ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

放射性物質

索引 放射性物質

放射性物質(ほうしゃせいぶっしつ、長倉三郎ほか編、『 』、岩波書店、1998年、項目「放射性物質」より。ISBN 4-00-080090-6)とは、放射能を持つ物質の総称である。主に、ウラン、プルトニウム、トリウムのような核燃料物質、放射性元素もしくは放射性同位体、中性子を吸収又は核反応を起こして生成された放射化物質を指す。.

77 関係: 加速器培風館原子力基本法原子爆弾原子炉原子核反応半減期同位体太陽学術用語集宇宙線中性子中性子線京 (数)人工放射性元素保健物理学土壌マイクロモルトリウムプルトニウムビスマスニュートリノベータ粒子ベクレルアルファ粒子ウランオクロの天然原子炉カリウムガンマ線キュリー夫妻グレイ (単位)シーベルト国際原子力機関窒素素粒子炭素炭素14生物生態系物質白血病遠心分離被曝質量身元不明線源臨界状態臨界量 (原子力)...X線恒星東海村JCO臨界事故核原料核分裂反応核セキュリティ・サミット核兵器核種核爆発核燃料比放射能汚い爆弾濃度文部省日本物理学会放射年代測定放射化放射化学放射線放射線管理区域放射線療法放射線障害放射能放射性同位体放射性崩壊放射性廃棄物放射性降下物 インデックスを展開 (27 もっと) »

加速器

加速器(かそくき、particle accelerator)とは、荷電粒子を加速する装置の総称。原子核/素粒子の実験による基礎科学研究のほか、癌治療、新素材開発といった実用にも使われる。 前者の原子核/素粒子の加速器実験では、最大で光速近くまで粒子を加速させることができる。粒子を固定標的に当てる「フィックスドターゲット実験」と、向かい合わせに加速した粒子を正面衝突させる「コライダー実験」がある。.

新しい!!: 放射性物質と加速器 · 続きを見る »

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: 放射性物質と培風館 · 続きを見る »

原子力基本法

原子力基本法(げんしりょくきほんほう、昭和30年12月19日法律第186号)は、原子力の研究、開発及び利用の促進に関して定めた日本の法律。.

新しい!!: 放射性物質と原子力基本法 · 続きを見る »

原子爆弾

長崎に投下された原子爆弾のキノコ雲1945年8月9日 広島型原爆(リトルボーイ)による被害者の一人。(1945年10月。日本赤十字病院において) 原子爆弾(げんしばくだん、原爆、atomic bomb)は、ウランやプルトニウムなどの元素の原子核が起こす核分裂反応を使用した核爆弾で、初めて実用化された核兵器でもある。原子爆弾は、核爆発装置に含まれる。水素爆弾を含めて「原水爆」とも呼ばれる。 核兵器は通常兵器と比較して威力が極めて大きいため、大量破壊兵器として核不拡散条約や部分的核実験禁止条約などで規制されており、核廃絶を求める主張もある。.

新しい!!: 放射性物質と原子爆弾 · 続きを見る »

原子炉

建設中の沸騰水型原子炉(浜岡原子力発電所)国土航空写真 原子力工学における原子炉(げんしろ、nuclear reactor)とは、制御された核分裂連鎖反応を維持することができるよう核燃料などを配置した装置を言う。.

新しい!!: 放射性物質と原子炉 · 続きを見る »

原子核反応

原子核物理学における原子核反応(げんしかくはんのう、nuclear reaction)または核反応とは、入射粒子が標的核(原子核)と衝突して生じる現象の総称を言う。大別して、吸収、核分裂、散乱の三つがあるが、その反応過程は多彩で統一的に記述する理論はまだない。 核反応においては、電荷、質量数、全エネルギー、全運動量が保存される。.

新しい!!: 放射性物質と原子核反応 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

新しい!!: 放射性物質と半減期 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

新しい!!: 放射性物質と同位体 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

新しい!!: 放射性物質と太陽 · 続きを見る »

学術用語集

学術用語集(がくじゅつようごしゅう)とは、.

新しい!!: 放射性物質と学術用語集 · 続きを見る »

宇宙線

宇宙線(うちゅうせん、Cosmic ray)は、宇宙空間を飛び交う高エネルギーの放射線のことである名越 2011 p.3。主な成分は陽子であり、アルファ粒子、リチウム、ベリリウム、ホウ素、鉄などの原子核が含まれている。地球にも常時飛来している。.

新しい!!: 放射性物質と宇宙線 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

新しい!!: 放射性物質と中性子 · 続きを見る »

中性子線

原子核物理学における中性子線(ちゅうせいしせん、neutron beam)とは中性子の粒子線を言う。.

新しい!!: 放射性物質と中性子線 · 続きを見る »

京 (数)

京(けい)は漢字文化圏における数の単位の一つ。京がいくつを示すかは時代や地域により異なる。現在、日本・台湾・韓国では 1016 を示し、中華人民共和国では用いられていない。 当初は、10倍ごとに位取りの名称を定める「下数」が行われていたので、一・十・百・千・万・億・兆・京で「京」は 107 となる。後に行われた「上数」では、京は兆 (1016) の兆倍で 1032 を指した。「中数」の万万進では兆 (1016) の億倍で 1024、万進では兆 (1012) の万倍で 1016 となる。 日本では江戸時代に万進に統一されたので 1016 となり、かつて日本統治下にあった台湾・韓国でも 1016 となった。ただし、いずれの国でも京まで使われることは稀であり、台湾・韓国では京以上の命数はあまり知られていない。 中華人民共和国では、近代まで万進と万万進が混用されており、「億」を越える数単位はあまり用いられなかった。現在、1016 は「万万億」または「億億(亿亿)」のように称するか、科学的用途では指数表現を用いる。 京の位および前後の位の命数は以下のようになる。.

新しい!!: 放射性物質と京 (数) · 続きを見る »

人工放射性元素

人工放射性元素(じんこうほうしゃせいげんそ, Synthetic element)は、人工的に合成された元素(同位体)の総称である。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素(アメリシウム、キュリウムなど)はほぼすべて人工放射性元素であり、広義では人工の放射性同位体も含む。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。.

新しい!!: 放射性物質と人工放射性元素 · 続きを見る »

保健物理学

保健物理学(ほけんぶつりがく、英:health physics)とは、放射性物質に由来した放射線障害に対する系統的な放射線防護について調査・研究を行う学術分野である。.

新しい!!: 放射性物質と保健物理学 · 続きを見る »

土壌

土壌(どじょう)とは、地球上の陸地の表面を覆っている生物活動の影響を受けた物質層のことである。一般には土(つち)とも呼ばれる。.

新しい!!: 放射性物質と土壌 · 続きを見る »

マイクロ

マイクロ(micro, 記号: μ)は国際単位系 (SI) における接頭辞の一つで、基礎となる単位の 10−6倍(.

新しい!!: 放射性物質とマイクロ · 続きを見る »

モル

モル(mole, Mol, 記号: mol)は国際単位系 (SI) における物質量の単位である。SI基本単位の一つである。 名前はドイツ語の(英語では 。ともに 「分子」 の意)に由来する。モルを表す記号 mol はドイツ人の化学者ヴィルヘルム・オストヴァルトによって導入された。.

新しい!!: 放射性物質とモル · 続きを見る »

トリウム

トリウム (thorium 、漢字:釷) は原子番号90の元素で、元素記号は Th である。アクチノイド元素の一つで、銀白色の金属。 1828年、スウェーデンのイェンス・ベルセリウスによってトール石 (thorite、ThSiO4) から発見され、その名の由来である北欧神話の雷神トールに因んで命名された。 モナザイト砂に多く含まれ、多いもので10 %に達する。モナザイト砂は希土類元素(セリウム、ランタン、ネオジム)資源であり、その副生産物として得られる。主な産地はオーストラリア、インド、ブラジル、マレーシア、タイ。 天然に存在する同位体は放射性のトリウム232一種類だけで、安定同位体はない。しかし、半減期が140.5億年と非常に長く、地殻中にもかなり豊富(10 ppm前後)に存在する。水に溶けにくく海水中には少ない。 トリウム系列の親核種であり、放射能を持つ(アルファ崩壊)ことは、1898年にマリ・キュリーらによって発見された。 トリウム232が中性子を吸収するとトリウム233となり、これがベータ崩壊して、プロトアクチニウム233となる。これが更にベータ崩壊してウラン233となる。ウラン233は核燃料であるため、その原料となるトリウムも核燃料として扱われる。.

新しい!!: 放射性物質とトリウム · 続きを見る »

プルトニウム

プルトニウム(英Plutonium)は、原子番号94の元素である。元素記号は Pu。アクチノイド元素の一つ。.

新しい!!: 放射性物質とプルトニウム · 続きを見る »

ビスマス

ビスマス(bismuth)は原子番号83の元素。元素記号は Bi。第15族元素の一つ。日本名は蒼鉛。.

新しい!!: 放射性物質とビスマス · 続きを見る »

ニュートリノ

ニュートリノ()は、素粒子のうちの中性レプトンの名称。中性微子とも書く。電子ニュートリノ・ミューニュートリノ・タウニュートリノの3種類もしくはそれぞれの反粒子をあわせた6種類あると考えられている。ヴォルフガング・パウリが中性子のβ崩壊でエネルギー保存則と角運動量保存則が成り立つように、その存在仮説を提唱した。「ニュートリノ」の名はβ崩壊の研究を進めたエンリコ・フェルミが名づけた。フレデリック・ライネスらの実験により、その存在が証明された。.

新しい!!: 放射性物質とニュートリノ · 続きを見る »

ベータ粒子

ベータ粒子(ベータりゅうし、β粒子、beta particle)は、放射線の一種で、その実体は電子または陽電子である。ベータ粒子の流れを、ベータ線と呼ぶ。普通「ベータ線」という場合は、負電荷を持った電子の流れを指す。.

新しい!!: 放射性物質とベータ粒子 · 続きを見る »

ベクレル

ベクレル(英語:becquerel、記号: Bq)とは、放射性物質が1秒間に崩壊する原子の個数(放射能)を表す単位である1992年(平成4年)11月18日政令第357号「計量単位令」。SI組立単位の1つである。。 たとえば、ある放射性物質について8秒間に原子が370個だけ崩壊するのであれば、その放射性物質の放射能は46.25ベクレル(Bq)370(個) ÷ 8(秒).

新しい!!: 放射性物質とベクレル · 続きを見る »

アルファ粒子

フレミング左手の法則 ベータ線の実態である電子やガンマ線と異なり、ヘリウム4の原子核であるアルファ粒子は一枚の紙すら通過できない。 原子核がアルファ崩壊してアルファ粒子を放出している アルファ粒子(アルファりゅうし、α粒子、alpha particle)は、高い運動エネルギーを持つヘリウム4の原子核である。陽子2個と中性子2個からなる。放射線の一種のアルファ線(α線、alpha ray)は、アルファ粒子の流れである。 固有の粒子記号は持たず、ヘリウム4の2価陽イオンとして (より厳密には )と表される。.

新しい!!: 放射性物質とアルファ粒子 · 続きを見る »

ウラン

ウラン(Uran, uranium )とは、原子番号92の元素。元素記号は U。ウラニウムの名でも知られるが、これは金属元素を意味するラテン語の派生名詞中性語尾 -ium を付けた形である。なお、ウランという名称は、同時期に発見された天王星 (Uranus) の名に由来している。.

新しい!!: 放射性物質とウラン · 続きを見る »

オクロの天然原子炉

の天然原子炉(オクロのてんねんげんしろ)とは、ガボン共和国オートオゴウェ州オクロにある天然原子炉である。 天然原子炉とは、過去に自律的な核分裂反応が起こっていたことが同位体比からわかるウラン鉱床のことである。このような現象の実例は、フランスの物理学者Francis Perrinが1972年に発見した。天然原子炉が形成される可能性は、1956年にアーカンソー大学の助教授だった黒田和夫が予想している。オクロで発見された条件は予想された条件に極めて近かった。 天然原子炉の知られている唯一の場所は、オクロにある3つの鉱床で、自律的な核分裂反応のあった場所が16箇所見つかっている。20億年ほど前、数十万年にわたって、平均で100 kW相当の出力の反応が起きていた。.

新しい!!: 放射性物質とオクロの天然原子炉 · 続きを見る »

カリウム

リウム(Kalium 、)は原子番号 19 の元素で、元素記号は K である。原子量は 39.10。アルカリ金属に属す典型元素である。医学・薬学や栄養学などの分野では英語のポタシウム (Potassium) が使われることもある。和名では、かつて加里(カリ)または剥荅叟母(ぽたしうむ)という当て字が用いられた。 カリウムの単体金属は激しい反応性を持つ。電子を1個失って陽イオン K になりやすく、自然界ではその形でのみ存在する。地殻中では2.6%を占める7番目に存在量の多い元素であり、花崗岩やカーナライトなどの鉱石に含まれる。塩化カリウムの形で採取され、そのままあるいは各種の加工を経て別の化合物として、肥料、食品添加物、火薬などさまざまな用途に使われる。 生物にとっての必須元素であり、神経伝達で重要な役割を果たす。人体では8番目もしくは9番目に多く含まれる。植物の生育にも欠かせないため、肥料3要素の一つに数えられる。.

新しい!!: 放射性物質とカリウム · 続きを見る »

ガンマ線

ンマ線(ガンマせん、γ線、gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。 ガンマ線.

新しい!!: 放射性物質とガンマ線 · 続きを見る »

キュリー夫妻

ュリー夫妻とは、ピエール・キュリー(1859年-1906年)と、マリヤ・スクウォドフスカ(1867年-1934年)夫妻のこと。 物理化学と放射線化学と物性物理学者夫妻。1898年にラジウムの発見をしたがその特許を取得せず無償開放した。1903年、夫妻にはベクレルと共にノーベル物理学賞を受賞。1906年4月6日の交通事故による夫の死去まで、夫妻は、物性物理・放射線化学・物理化学・分子論の領域で世界の最先端にあり、放射線により原子が遷移することを初めて立証した。 1867年ポーランドのワルシャワ出身のマリーは、1891年フランス、パリのソルボンヌ大学に入学した。その4年後にパリ市立工業物理化学高等専門大学 (EPCI) の教員であり、キュリーの原理の発見者である物理学者のピエールに求婚されて結婚した。1895年夫妻は、グラシエール通りのアパルトマンに住み、マリーは、家事のかたわら勉学を続け、大学アグレジェに首席で合格した。1897年長女イレーヌが誕生。マリーは当時鋼鉄の磁化に関する研究をおこなっていた。アンリ・ベクレルが、ウラニウムから放射線を発光することを不可思義に想定していた。マリーは、これにはじめて「放射能」(RADIOACTIVITY)という名を考案した。そこで、ピエール・キュリーは妻の研究と合流し、1898年夫妻は「ピッチブレンドの鉱石のなかに新しい物質が存在する」仮説を立て実験と立証に取り組んだ。そしてピッチブレンドのなかに最初の物質「ポロニウム」を発見。オーストリア政府がウラニウム塩を抽出した残滓1トンを夫妻に提供した。1902年1デシグラムの純粋なラジウムを抽出。その後、夫妻はラジウムの医学への人道的用途を探り、世界の放射線治療の革新的応用を、無償で夫妻は供与した。1903年のノーベル賞の7万フランのみを私有財産とした。窮乏生活を送った極貧の夫妻は、やっとケルマン通りの庭付きの小地所に住めるようになった。だが、1906年4月6日、ピエールは、ドーフィーヌ通りを横断中、足をすべらせ荷馬車に轢かれ死亡した。マリーは、夫がノーベル賞を受賞してやっとソルボンヌ大学教授のポストを得たその教授ポストの後継者として、中断されたピエールの講義を継続することになる。.

新しい!!: 放射性物質とキュリー夫妻 · 続きを見る »

グレイ (単位)

レイ (gray、記号:Gy) とは、放射線によって人体をはじめとした物体に与えられたエネルギーを表す単位を言う。吸収線量1992年(平成4年)11月18日政令第357号「計量単位令」またはカーマの単位として主に用いられる。 医療の現場における被治療者の被曝線量を表す臓器吸収線量の単位などに用いられる。.

新しい!!: 放射性物質とグレイ (単位) · 続きを見る »

シーベルト

ーベルト(sievert、、、記号:Sv)とは、生体の被曝による生物学的影響の大きさ(線量当量1992年(平成4年)11月18日政令第357号「計量単位令」、dose equivalence・等価線量、equivalent dose)を表す単位である。SI単位の一つである。 単位として Sv は大きすぎるため、mSv(ミリシーベルト、10-3Sv)やμSv(マイクロシーベルト、10-6Sv)などが用いられる。.

新しい!!: 放射性物質とシーベルト · 続きを見る »

国際原子力機関

国際原子力機関(こくさいげんしりょくきかん、International Atomic Energy Agency、略称:IAEA)は、国際連合傘下の自治機関である。 本部はオーストリアのウィーンにある。またトロントと東京の2ヶ所に地域事務所と、ニューヨークとジュネーヴに連絡室がある。.

新しい!!: 放射性物質と国際原子力機関 · 続きを見る »

(びょう、記号 s)は、国際単位系 (SI) 及びMKS単位系、CGS単位系における時間の物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである。秒の単位記号は、「s」であり、「sec」などとしてはならない(後述)。 「秒」は、歴史的には地球の自転の周期の長さ、すなわち「一日の長さ」(LOD)を基に定義されていた。すなわち、LODを24分割した太陽時を60分割して「分」、さらにこれを60分割して「秒」が決められ、結果としてLODの86 400分の1が「秒」と定義されてきた。しかしながら、19世紀から20世紀にかけての天文学的観測から、LODには10−8程度の変動があることが判明し和田 (2002)、第2章 長さ、時間、質量の単位の歴史、pp. 34–35、3.時間の単位:地球から原子へ、時間の定義にはそぐわないと判断された。そのため、地球の公転周期に基づく定義を経て、1967年に、原子核が持つ普遍的な現象を利用したセシウム原子時計が秒の定義として採用された。 なお、1秒が人間の標準的な心臓拍動の間隔に近いことから誤解されることがあるが偶然に過ぎず、この両者には関係はない。.

新しい!!: 放射性物質と秒 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: 放射性物質と窒素 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: 放射性物質と素粒子 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: 放射性物質と炭素 · 続きを見る »

炭素14

炭素14(たんそ14、Carbon-14、14C)は、炭素の放射性同位体。.

新しい!!: 放射性物質と炭素14 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

新しい!!: 放射性物質と生物 · 続きを見る »

生態系

生態系(せいたいけい、ecosystem)とは、生態学においての、生物群集やそれらをとりまく環境をある程度閉じた系であると見なしたときの呼称である。.

新しい!!: 放射性物質と生態系 · 続きを見る »

物質

物質(ぶっしつ)は、.

新しい!!: 放射性物質と物質 · 続きを見る »

白血病

健康人の正常な血液。中央に1つある細胞が白血球。正常な血液で白血球は赤血球の 1/500 から 1/1000 の数しかない。なお、各写真は見やすいように染色した画像である。染色しない白血球や幼若細胞は無色半透明である。 急性骨髄性白血病 (AML-M6) の血液の例。白血病では赤血球は減少していることがあり、逆に白血球が著明に増加していたり(減少していることもある)、血球の幼若球(芽球)が末梢血に出現したりする。この画像では(健康人の血液では決して出現しない赤芽球に似た)白血病細胞が著明に出現している。なお、標本の作り方、観察方法によって顕微鏡写真像は異なるので、白血病の血液が皆、このように見えるとは限らない。 白血病(はっけつびょう、Leukemia)は、「血液のがん」ともいわれ、遺伝子変異を起こした造血細胞(白血病細胞)が骨髄で自律的に増殖して正常な造血を阻害し、多くは骨髄のみにとどまらず血液中にも白血病細胞があふれ出てくる血液疾患。白血病細胞が造血の場である骨髄を占拠するために造血が阻害されて正常な血液細胞が減るため感染症や貧血、出血症状などの症状が出やすくなり、あるいは骨髄から血液中にあふれ出た白血病細胞がさまざまな臓器に浸潤(侵入)して障害することもある。治療は抗がん剤を中心とした化学療法と輸血や感染症対策などの支持療法に加え、難治例では骨髄移植や臍帯血移植などの造血幹細胞移植治療も行われる。大きくは急性骨髄性白血病 (AML)、急性リンパ性白血病 (ALL)、慢性骨髄性白血病 (CML)、慢性リンパ性白血病 (CLL) の4つに分けられる。.

新しい!!: 放射性物質と白血病 · 続きを見る »

遠心分離

卓上型の遠心機。円周上に並んでいる穴に沈殿管をセットする。 遠心分離(えんしんぶんり、)とは、ある試料に対して強大な遠心力をかけることにより、その試料を構成する成分(分散質)を分離または分画する方法である。 懸濁液や乳液などは、ろ過や抽出操作では分離することが困難であるが、遠心分離では通常なら分離困難な試料に対しても有効にはたらく場合が多い。その原理は、高速回転により試料に強大な加速度を加えると、密度差がわずかであっても遠心力が各分散質を異なる相に分離するように働くためである。遠心分離に使用する機械を遠心機という。 19世紀から開発され、現代的なものはテオドール・スヴェドベリにより1920-1930年にかけて開発された。.

新しい!!: 放射性物質と遠心分離 · 続きを見る »

被曝

被曝(ひばく、radiation exposure)とは、人体が放射線にさらされることを言う。「曝」が常用漢字でないことから「被ばく」とも表記される。 被曝は、放射線を受ける形態が外部被曝か内部被曝かでその防護方法が大きく異なる。.

新しい!!: 放射性物質と被曝 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 放射性物質と質量 · 続きを見る »

身元不明線源

身元不明線源(みもとふめいせんげん、orphan source)とは、何らかの理由で法令に基づく管理がされなくなった放射線源の事を指す。湧き出し線源とも言う。発生する理由としては、規制が行われる前に廃棄されたため管理が行われていない、紛失や盗難により、管理が行われなくなった等がある。 これらは、放射線源として認識されていないため、防護が行われずスクラップに混ざるなどして被曝事故をひき起こすことがある。 福島第一原子力発電所事故に伴い、線量を測る人が増えたことから認識されていなかった身元不明線源が発見される例がある。.

新しい!!: 放射性物質と身元不明線源 · 続きを見る »

臨界状態

臨界状態(りんかいじょうたい)とは、原子力分野においては、原子炉などで、原子核分裂の連鎖反応が一定の割合で継続している状態のことをいう。 以下も原子力分野における臨界状態についての解説である。.

新しい!!: 放射性物質と臨界状態 · 続きを見る »

臨界量 (原子力)

臨界量(りんかいりょう)は、原子核分裂の連鎖反応が持続する核分裂物質の最少の質量を指す。.

新しい!!: 放射性物質と臨界量 (原子力) · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: 放射性物質と鉄 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: 放射性物質とX線 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 放射性物質と恒星 · 続きを見る »

東海村JCO臨界事故

東海村JCO臨界事故(とうかいむらジェー・シー・オーりんかいじこ)は、1999年9月30日、茨城県那珂郡東海村にある株式会社ジェー・シー・オー(住友金属鉱山の子会社。以下「JCO」)の核燃料加工施設で発生した原子力事故(臨界事故)である。日本国内で初めて、事故被曝による死亡者を出した。.

新しい!!: 放射性物質と東海村JCO臨界事故 · 続きを見る »

核原料

fix-attempted.

新しい!!: 放射性物質と核原料 · 続きを見る »

核分裂反応

核分裂反応(かくぶんれつはんのう、nuclear fission)とは、不安定核(重い原子核や陽子過剰核、中性子過剰核など)が分裂してより軽い元素を二つ以上作る反応のことを指す。オットー・ハーンとフリッツ・シュトラスマンらが天然ウランに低速中性子(slow neutron)を照射し、反応生成物にバリウムの同位体を見出したことにより発見され、リーゼ・マイトナーとオットー・ロベルト・フリッシュらが核分裂反応であると解釈し、fission(核分裂)と命名した。.

新しい!!: 放射性物質と核分裂反応 · 続きを見る »

核セキュリティ・サミット

核セキュリティ・サミット(かくセキュリティ・サミット、英:Nuclear Security Summit)は、世界の各国が連携して、核兵器の製造に適する品質の核物質であるプルトニウムやウランなどが核テロリズムに使われないように安全や保全を確保し、その維持と管理を厳格に行うことを目的とする国際会議。核安全サミット、核安保サミット、核保安サミットなどとも訳される。.

新しい!!: 放射性物質と核セキュリティ・サミット · 続きを見る »

核兵器

核兵器(かくへいき、nuclear weapon)は、核分裂の連鎖反応、または核融合反応で放出される膨大なエネルギーを利用して、爆風、熱放射や放射線効果などの作用を破壊に用いる兵器の総称。原子爆弾、水素爆弾、中性子爆弾等の核爆弾(核弾頭)とそれを運搬する運搬兵器で構成されている。 核兵器は生物兵器、化学兵器と合わせてNBC兵器(又はABC兵器)と呼ばれる大量破壊兵器である。一部放射能兵器も含めて核兵器と称する場合があるが、厳密には放射能兵器を核兵器に分類するのは誤りである。 核兵器は、人類が開発した最も強力な兵器の一つであり、その爆発は一発で都市を壊滅させる事も可能である。そのような威力ゆえに、20世紀後半に配備数が増えるにつれ核戦争の脅威が想定されるようになり、単なる兵器としてだけではなく、国家の命運、人類の存亡にも影響するものとして、開発・配備への動きのみならず、規制・廃棄の動きなど様々な議論の対象となってきた。また、実戦使用されたのがアメリカ合衆国による、第二次世界大戦における二発(広島・長崎)のみであり、使用ではなく、主に配備による抑止力として、その意義が評価されている側面を持つ。 核兵器は核分裂を主とする原子爆弾と核融合を主とする水素爆弾の大きく二つに分類される。原子爆弾は大威力化に限界があり、水素爆弾の方が最大威力は大きくすることができる。また、兵器の形態としても、開発当初は大型航空爆弾のみであったが、プルトニウム型の場合高度な製造技術を必要とする反面、小型化が可能でありミサイルや魚雷の弾頭、砲弾までも様々なものが開発されている。.

新しい!!: 放射性物質と核兵器 · 続きを見る »

核種

核種(かくしゅ、、または nuclear species小田稔ほか編、『』、研究社、1998年、項目「nuclide」より。ISBN 978-4-7674-3456-8)とは、原子核の組成、すなわち核の中の陽子の数、中性子の数及び核のエネルギー準位によって規定される特定の原子の種類を言う。米国の核化学者 T. P. Kohman によって提案された。 核種は原子核の同位体やその他の性質を区別するために利用される。放射能を持つ核種を放射性核種、そうではない安定した核種を安定核種と呼ぶ。.

新しい!!: 放射性物質と核種 · 続きを見る »

核爆発

23ktの核爆弾「バッジャー」の核爆発(アップショット・ノットホール作戦) 225ktの核爆弾「ジョージ」の核爆発初期の火球(グリーンハウス作戦) 核爆発(かくばくはつ, )とは、核分裂連鎖反応または核融合反応を連続して短時間に起こすことにより、生成される爆発現象のこと。人類の技術においては、軍事用途のみが実用化されており、核兵器の主要な効果として用いられている。.

新しい!!: 放射性物質と核爆発 · 続きを見る »

核燃料

核燃料(かくねんりょう、nuclear fuel)とは、核分裂連鎖反応を起こし、エネルギーを発生させるために相当期間原子炉に入れて使うものを言う。ウラン233 (U)、ウラン235 (U)、プルトニウム239 (Pu) などを指す。.

新しい!!: 放射性物質と核燃料 · 続きを見る »

比放射能

比放射能(ひほうしゃのう、specific radioactivityまたはspecific activity)または質量放射能(しつりょうほうしゃのう)とは、放射性同位体を含む物質の、単位質量あたりの放射能の強さのことである。言い換えれば、単位時間・単位質量あたりに同一の放射性物質が壊変する回数であり、SI単位で表せばBq g−1となる。ほかにもSI接頭辞を用いてkBqやμgなどの誘導単位として表記されることもある飯田博美編、『放射線概論第6版』、通商産業研究所、2005年、129頁。ISBN 978-4-86045-101-1。とくに同一の放射性物質を単位質量だけ集めた時の放射能の強さのことを言う。放射性物質で汚染された空気・液体・土壌・食品等も同様の単位あるいは質量ではなく体積あたりの放射能の強さ物理学辞典編集委員会編、『』、培風館、2005年、項目「放射能濃度」より。ISBN 4-563-02094-X。で表されるが、こちらは単に放射能濃度あるいは単位質量あたりの放射能という。 なぜこのような量を考えるのかといえば、原子数・質量・放射能はすべて一対一に対応してそれぞれに換算が可能となるからである。さらには全て一対一対応するため、半減期の計算で放射能の強さは、原子数や質量で置き換えても成立する。 つまり比放射能の概念を理解することによって、放射性物質のグラムからベクレルの換算などが可能となったり、原子数からベクレルの計算が可能となったりする。前者の場合漏れだした放射能を質量で表されてもベクレル総量に換算できるし、特に後者の場合は、系列をなす簡単な系を考え(たとえば飯舘村で話題になったネプツニウム239-プルトニウム239系)、最初の物質の半減期が極めて短く、ほぼすべてが壊変してしまったと考えれば、比放射能から原子数が等しいと近似して、前者の放射能がわかれば後者の放射能を近似計算できるといった方法も可能となるわけである。.

新しい!!: 放射性物質と比放射能 · 続きを見る »

汚い爆弾

汚い爆弾(きたないばくだん、ダーティー・ボム、dirty bomb )とは、放射性物質を拡散する爆弾である。核反応による被害を目的とする核爆弾と異なり、炸薬などの爆発で放射性の汚染物質を拡散させ被害を発生させる。.

新しい!!: 放射性物質と汚い爆弾 · 続きを見る »

濃度

濃度(のうど)は、従来、「溶液中の溶質の割合を濃度という、いろいろな表し方がある。質量パーセント濃度、モル濃度等」(日本化学会編 第2版標準化学用語辞典)と定義されている。しかし、濃度をより狭く「特に混合物中の物質を対象に、量を全体積で除した商を示すための量の名称に追加する用語」(日本工業規格(JIS))『JISハンドブック 49 化学分析』日本規格協会;2008年と定義している場合がある。 後者に従えば「質量モル濃度」と訳されているMolarityは「濃度」ではない。しかし、MolarityやMolalityにそれぞれ「質量モル濃度」「重量モル濃度」等「~濃度」以外の訳語は見られない。.

新しい!!: 放射性物質と濃度 · 続きを見る »

文部省

文部省(もんぶしょう、Ministry of Education, Science and Culture)は、かつて存在した日本の行政機関の1つで、教育、文化、学術などを担当していた。2001年(平成13年)の中央省庁再編にともない、総理府の外局であった科学技術庁と統合し文部科学省となった。日本以外の国で教育行政を担当する官庁は、文部省と訳されることがある。しかし、多くは「教育」と訳されることが多く「文部」が使われることはない(教育省を参照)。.

新しい!!: 放射性物質と文部省 · 続きを見る »

日本物理学会

一般社団法人日本物理学会(いっぱんしゃだんほうじんにほんぶつりがっかい)は、1877年(明治10年)に創立された学会である。.

新しい!!: 放射性物質と日本物理学会 · 続きを見る »

放射年代測定

放射年代測定(ほうしゃねんだいそくてい、)とは、原子核崩壊による核種変化、または放射線による損傷を利用して、岩石や化石の年代(形成以降の経過年数)を測定することである。 昔は測定された年代を絶対年代と言っていたこともあったが、現在は放射年代と言う。これは、年代測定の方法や試料の性質によって測定された年代の意味が異なるためである。その解釈は慎重に行う必要がある。.

新しい!!: 放射性物質と放射年代測定 · 続きを見る »

放射化

放射化(ほうしゃか、Radioactivation)とは、もともとは放射能が無い同位体が、他の放射性物質等から発生する放射線を受ける事によって、放射性同位体となること。放射化の度合いは、放射線の種類とエネルギー、及び放射線を受ける同位体に依存する。 放射化は宇宙線による炭素14の生成のように自然界でも起こっている。人工的な放射化は1934年、キュリー夫人の娘イレーヌ・キュリーとその夫フレデリックによって初めて発表された。彼女らはポロニウムから生じたアルファ線をアルミニウムに照射し、 の反応により安定同位体から放射性同位体が生成することを確認した。この功績により、1935年に2人はノーベル化学賞を受賞している。 原子力エネルギーの利用を目的とする原子力発電所や加速器等を構成する材料の一部は、施設の運転中に発生する中性子によって放射化する。更に、中性子照射によって放射化した材料の中でも、施設の解体・処分時にある一定以上の残留放射能を持つものについては、低レベル放射性廃棄物へと区分されることが予想されている。 放射化を利用した分析手法が放射化分析である。また、γ線源であるコバルト60合成のために以下の反応が利用されている。.

新しい!!: 放射性物質と放射化 · 続きを見る »

放射化学

放射化学(ほうしゃかがく、Radiochemistry)とは、放射性物質の性質および化学反応を研究対象とする化学の一分野。 放射化学では、天然放射性同位体および人工放射性同位体の両方を取り扱う。.

新しい!!: 放射性物質と放射化学 · 続きを見る »

放射線

放射線(ほうしゃせん、radiation、radial rays)とは、高い運動エネルギーをもって流れる物質粒子(アルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などの粒子放射線)と高エネルギーの電磁波(ガンマ線とX線のような電磁放射線)の総称をいう。「放射線」に全ての電磁波を含め、電離を起こすエネルギーの高いものを電離放射線、そうでないものを非電離放射線とに分けることもあるが、一般に「放射線」とだけいうと、高エネルギーの電離放射線の方を指していることが多い 。 なお、広辞苑には「放射性元素の放射性崩壊に伴い放出される粒子放射線と電磁放射線(主にアルファ線、ベータ線、ガンマ線)を指す」広辞苑第五版 p.2432【放射線】、とあるが、これは放射性物質の放射能を問題とする文脈ではそれを指す、というくらいの意味である。.

新しい!!: 放射性物質と放射線 · 続きを見る »

放射線管理区域

放射線管理区域(ほうしゃせんかんりくいき)とは、放射線による障害を防止するために設けられる区域で法令により、取り決められている。.

新しい!!: 放射性物質と放射線管理区域 · 続きを見る »

放射線療法

『肺がん』 p.92。 放射線療法(ほうしゃせんりょうほう、radiation therapy / radiotherapy)は、放射線を患部に体外および体内から照射する治療法である。手術、抗がん剤治療とともに癌(がん)に対する主要な治療法の一つである。.

新しい!!: 放射性物質と放射線療法 · 続きを見る »

放射線障害

放射線障害(ほうしゃせんしょうがい、radiation effects、radiation hazards、radiation injuries)とは、生体が放射線被曝することを原因として発生する健康影響を言う。 放射線障害は被爆線量に応じて確率的影響(stochastic effects)と確定的影響(deterministic effects)の二つに大きく分類できる。.

新しい!!: 放射性物質と放射線障害 · 続きを見る »

放射能

放射能(ほうしゃのう、radioactivity、activity)とは、放射性同位元素が放射性崩壊を起こして別の元素に変化する性質(能力)を言う。なお、放射性崩壊に際しては放射線の放出を伴う。 放射能は、単位時間に放射性崩壊する原子の個数(単位:ベクレル )で計量される。 なお、ある元素の同位体の中で放射能を持つ元素を表す場合は「放射性同位体」、それらを含む物質を表す場合は「放射性物質」と呼ぶのが適切である。.

新しい!!: 放射性物質と放射能 · 続きを見る »

放射性同位体

放射性同位体(ほうしゃせいどういたい、radioisotope、RI)とは、ある元素の同位体で、その核種の不安定性から放射線を放出して放射性崩壊を起こす能力(放射能)を持つ元素を言う。.

新しい!!: 放射性物質と放射性同位体 · 続きを見る »

放射性崩壊

放射性崩壊(ほうしゃせいほうかい、radioactive decay)または放射性壊変(ほうしゃせいかいへん)、あるいは放射壊変(ほうしゃかいへん)とは、構成の不安定性を持つ原子核が、放射線(α線、β線、γ線)を出すことにより他の安定な原子核に変化する現象の事を言う。放射性物質が放射線を出す原因はこの放射性崩壊である。.

新しい!!: 放射性物質と放射性崩壊 · 続きを見る »

放射性廃棄物

放射性廃棄物(ほうしゃせいはいきぶつ、radioactive waste)とは、使用済みの放射性物質及び放射性物質で汚染されたもので、以後の使用の予定が無く廃棄されるものを言う。 原子力発電に代表される原子力エネルギーの利用に伴って発生し、また医療や農業、工業における放射性同位元素(RI)の利用によっても発生する。日本においては、その発生源に応じて取り扱いを規定する法律及び所管官庁が異なる。.

新しい!!: 放射性物質と放射性廃棄物 · 続きを見る »

放射性降下物

放射性降下物(ほうしゃせいこうかぶつ、nuclear fallout)またはフォールアウト(fallout)とは核兵器や原子力事故などで生じた放射性物質を含んだ塵を言う。広域な放射能汚染を引き起こす原因はこの放射性降下物である。 一般には死の灰という俗称で知られる。日本では第五福竜丸事件が有名である。.

新しい!!: 放射性物質と放射性降下物 · 続きを見る »

ここにリダイレクトされます:

天然起源放射性物質放射標識

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »