ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

散乱振幅

索引 散乱振幅

散乱振幅(さんらんしんぷく、)は、量子力学の散乱理論において、定常状態の散乱過程での入射平面波に対する、外向き球面波の振幅である 。.

21 関係: 培風館学術用語集定常状態中性子平面波位相のずれルジャンドル多項式球面波部分波展開重ね合わせ量の次元量子力学長さS行列X線波数ベクトル文部省日本物理学会散乱理論散乱振幅散乱断面積

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: 散乱振幅と培風館 · 続きを見る »

学術用語集

学術用語集(がくじゅつようごしゅう)とは、.

新しい!!: 散乱振幅と学術用語集 · 続きを見る »

定常状態

定常状態(ていじょうじょうたい、steady state)とは、時間的に一定して変わらない状態を意味し、自然科学の各分野で用いられる概念である。 自然界において、たとえば小川は、上流などで雨が降らない限り、時間とともに川の流れの速度や流量が変わることはなく一定であり、この意味で定常状態にあると言える。.

新しい!!: 散乱振幅と定常状態 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

新しい!!: 散乱振幅と中性子 · 続きを見る »

平面波

平面波(へいめんは、Plane wave)とは、等位相面が波数ベクトルを法線ベクトルとする等値平面から成る周期関数のことである。.

新しい!!: 散乱振幅と平面波 · 続きを見る »

位相のずれ

位相のずれ(位相差、位相シフト、フェーズシフト)とは、量子力学の散乱理論において、散乱によって入射状態と散乱状態の間に生じる位相差のことである。.

新しい!!: 散乱振幅と位相のずれ · 続きを見る »

ルジャンドル多項式

ルジャンドル多項式(ルジャンドルたこうしき、Legendre polynomial)とは、ルジャンドルの微分方程式を満たすルジャンドル関数のうち次数が非負整数のものを言う。直交多項式の一種である。.

新しい!!: 散乱振幅とルジャンドル多項式 · 続きを見る »

球面波

球面波(きゅうめんは、spherical wave)とは、3次元の等方的な媒質中に存在する点波源から発生、もしくは一点に向かって収束する球状の波動のことである。同位相の波面は全て点波源を中心とする同心球面を形成するため、この波動は波源に関して球対称となる。3次元波動方程式の球対称解として記述される。.

新しい!!: 散乱振幅と球面波 · 続きを見る »

部分波展開

部分波展開(ぶぶんはてんかい、)とは、波動関数を決まった軌道角運動量 l ごとに分解する方法である。また、分解して得られる各成分を部分波()と呼ぶ。またl.

新しい!!: 散乱振幅と部分波展開 · 続きを見る »

重ね合わせ

重ね合わせ(かさねあわせ、superposition)は、量子力学の基本的な性質である。.

新しい!!: 散乱振幅と重ね合わせ · 続きを見る »

量の次元

量の次元(りょうのじげん、)とは、ある量体系に含まれる量とその量体系の基本量との関係を、基本量と対応する因数の冪乗の積として示す表現である。 ISOやJISなどの規格では量 の次元を で表記することが規定されているが、しばしば角括弧で括って で表記されるISOやJISなどにおいては、角括弧を用いた は単位を表す記号として用いられている。なお、次元は単位と混同が多い概念であるが、単位の選び方に依らない概念である。。 次元は量の間の関係を表す方法であり、量方程式の乗法を保つ。ある量 が二つの量 によって量方程式 で表されているとき、それぞれの量の次元の間の関係は量方程式の形を反映して となる。基本量 と対応する因子を で表したとき、量 の次元は の形で一意に表される。このとき冪指数 は次元指数と呼ばれる。全ての次元指数がゼロとなる量の次元は指数法則により1である。次元1の量は無次元量()とも呼ばれる。.

新しい!!: 散乱振幅と量の次元 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 散乱振幅と量子力学 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: 散乱振幅と長さ · 続きを見る »

S行列

S行列(Sぎょうれつ)または散乱行列(さんらんぎょうれつ、scattering matrix)とは、散乱過程の始状態と終状態に関係する行列である。量子力学、散乱理論、場の量子論、マイクロ波工学などで用いられる。 量子論における散乱演算子は、ヒルベルト空間上の粒子の漸近的な状態をつなぐユニタリ演算子として定義される。 \hat |\psi(-\infty)\rangle &.

新しい!!: 散乱振幅とS行列 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: 散乱振幅とX線 · 続きを見る »

波数ベクトル

物理学における波数ベクトルとは、波動を記述するのに用いられるベクトルである。 全てのベクトルのように大きさと方向を持ち、これら両方が重要である。 その大きさは波の波数または角波数であり、波長に反比例する。 その方向は通常、の方向であるが、いつもそうとは限らない(以下を参照)。 特殊相対論の文脈では、波数ベクトルは4元ベクトルとしても定義できる。.

新しい!!: 散乱振幅と波数ベクトル · 続きを見る »

文部省

文部省(もんぶしょう、Ministry of Education, Science and Culture)は、かつて存在した日本の行政機関の1つで、教育、文化、学術などを担当していた。2001年(平成13年)の中央省庁再編にともない、総理府の外局であった科学技術庁と統合し文部科学省となった。日本以外の国で教育行政を担当する官庁は、文部省と訳されることがある。しかし、多くは「教育」と訳されることが多く「文部」が使われることはない(教育省を参照)。.

新しい!!: 散乱振幅と文部省 · 続きを見る »

日本物理学会

一般社団法人日本物理学会(いっぱんしゃだんほうじんにほんぶつりがっかい)は、1877年(明治10年)に創立された学会である。.

新しい!!: 散乱振幅と日本物理学会 · 続きを見る »

散乱理論

散乱理論(Theory of Scattering):粒子などの散乱を扱う理論のこと。 物質の微視的な構造を調べるときに最も一般的な方法は、その物体に粒子(または波動)を衝突させて、散乱された粒子の分布の様子を調べることである。現代物理学の実験的研究の結果の多くは量子力学における散乱理論に基づく計算の結果と比較されることになる。 実験では電子、光子(電磁波)、中性子、陽子、イオンなどが、原子、分子、原子核、素粒子などによって散乱される。 通常、量子力学を用いてこれらの散乱を記述する理論のことを散乱理論と言う場合が多いが、古典力学によって扱われる散乱もある。以下は、量子力学の立場による記述である。.

新しい!!: 散乱振幅と散乱理論 · 続きを見る »

散乱振幅

散乱振幅(さんらんしんぷく、)は、量子力学の散乱理論において、定常状態の散乱過程での入射平面波に対する、外向き球面波の振幅である 。.

新しい!!: 散乱振幅と散乱振幅 · 続きを見る »

散乱断面積

散乱断面積とは、量子的には、散乱が起きる確率を表す量である。 古典的な散乱では、入射粒子を点と見なしたときの、散乱体の断面積に相当する。.

新しい!!: 散乱振幅と散乱断面積 · 続きを見る »

ここにリダイレクトされます:

散乱長

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »