度 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 時間微分と対称性 · 続きを見る »

交換関係 (量子力学)

量子力学における交換関係(こうかんかんけい、commutation relation)とは、演算子としてあらわされた物理量が満たす量子力学特有の関係である。.

新しい!!: 時間微分と交換関係 (量子力学) · 続きを見る »

引数

引数(ひきすう)は、数学における関数やコンピュータプログラムにおける手続きにおいて、その外部と値をやりとりするための特別な変数、あるいはその変数の値のことである。 数学や最適化問題に関するそれ(「パラメータ」とカタカナで表現されることが多い)については「媒介変数」の記事を参照のこと。以下は専らコンピュータプログラミングに関して説明する。 関数・サブルーチン・メソッド等を定義する時に、外部から値を渡される特別な変数として指定されるのが仮引数。関数(等)を呼出す式において、仮引数に対応する式(あるいはその値)が実引数である。実行時には、実引数の値を仮引数が受け取る。 「引数」を「いんすう」と読む読み方もあるが、術語としては変則的に湯桶読みして「ひきすう」としている。数学分野で因数との取違えを防ぐためといった理由もある。.

新しい!!: 時間微分と引数 · 続きを見る »

位置

位置(いち、position)とは、物体が空間の中のどこにあるかを表す量である。 原点 O から物体の位置 P へのベクトル(位置ベクトル (position vector))で表される。通常は x, r, s で表され、O から P までの各軸に沿った直線距離に対応する。 「位置ベクトル」という用語は、主に微分幾何学、力学、時にはベクトル解析の分野で使用される。 2次元または3次元空間で使用されることが多いが、任意の次元数のユークリッド空間に容易に一般化することができるKeller, F. J, Gettys, W. E. et al.

新しい!!: 時間微分と位置 · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: 時間微分と作用素 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 時間微分と微分 · 続きを見る »

微分の記法

微分の記法 (びぶんのきほう、英語: notation for differentiation) とは、数学における微分を記号的に表記するための方法である。現在、数学関数や従属変数の微分を表す微分の記法として画一化・統一されたものはなく、複数の数学者によって異なる記法が提案されている。それぞれの記法の有用性はその使用される分野・文脈・状況によって変化し、与えられた文脈によって複数の記法を使い分けることもしばしば有効である。本項では比較的使用頻度が高い微分の記法を示す。.

新しい!!: 時間微分と微分の記法 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: 時間微分と微分法 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 時間微分と微分方程式 · 続きを見る »

保存則

保存則(ほぞんそく、conservation law)とは、物理的変化あるいは化学的変化の前後で物理量(あるいは物理量の結合)の値が変わらない、という法則出典:『ブリタニカ国際大百科事典』「保存則」。言い方を変えると、。保存則が成り立つ系のことを保存系と呼ぶ。 最も基本的な保存則としては、運動量保存則、角運動量保存則、エネルギー保存則、質量保存則、電荷保存則などがある。 ネーターの定理により、系が持つある一つの保存則は系の持つ一つの対称性に対応することが示されている。 なお、保存則の破れ(例外)が発見されることで、新しい物理理論が構築されるきっかけとなることがある。.

新しい!!: 時間微分と保存則 · 続きを見る »

保存系

力学系が保存系であるとは、保存量(または、第一積分)が存在することを意味している。.

新しい!!: 時間微分と保存系 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: 時間微分と化学反応 · 続きを見る »

ネーターの定理

物理学において、ネーターの定理(ネーターのていり、Noether's theorem)は、系に連続的な対称性がある場合はそれに対応する保存則が存在する、と述べる定理である。 ドイツの数学者エミー・ネーターによって1915年に証明され、1918年に公表された。.

新しい!!: 時間微分とネーターの定理 · 続きを見る »

ハミルトン力学

ハミルトン力学(ハミルトンりきがく、英語:Hamiltonian mechanics)は、一般化座標と一般化運動量を基本変数として記述された古典力学である。イギリスの物理学者ウィリアム・ローワン・ハミルトンが創始した。ラグランジュ力学と同様にニュートン力学を再公式化した解析力学の一形式。.

新しい!!: 時間微分とハミルトン力学 · 続きを見る »

ハミルトニアン

ハミルトニアン(Hamiltonian)あるいはハミルトン関数、特性関数(とくせいかんすう)は、物理学におけるエネルギーに対応する物理量である。各物理系の持つ多くの性質は、ハミルトニアンによって特徴づけられる。名称はイギリスの物理学者ウィリアム・ローワン・ハミルトンに因む。 ここでは、古典力学(解析力学)と量子力学の2つの体系に分けて説明するが、量子力学が古典力学から発展した経緯から、両者は密接に関連する。ハミルトニアンはそれぞれの体系に応じて関数または演算子もしくは行列の形式をとる。例えば、古典力学においてはハミルトニアンは正準変数の関数であり、量子力学では正準変数を量子化した演算子(もしくは行列)の形をとる。.

新しい!!: 時間微分とハミルトニアン · 続きを見る »

ハイゼンベルクの運動方程式

ハイゼンベルクの運動方程式()は量子力学をハイゼンベルク描像により記述する場合の、オブザーバブルの時間発展についての基礎方程式である。 ヴェルナー・ハイゼンベルクは、行列力学の支配方程式として、この方程式を行列表示したものを提案した。この方程式がシュレーディンガー描像におけるシュレーディンガー方程式と数学的に等価であることは、エルヴィン・シュレーディンガーによって証明された。.

新しい!!: 時間微分とハイゼンベルクの運動方程式 · 続きを見る »

ハイゼンベルク描像

物理学において、ハイゼンベルク描像(はいぜんべるくびょうぞう、)またはハイゼンベルク表示(はいぜんべるくひょうじ、)とは量子力学を定式化するにあたり、演算子(可観測量やその他)が時間発展し、状態ベクトルは時間に依存しないとする理論形式のこと。状態ベクトルが時間発展し、演算子が時間に依存しないシュレーディンガー描像とは等価の結果を与える。 ハイゼンベルク力学とも呼ばれる行列力学は、時間発展にはハイゼンベルク描像を採用し、適当な基底を選んで演算子を行列表示したものに相当する。 相対論的な場の量子論では、ハイゼンベルク描像を採用するのが普通である。.

新しい!!: 時間微分とハイゼンベルク描像 · 続きを見る »

ポアソン括弧

ポアソン括弧(ぽあそんかっこ、)とは、ハミルトン形式の解析力学における重要概念の一つ。.

新しい!!: 時間微分とポアソン括弧 · 続きを見る »

モデル (自然科学)

自然科学におけるモデルは、理論を説明するための簡単な具体的なもの。特に幾何学的な図形を用いた概念や物体。.

新しい!!: 時間微分とモデル (自然科学) · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: 時間微分とラグランジュ力学 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: 時間微分とプランク定数 · 続きを見る »

ディラック定数

換算プランク定数(かんさんプランクていすう、reduced Planck constant)またはまれにディラック定数(ディラックていすう、Dirac's constant) は、プランク定数 を で割った値を持つ定数である。その値は である(2014CODATA推奨値)。 は「エイチ・バー」と読む。.

新しい!!: 時間微分とディラック定数 · 続きを見る »

ドット符号

ドット符号は、ダイアクリティカルマーク(発音区別符号)の一種で、ラテン文字の上または下などに付される点である。用途や読みは言語によってさまざまである。 日本語等でも強調のために文字の上(横書き)や右(縦書き)に点が付される場合があるが、これは傍点という。.

新しい!!: 時間微分とドット符号 · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: 時間微分とニュートン力学 · 続きを見る »

ニュートンの記法

ニュートンの記法(にゅーとんのきほう、Newton's notation)は、数学における微分の記法のひとつである。 この記法はアイザック・ニュートンが (流率・流動率) と呼称した時間に対する変化率を表すために導入したもので、関数名の上部に微分の階数と同数のドット符号を記す。 ニュートンの記法は主として古典力学あるいは機械工学で用いられ、次のように定義される。 ドット記号の個数により微分回数を表すため、あまり高階の微分には有用ではない。しかし古典力学あるいは他の工学分野の対象においては高階導関数はあまり出現せず、例えば位置の一階微分である速度、二階微分である加速度などとしての利用が大半である(例外として躍度がある)。 ニュートンの記法は、時間に限らずあらゆる変数の微分に対して用いられてきたが、現在では、物理学などにおいては専ら時間微分に対してのみ用いられている。これはニュートンの記法が微分する変数を明示しないためである。ライプニッツの記法などでは、どの独立変数に対する微分かを明示しているため、混同の恐れがある限りにおいて、ニュートンの記法は用いない。 ニュートンの記法は、ラグランジュ力学において、一般化座標 と組になる一般化速度 を表わすために広く用いられている。 積分についてはニュートンは標準的記法は考案しなかったが、広く認知・定着したのはライプニッツの積分の記法である。.

新しい!!: 時間微分とニュートンの記法 · 続きを見る »

エルミート作用素

ルミート作用素(エルミートさようそ、Hermitian operator, Hermitian)または自己共役作用素(じこきょうやくさようそ、self adjoint operator)は、複素ヒルベルト空間上の線形作用素で、その共役作用素が自分自身に一致するようなもののことである。物理学ではエルミート演算子とも呼ばれる。エルミートという名称は、フランス人数学者シャルル・エルミートに因む。.

新しい!!: 時間微分とエルミート作用素 · 続きを見る »

円周率

円周率(えんしゅうりつ)は、円の周長の直径に対する比率として定義される数学定数である。通常、ギリシア文字 (パイ、ピー、ラテン文字表記: )で表される。数学をはじめ、物理学、工学といった様々な科学分野に出現し、最も重要な数学定数とも言われる。 円周率は無理数であり、その小数展開は循環しない。円周率は、無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・コーレンに因み、ルドルフ数とも呼ばれる。ルドルフは、小数点以下35桁までを計算した。小数点以下35桁までの値は次の通りである。.

新しい!!: 時間微分と円周率 · 続きを見る »

系 (自然科学)

自然科学における系(けい、)とは、宇宙(世界、ユニバース、)の一部のうち、考察の対象として注目している部分である。分野や考察の内容に応じて力学系、生態系、太陽系、実験系などというように用いられる。システムの記事も参照。 宇宙のうち、系ではない考察の対象としない部分はという。これは外界が系に比べて非常に大きく、外界が系に影響を及ぼして系の状態の変化を引き起こすことがあっても、系が外界に及ぼす影響は無視できるとする仮定の下に考察の対象から外される。外界の状態は、常に一定であるとしたり、単純な変化をしたりと、考察の前提として仮定される。また、観測者は外界にいるものとして通常は考察の対象とされない。 物理学では、系を古典論で記述するとき、その系を古典系と呼ぶ。一方で系を量子論で記述するとき、その系を量子系とよぶ。.

新しい!!: 時間微分と系 (自然科学) · 続きを見る »

物体

物体(ぶったい)とは、ものとして認知しうる対象物である。すなわち、実物または実体として宇宙空間において存在するものが物体である。物理学および哲学の主要な研究対象の一つである。 物体と物質は次のように区別される。.

新しい!!: 時間微分と物体 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 時間微分と物理学 · 続きを見る »

物質量

物質量(ぶっしつりょう、)は、物質の量を表す物理量のひとつ体積、質量、分子数、原子数などでも物質の量を表すことができる。である。物質を構成する要素粒子の個数をアボガドロ定数 (約 6.022×1023 mol-1) で割ったものに等しい。要素粒子()は物質の化学式で表される。普通は、分子性物質の場合は分子が要素粒子であり、イオン結晶であれば組成式で書かれるものが要素粒子であり、金属では原子が要素粒子である。 物質量は1971年に国際単位系 (SI) の7番目の基本量に定められた。表記する場合は、量記号はイタリック体の 、量の次元の記号はサンセリフ立体の N が推奨されている。物質量のSI単位はモルであり、モルの単位記号は mol である。熱力学的な状態量として見れば示量性状態量に分類される。.

新しい!!: 時間微分と物質量 · 続きを見る »

躍度

躍度(やくど)、加加速度(かかそくど)、 ジャーク は、単位時間あたりの加速度の変化率である。 加速度はベクトル量であるので、躍度も同様にベクトル量となるが、その絶対値を指すこともある。 加速度を a とすれば、定義から躍度 j は a の時間に関する微分 で与えられる。これは、変位を x、速度を v として と表すこともできる。 大きな躍度(加速度、力の急激な変化)は、生物に不快感を与えたり、機械装置に対して損傷を与えたりする。そのため、生体等の運動制御における逆モデルを考える場合、躍度を最小にすることを制御系の束縛条件として与え、不良設定問題に一意解をもたらす方法がある。.

新しい!!: 時間微分と躍度 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 時間微分と関数 (数学) · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 時間微分と量子力学 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 時間微分と速度 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: 時間微分と虚数単位 · 続きを見る »

汎函数

数学の特に函数解析や変分法における汎函数(はんかんすう、functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎函数のことを「函数の函数」と考えることもある。変分法において汎函数の使用は、ある種の汎函数を最小化する函数を求めることから始まった。物理学への特別に重要な応用として、を最小とする系の状態を探すことがある。.

新しい!!: 時間微分と汎函数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 時間微分と数学 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 時間微分と時間 · 続きを見る »

時間発展

時間発展(じかんはってん)とは、時間が進むことで物理系が変化することである。.

新しい!!: 時間微分と時間発展 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »