ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

数列

索引 数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

63 関係: 可算集合多重集合定数関数実数対角化対角行列差分法不定和分不動点三角行列微分積分学の基本定理チェザロ和テイラーの定理テイラー展開フーリエ級数フビニの定理ファウルハーバーの公式フィボナッチ数ベルヌーイ数初期値問題列 (数学)周期関数アリティアフィン写像オイラー数コーシー積タプル再帰冪乗固有値等差数列等比数列級数線型写像線型結合繰り込み畳み込み発散級数階差数列階乗冪非交和順序数複素数調和数 (発散列)関数 (数学)重根自然数集合極限正則行列...母関数添え字添字表記法減法漸化式有理数有限集合族 (数学)数学数ベクトル空間整数 インデックスを展開 (13 もっと) »

可算集合

可算集合(かさんしゅうごう、countable set 又は denumerable set)もしくは可付番集合とは、おおまかには、自然数全体と同じ程度多くの元を持つ集合のことである。各々の元に 1, 2, 3, … と番号を付けることのできる、すなわち元を全て数え上げることのできる無限集合と表現してもよい。 有限集合も、数え上げることができる集合という意味で、可算集合の一種とみなすことがある。そのため、はっきりと区別を付ける必要がある場合には、冒頭の意味での集合を可算無限集合と呼び、可算無限集合と有限集合を合わせて高々可算の集合と呼ぶ。可算でない無限集合を非可算集合という。非可算集合は可算集合よりも「多く」の元を持ち、全ての元に番号を付けることができない。そのような集合の存在は、カントールによって初めて示された。.

新しい!!: 数列と可算集合 · 続きを見る »

多重集合

数学における多重集合(たじゅうしゅうごう、multiset)あるいはバッグ(bag; かばん)は、集合に同じ値の元がいくつも含まれるとき、各元がそれぞれいくつ含まれるかという重複度を考え合わせた集合概念である。非順序対、非順序組 (unordered tuple) ともいう。 クヌースによれば、1970年代に最初に多重集合 (multiset) という言葉を提案したのは、オランダ人数学者のニコラース・ホーバート・ド・ブラン (IPA) であるという クヌースは同書で、多重集合に対して提案された他の名前(例えば,リスト(list)、まとまり(bunch)、バッグ(bag)、堆積(heap)、標本(sample)、重みつき集合(weighted set)、コレクション(collection)、組(suite).など)も提示している。 多重集合の歴史に関するサーベイ論文である。 。しかし、数学における多重集合の概念は、"multiset" という名称がつけられる90年以上も前にすでに使用が認められる。実際、1888年に発表されたリヒャルト・デデキントの有名な論文 "Was sind und was sollen die Zahlen?" (「数とは何か、何であるべきか?」)において、実質的に多重集合の概念が用いられている。.

新しい!!: 数列と多重集合 · 続きを見る »

定数関数

数学の分野における定数関数(ていすうかんすう、; 定値写像)とは、それがとりうる値が変数の変動によって変わらない定数値の関数(写像)のことを言う。例えば、関数 f(x).

新しい!!: 数列と定数関数 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 数列と実数 · 続きを見る »

対角化

対角化(たいかくか、diagonalization)とは、正方行列を適当な線形変換によりもとの行列と相似な対角行列に変形することを言う。あるいは、ベクトル空間の線形写像に対し、空間の基底を取り替え、その作用が常にある方向(固有空間)へのスカラー倍(固有値)として現れるようにすること。対角化により変換において本質的には無駄な計算を省くことで計算量を大幅に減らすことが出来る。.

新しい!!: 数列と対角化 · 続きを見る »

対角行列

数学、特に線型代数学において、対角行列(たいかくぎょうれつ、diagonal matrix)とは、正方行列であって、その対角成分(-要素)以外が零であるような行列のことである。 \end この対角行列は、クロネッカーのデルタを用いて (ci δij) と表現できる。また、しばしば のようにも書かれる。 単位行列やスカラー行列は対角行列の特殊例である。.

新しい!!: 数列と対角行列 · 続きを見る »

差分法

数値解析における有限差分法(ゆうげんさぶんほう、finite-difference methods; FDM)あるいは単に差分法は、微分方程式を解くために微分を有限差分近似(差分商)で置き換えて得られる差分方程式<!-- ループリンク -->で近似するという離散化手法を用いる数値解法である。18世紀にオイラーが考案したと言われる。 今日ではFDMは偏微分方程式の数値解法として支配的な手法である.

新しい!!: 数列と差分法 · 続きを見る »

不定和分

数学における不定和分(ふていわぶん、indefinite sum) または逆差分(ぎゃくさぶん、antidifference; 反差分) は、微分に対する不定積分(反微分)ので、前進差分 の逆演算となる線型作用素である。一つのパラメータ を導入して、歩み の差分 あるいは差分商 の逆演算として、歩み の不定和分 を考えることもある。 が本項における場合であり、また の極限で は微分商、 は不定積分となる。 文献によっては "indefinite sum" の語を、例えば のような和において、上の限界となる値 (この例では) をとくに固定せずに考える場合を指すのに用いることもある。この場合、この和を表す閉じた式 は函数方程式(畳み込み方程式) の解であり、これは後退差分作用素 の逆である。この後退和分作用素と先の(前進)和分作用素との間には後述の和分差分学の基本定理を通じて関係がある。.

新しい!!: 数列と不定和分 · 続きを見る »

不動点

不動点を三つ持つ関数 数学において写像の不動点(ふどうてん)あるいは固定点(こていてん、fixed point, fixpoint)とは、その写像によって自分自身に写される点のことである。.

新しい!!: 数列と不動点 · 続きを見る »

三角行列

数学の一分野線型代数学における三角行列(さんかくぎょうれつ、triangular matrix)は特別な種類の正方行列である。正方行列が またはであるとは主対角線より「上」の成分がすべて零となるときに言い、同様にまたはとは主対角線より「下」の成分がすべて零となるときに言う。三角行列は上半または下半三角となる行列のことを言い、また上半かつ下半三角となる行列は対角行列と呼ぶ。 三角行列に関する行列方程式は解くことが容易であるから、それは数値解析において非常に重要である。LU分解アルゴリズムにより、正則行列が下半三角行列 と上半三角行列 との積 に書くことができるための必要十分条件は、その行列の首座小行列式 (leading principal minor) がすべて非零となることである。.

新しい!!: 数列と三角行列 · 続きを見る »

微分積分学の基本定理

微分積分学の基本定理(びぶんせきぶんがくのきほんていり、fundamental theorem of calculus)とは、「微分と積分が互いに逆の操作・演算である」 ということを主張する解析学の定理である。微分積分法の基本定理ともいう。ここで「積分」は、リーマン積分のことを指す。 この事実こそ、発見者のニュートンやライプニッツらを微分積分学の創始者たらしめている重要な定理である。 この定理は主に一変数の連続関数など素性の良い関数に対するものである。これを多変数(高次元)の場合に拡張する方法は一つではないが、ベクトル解析におけるストークスの定理はその一例として挙げられるだろう。また、どの程度病的な関数について定理が成り立つのかというのも意味のある疑問であるといえる。 現在では微分積分学の初期に学ぶ基本的な定理であるが、この定理が実際に発見されたのは比較的最近(17世紀)である。この定理が発見されるまでは、微分法(曲線の接線の概念)と積分法(面積・体積などの求積)はなんの関連性も無い全く別の計算だと考えられていた。.

新しい!!: 数列と微分積分学の基本定理 · 続きを見る »

チェザロ和

解析学におけるチェザロ総和法(チェザロそうわほう、Cesàro summation)とは無限級数に「和」と呼ばれる値を結びつける総和法の一種である。無限級数が通常の意味で収束して値 A を持つならば、その級数はチェザロの意味でも総和可能であり、同じ A をチェザロ和として持つ。チェザロ和の重要性は、収束しない級数のなかにもチェザロ和が矛盾なく定義できるものがありうるという点にある。ただし、たとえば無限大に収束する正項級数などはいかなる場合も有限の値の和を持つことはない。 名称は19世紀のイタリアの数学者アーネスト・チェザロに因む。.

新しい!!: 数列とチェザロ和 · 続きを見る »

テイラーの定理

''n''(''x'' &minus; 1)''k''''f''(''k'')(1)/''k''! による近似 微分積分学において、テイラーの定理(テイラーのていり、Taylor's theorem)は、k 回微分可能な関数の与えられた点のまわりでの近似を k 次のテイラー多項式によって与える。解析関数に対しては、与えられた点におけるテイラー多項式は、そのテイラー級数を有限項で切ったものである。テイラー級数は関数を点のある近傍において完全に決定する。「テイラーの定理」の正確な内容は1つに定まっているわけではなくいくつかのバージョンがあり、状況に応じて使い分けられる。バージョンのいくつかは関数のテイラー多項式による近似誤差の明示的な評価を含んでいる。 テイラーの定理は1712年に1つのバージョンを述べた数学者ブルック・テイラー (Brook Taylor) にちなんで名づけられている。しかし誤差の明示的な表現はかなり後になってジョゼフ=ルイ・ラグランジュ (Joseph-Louis Lagrange) によってはじめて与えられた。結果の初期のバージョンはすでに1671年にジェームス・グレゴリー (James Gregory) によって言及されている。 テイラーの定理は微分積分学の入門レベルで教えられ、解析学の中心的な初等的道具の1つである。純粋数学ではより進んだの入り口であり、より応用的な分野の数値計算や数理物理学においてよく使われている。テイラーの定理は任意次元 n, m の多変数ベクトル値関数 にも一般化する。テイラーの定理のこの一般化は微分幾何学や偏微分方程式において現れるいわゆるの定義の基礎である。 n の大きさを評価することで、近似がどれだけ正確であるかが分かる。f が無限回微分可能であり、Rn が0に収束する場合、すなわち である場合、f(x) はテイラー展開が可能である。そのとき f は解析的(analytic)であるといわれる。 テイラーの定理は平均値の定理を一般化したものになっている。実際、上の式において n.

新しい!!: 数列とテイラーの定理 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 数列とテイラー展開 · 続きを見る »

フーリエ級数

フーリエ級数(フーリエきゅうすう、Fourier series)とは、複雑な周期関数や周期信号を、単純な形の周期性をもつ関数の(無限の)和によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。 熱伝導方程式は、偏微分方程式として表される。フーリエの研究の前までには、一般的な形での熱伝導方程式の解法は知られておらず、熱源が単純な形である場合、例えば正弦波などの場合の特別な解しかえられていなかった。この特別な解は現在では固有解と呼ばれる。フーリエの発想は、複雑な形をした熱源をサイン波、コサイン波の和として考え、解を固有解の和として表すものであった。 この重ね合わせがフーリエ級数と呼ばれる。 最初の動機は熱伝導方程式を解くことであったが、数学や物理の他の問題にも同様のテクニックが使えることが分かり様々な分野に応用されている。 フーリエ級数は、電気工学、振動の解析、音響学、光学、信号処理、量子力学および経済学などの分野で用いられている。.

新しい!!: 数列とフーリエ級数 · 続きを見る »

フビニの定理

数学においてフビニの定理(フビニのていり、)とは、 によって導入された、逐次積分による二重積分の計算が可能となるための条件に関する一結果である。すなわち、次のような計算が可能となる。 この結果、は逐次積分において変えることが可能となる。フビニの定理は、ある二変数函数が可積分であれば、上記のような二回の繰り返しの積分は等しいことを意味する。 によって導入されたトネリの定理(Tonelli's theorem)も同様のものであるが、その定理が適用される函数は可積分ではなくとも非負であればよい。.

新しい!!: 数列とフビニの定理 · 続きを見る »

ファウルハーバーの公式

ファウルハーバーの公式(ファウルハーバーのこうしき、Faulhaber's formula)は、最初の n 個の ''k'' 乗数の和 を、ベルヌーイ数を用いて n の多項式で表す公式である。冪乗和についての研究をした、17世紀のドイツの数学者の名が冠されているが、ベルヌーイ数を発見して初めて公式を与えたのは関孝和およびヤコブ・ベルヌーイである。「ファウルハーバーの公式」という呼称は必ずしも一般的ではなく、ベルヌーイの公式、または内容を直接的に表現して冪乗和の公式などと呼ばれることもある参考文献コンウェイ・ガイ『数の本』や MathWorld では「ファウルハーバーの公式」である。一方、日本では固有名詞のように呼ばれることは少なく、荒川・金子・伊吹山『ベルヌーイ数とゼータ関数』では「べき乗和の公式」である。。.

新しい!!: 数列とファウルハーバーの公式 · 続きを見る »

フィボナッチ数

フィボナッチ数列の各項を一辺とする正方形 メインページ(2007年〜2012年)で使われていたイメージ画像もフィボナッチ数列を利用している フィボナッチ数(フィボナッチすう、Fibonacci number)は、イタリアの数学者レオナルド・フィボナッチ(ピサのレオナルド)にちなんで名付けられた数である。.

新しい!!: 数列とフィボナッチ数 · 続きを見る »

ベルヌーイ数

ベルヌーイ数 (ベルヌーイすう、Bernoulli number) は数論における基本的な係数を与える数列であり、もともと、連続する整数のべき乗和を定式化する際の展開係数として1713年にヤコブ・ベルヌーイが著書 Ars Conjectandi (推測術) にて導入したことからこの名称がついた。ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。.

新しい!!: 数列とベルヌーイ数 · 続きを見る »

初期値問題

数学の微分方程式の分野における初期値問題(しょきちもんだい、Initial value problem)とは、未知関数のある点における値を初期条件として備えた常微分方程式のことを言う(コーシー問題とも呼ばれる)。物理学あるいは他の自然科学の分野において、あるシステムをモデル化することはある初期値問題を解くことと同義である場合が多い。そのような場合、微分方程式は与えられた初期条件に対してシステムがどのように時間発展するかを特徴付ける発展方程式と見なされる。.

新しい!!: 数列と初期値問題 · 続きを見る »

列 (数学)

数学において列(れつ、sequence)とは、粗く言えば、対象あるいは事象からなる集まりを「順序だてて並べる」ことで、例えば「A,B,C」は3つのものからなる列である。狭義にはこの例のように一列に並べるものを列と呼ぶが、広義にはそうでない場合(すなわち半順序に並べる場合)も列という場合がある(例:有向点列)。集合との違いは順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列を「○○列」という言い方をするが、異なる種類のものを並べた列も許容されている。 列の構成要素は、列の要素あるいは項(こう、term)と呼ばれ、例えば「A,B,C」には3つの項がある。項の個数をその列の項数あるいは長さ (length, size) という。項数が有限である列を有限列(ゆうげんれつ、finite sequence)と、そうでないものを無限列(むげんれつ、infinite sequence)と呼ぶ。(例えば正の偶数全体の成す列 (2, 4, 6,...) )。.

新しい!!: 数列と列 (数学) · 続きを見る »

周期関数

数学における周期関数(しゅうきかんすう、periodic function)は、一定の間隔あるいは周期ごとに取る値が繰り返す関数を言う。最も重要な例として、 ラジアンの間隔で値の繰り返す三角関数を挙げることができる。周期関数は振動や波動などの周期性を示す現象を記述するものとして自然科学の各分野において利用される。周期的でない任意の関数は非周期的(ひしゅうきてき、aperiodic)であるという。.

新しい!!: 数列と周期関数 · 続きを見る »

アリティ

アリティ (arity) とは、代数学、論理学、計算機科学などにおいて、関数や算法(演算) が取る引数(オペランド)の個数を意味する用語である。 項数のような訳語が当てられる場合もあるが、arityと英単語のまま用いられることも多い。 複合語としてならば、「変数」(例えば二変数函数、多変数函数)や単に「項」(二項演算、多項関係など)あるいはまた(不定元の数という意味で)「(-)元」(例えば二元連立一次方程式)などはアリティに言及する訳語として存外よく用いられるものである。(しかし同じ語でも、例えば数列や多項式などに用いられる「項」や「項数」はアリティではなく "term" に関する言及である。).

新しい!!: 数列とアリティ · 続きを見る »

アフィン写像

幾何学におけるアフィン写像(アフィンしゃぞう、affine map)はベクトル空間(厳密にはアフィン空間)の間で定義される、平行移動を伴う線型写像である。アフィン (affine) はラテン語で「類似・関連」を意味する affinis に由来する。 始域と終域が同じであるようなアフィン写像はアフィン変換(アフィンへんかん、affine transformation)と呼ばれる。アフィン写像はアフィン空間の構造を保つ。.

新しい!!: 数列とアフィン写像 · 続きを見る »

オイラー数

イラー数は、双曲線正割関数のテイラー展開における展開係数として定義される。 形式的には、テイラー級数: における E_k がオイラー数である。 この数列は整数であり、奇数項がすべて 0、偶数項の符号が交互に切り替わることが特徴である。 双曲線正割関数の代わりに、三角関数の正割関数: の展開級数 \hat_k (セカント数) をオイラー数と呼ぶこともある。 なお、\hat_.

新しい!!: 数列とオイラー数 · 続きを見る »

コーシー積

数学の特に初等解析学におけるコーシー積(コーシーせき、Cauchy product)は、二つの無限級数に対する離散的な畳み込み積である。名称はフランス人数学者のオーギュスタン・ルイ・コーシーに因む。 コーシー積が適用できるのは、無限級数あるいは冪級数である。冪級数のコーシー積は冪級数を単に無限級数とみてとったコーシー積であるから、ことさら区別を強調することはないけれども、収束性を考える上では分けておくことは便利である。 コーシー積は数列を添字集合上の離散的な函数と見たときの函数の畳み込みであり、また有限数列または有限級数を、台が有限(つまり、有限個を除くすべての項が零)な無限数列または無限級数と見てコーシー積をとることもできるけれども、その場合は離散畳み込みと呼ぶほうが普通であろう。.

新しい!!: 数列とコーシー積 · 続きを見る »

タプル

タプルまたはチュープル(tuple)とは、複数の構成要素からなる組を総称する一般概念。 数学や計算機科学などでは通常、順序付けられた対象の並びを表すために用いられる。個別的には、n 個でできた組を英語で「n-tuple」と書き、日本語に訳す場合は通常「n 組」としている。タプルの概念そのものも組と呼ばれる場合がある。なお、 n-tuple は数学のタプルを意味するほか、同様に double、triple などの拡張として倍数詞の表現にも利用される(詳細は「倍#西洋数学における n 倍を表す表現」を参照)。.

新しい!!: 数列とタプル · 続きを見る »

再帰

再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。 主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。.

新しい!!: 数列と再帰 · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 数列と冪乗 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: 数列と固有値 · 続きを見る »

等差数列

数学における等差数列(とうさすうれつ、arithmetic progression, arithmetic sequence; 算術数列)とは、「隣接する項が共通の差(公差)を持つ数列」() を言う。例えば、 はの等差数列である。 算術数列の初項を とし、その公差を とすれば、-番目の項 は a_n.

新しい!!: 数列と等差数列 · 続きを見る »

等比数列

等比数列(とうひすうれつ、または幾何数列(きかすうれつ)、geometric progression, geometric sequence)は、数列で、隣り合う二項の比が項番号によらず一定であるようなものである。その比のことを公比(こうひ、common ratio)という。例えば 4,12,36,108,… という数列 (an) は初項が 4 であり公比が 3 の等比数列である。公比 r は r.

新しい!!: 数列と等比数列 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 数列と級数 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 数列と線型写像 · 続きを見る »

線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

新しい!!: 数列と線型結合 · 続きを見る »

繰り込み

繰り込み(くりこみ)とは、場の量子論で使われる、計算結果が無限大に発散してしまうのを防ぐ数学的な技法であり、同時に場の量子論が満たすべき最重要な原理のひとつでもある。 くりこみにより、場の量子論を電磁相互作用に適用した量子電磁力学が完成した。場の量子論にくりこみを用いる方法は、以後の量子色力学およびワインバーグ・サラム理論を構築する際の規範となる。.

新しい!!: 数列と繰り込み · 続きを見る »

畳み込み

畳み込み(たたみこみ、convolution)とは関数 を平行移動しながら関数 に重ね足し合わせる二項演算である。畳み込み積分、合成積、重畳積分、あるいは英語に倣いコンボリューションとも呼ばれる。.

新しい!!: 数列と畳み込み · 続きを見る »

発散級数

数学において発散級数(はっさんきゅうすう、divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし、級数の収束性はそれよりも強い条件で、級数の項が 0 に収束するからといって必ずしもその級数自身は収束しない。最も簡単な反例として、調和級数 が挙げられる。調和級数の発散性は、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。.

新しい!!: 数列と発散級数 · 続きを見る »

階差数列

階差数列(かいさすうれつ、progression of differences, sequence of differences)とは、ある数列に対し、隣り合う項の差をとることによってできる新たな数列のことである。数列の規則性が見えにくい場合でも、階差数列を考えることにより元の数列の素性が分かりやすくなる場合がある。.

新しい!!: 数列と階差数列 · 続きを見る »

階乗冪

数学、とくに離散数学の各分野における階乗冪(かいじょうべき、factorial powerKnuth, The Art of Computer Programming, Vol. は、冪乗によく似た演算だが、階乗のように因子が 1 ずつずれていく。階乗冪には下降階乗冪 (falling factorial) 降冪、下方階乗冪とも。と上昇階乗冪 (rising factorial) 昇冪、上方階乗冪とも。とがある。また、両方向へずらしながら積をとる類似の概念に、中心階乗冪 (central factorial) がある。 階乗冪は冪あるいは冪函数の類似であり、特殊函数論あるいは組合せ論に広く応用を持つ。.

新しい!!: 数列と階乗冪 · 続きを見る »

非交和

集合論において、集合の族の直和 (direct sum) は、以下の緊密に関連した二種類の概念を指して用いられる。.

新しい!!: 数列と非交和 · 続きを見る »

順序数

数学でいう順序数(じゅんじょすう、ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。.

新しい!!: 数列と順序数 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー&ndash;ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 数列と複素数 · 続きを見る »

調和数 (発散列)

数学において、n-番目の調和数(ちょうわすう、harmonic number)は 1 から n までの自然数の逆数和 である。これはまた、1 から n までの自然数の調和平均の逆数の n-倍に等しい。 調和数は遥か昔から研究され、数論の各分野において重要である。調和数の極限は、調和級数と呼ばれ(しばしば調和数もひっくるめて一口に調和級数と呼ぶこともある)、リーマンゼータ函数と近しい関係にあり、また種々の特殊函数のさまざまな表示に現れる。 十分大きな数の標本について、その出現頻度がジップの法則に従って分布するとき、全体の中で n-番目の頻度で現れる標本の総頻度は n-番目の調和数である。このことは長い尻尾およびの驚くべき帰結の一種を導く。.

新しい!!: 数列と調和数 (発散列) · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 数列と関数 (数学) · 続きを見る »

重根

重根.

新しい!!: 数列と重根 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 数列と自然数 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 数列と集合 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 数列と極限 · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: 数列と正則行列 · 続きを見る »

母関数

数学において、母関数(ぼかんすう、generating function; 生成関数)は、(自然数で添字付けられた)数列 に関する情報を内包した係数を持つ、形式的冪級数である。母関数は、一般線型回帰問題の解決のためにド・モアブルによって1730年に初めて用いられた。複数の自然数で添字付けられる数の配列(多重数列)の情報を取り込んだ多変数冪級数を同様に考えることもできる。 母関数には、通常型母関数、指数型母関数、ランベルト級数、ベル級数、ディリクレ級数 など様々なものがある。これらについては定義と例を後述する。原理的にはあらゆる列についてそれぞれの種類の母関数が存在する(ただし、ランベルト級数とディリクレ型は添字を 1 から始めることが必要)が、扱い易さについてはそれぞれの種類で相当異なるかもしれない。どの母関数が最も有効かは、その列の性質と解くべき問題の詳細に依存する。 母関数を、形式的冪級数に対する演算・操作を用いるなどして(級数の形ではなく)の式で表すこともよく行われる。このような母関数の表示は、母関数の不定元を x とすれば、四則演算、母関数のx に関する微分、他の母関数へ代入すること、などを行った結果として得られる。これらの操作は関数に対しても定義されるものであるし、結果として得られる式もやはり x の関数であるかのように見える。実際、母関数を x の(十分小さい)具体的な値で評価することのできる関数として解釈することができる場合も少なくない(このとき、母関数の冪級数表示は、母関数の閉じた形の式のテイラー級数と解釈される)のであり、それがこの式が「母関数」と呼ばれる所以でもある。しかし、形式的冪級数は x に何らかの数値を代入したときに収束するかどうかは問題にしないのであって、母関数についてそのような関数としての解釈が可能であるということは必ずしも要求されるものではないし、同様に x の関数として意味を持つ式がいずれも形式的冪級数に対して意味を持つわけではない。 慣例的に母「関数」と呼ばれてはいるが、始域から終域への写像という関数の厳密な意味に照らして言えば母関数は関数ではなく、今日的には生成級数(母級数)と呼ぶこともしばしばである。.

新しい!!: 数列と母関数 · 続きを見る »

比(ひ、ratio)とは2つ(または3つ以上)の数の関係を表したもの。数 a, b について、その比は a:b で表され、「a対b」とよむ。a を前項、b を後項(こうこう)という。また、前項と後項を入れ替えた b:a を元の比の逆比または反比という。3数以上の場合も a:b:c のように表し、特に連比(れんぴ)という。 例えば、テレビ受像機には様々な大きさがあるが、横の長さを4等分したものと縦の長さを3等分したもの, あるいは, 横の長さを16等分したものと縦の長さを9等分したものとが等しくなるのは, どの大きさのテレビでも変わらない。これをまとめて, それぞれ 4:3, 16:9 で表す。 比において、前項と後項に(0以外の)同じ数をかけたものも同じ比である。つまり、a:b.

新しい!!: 数列と比 · 続きを見る »

添え字

添え字は、文字の右上、左上、右下、左下のいずれかに書かれる文字のことである。 上付き文字や下付き文字も添え字のひとつであるほか、漢文の送り仮名も添え字である。 縦書きで表記する場合には、冪乗を表す場合を除き上付き文字や下付き文字という言葉は使用されない。.

新しい!!: 数列と添え字 · 続きを見る »

添字表記法

数学およびプログラミングにおける添字表記法(そえじひょうきほう、index notation; 指数記法)あるいは添字記法とは、行列のような配列の特定の要素を示すために用いられる記法である。添字の用い方はそれを与える対象によって異なる。リスト、ベクトル、行列などデータ構造の違いによって、あるいは数学の論文を書くか、計算機のプログラムを書くかによってもその用法は異なる。.

新しい!!: 数列と添字表記法 · 続きを見る »

減法

減法(げんぽう、subtraction)は、一方から一部として他方を取り去ることにより両者の間の差分を求める二項演算で、算術における四則演算の 1 つ。計算することの側面を強調して引き算(ひきざん)、減算(げんさん、げんざん)などとも言う。また、引き算を行うことを「( から) を引く」 と表現する。引く数を減数(げんすう、subtrahend)と呼び引かれる数を被減数(ひげんすう、minuend)と呼ぶ。また、減算の結果は差(さ、difference)と呼ばれる。 抽象代数学において減法は多くの場合、加法の逆演算として定式化されて加法に統合される。たとえば自然数の間の減法は、整数への数の拡張により、数を引くことと負の数を加えることとが同一視されて、減法は加法の一部となる。またこのとき、常に大きいものから小さいものを減算することしかできない自然数の体系に対して、整数という体系では減算が自由に行えるようになる(整数の全体は、逆演算として減法を内包した加法に関してアーベル群になる)。.

新しい!!: 数列と減法 · 続きを見る »

漸化式

数学における漸化式(ぜんかしき、recurrence relation; 再帰関係式)は、各項がそれ以前の項の函数として定まるという意味で数列を再帰的に定める等式である。 ある種の漸化式はしばしば差分方程式 (difference equation) と呼ばれる。また、「差分方程式」という言葉を単に「漸化式」と同義なものとして扱うことも多い。 漸化式の例として、ロジスティック写像 が挙げられる。このような単純な形の漸化式が、しばしば非常に複雑な(カオス的な)挙動を示すことがあり、このような現象についての研究は非線型解析学などと呼ばれる分野を形成している。 漸化式を解くとは、 添字 n に関する非再帰的な函数として、一般項を表すの式を得ることをいう。.

新しい!!: 数列と漸化式 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 数列と有理数 · 続きを見る »

有限集合

数学において、集合が有限(ゆうげん、finite)であるとは、自然数 n を用いて という形にあらわされる集合との間に全単射が存在することをいう(ただしここでは、n.

新しい!!: 数列と有限集合 · 続きを見る »

族 (数学)

数学における族(ぞく、family)は、添字付けされた元(要素)の(一般には非可算無限個の)集まりで、対、n-組、列などの概念の一般化である。系(けい、collection)と呼ぶこともある。元がどのような対象であるかによって、点族、集合族(集合系)、関数族(関数系)などと呼ばれる。.

新しい!!: 数列と族 (数学) · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 数列と数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 数列と数学 · 続きを見る »

数ベクトル空間

数ベクトル空間(すうべくとるくうかん、space of numerical vectors, numerical vector space)とは、「“数”の組からなる空間」(数空間数空間のことを座標空間と呼ぶこともあるが、「座標系を備えた空間」という意味で座標空間と呼ぶこともあるので紛らわしい(の項も参照)。)を自然にベクトル空間と見たものである。.

新しい!!: 数列と数ベクトル空間 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (&minus;1, &minus;2, &minus;3, &minus;4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 数列と整数 · 続きを見る »

ここにリダイレクトされます:

整数列無限数列自然数列

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »