ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

指標表

索引 指標表

抽象代数学の一分野である群論において、指標表(しひょうひょう、character table)とは、与えられた群について、その全ての既約表現の指標を表にまとめたものである。これは直交関係などにより対象としている群についての比較的少ない情報から計算できて、群の性質をそこから引き出すことができる。 化学・結晶学・分光学において点群の指標表は、対称性の観点から分子振動を分類したり、2つの量子状態間の遷移が可能かどうかを考える場合に用いられる。.

50 関係: 基底関数単純群同値関係大直交性定理対称操作中心化群と正規化群丸善雄松堂平行移動交換子部分群二面体群位数 (群論)区分行列化学マリケン記号トレース分光法アーベル群シュプリンガー・サイエンス・アンド・ビジネス・メディア商群全単射共役類元 (数学)回転群の表現群論結晶学点群D軌道遷移類関数行列の相似複素数跡 (線型代数学)部分群の指数重複度 (数学)量子状態集合Well-defined抽象代数学束 (束論)核 (代数学)次数正規部分群正方行列準同型振動準位指標指標理論有限群既約表現

基底関数

基底関数(きていかんすう、basis function)とは、関数空間の基底ベクトルのことである。すなわち対象となる空間に属する全ての元(関数)は、この基底関数の線型結合で表される。 線形基底展開(linear basis expansion)とは、h_m(X) を基底関数として、下記の形で展開する事。 例えば、実数値関数のフーリエ変換(コサイン変換・サイン変換)ではコサイン関数もしくはサイン関数、ウェーブレット変換ではウェーブレット関数とスケーリング関数、スプライン曲線では区分的多項式が基底関数として用いられる。.

新しい!!: 指標表と基底関数 · 続きを見る »

単純群

数学において、単純群 (simple group)とは、自明でない正規部分群 (それ自身と自明群 (単位群) 以外の正規部分群) を持たず、またそれ自身も自明群ではない群である。単純群は自明でない正規部分群を持たないので当然直既約群であるが、直既約群は必ずしも単純群ではない (下の例参照)。 群に主組成列が存在すれば、有限個の直既約群の直積に一意的に分解される (クルル・レマク・シュミットの定理)。しかし、上記の理由により、必ずしも有限個の単純群の直積に分解されるとは限らない。もし、群が有限個の単純群の直積に分解可能であれば、その群は完全可約群または半単純群であるという。また、その場合に限って、主組成列の長さと直積の成分である単純群の個数は一致する浅野啓三・永尾汎 『群論』、岩波書店〈岩波全書〉、1965年、pp102-104。。.

新しい!!: 指標表と単純群 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 指標表と同値関係 · 続きを見る »

大直交性定理

位数g (元の数)の群G の既約表現α のユニタリー表現行列D(α) の行列要素をD(α)ij(G)と書くと、その間には以下の直交関係がある。 ここで和記号はGのすべての元についての和を意味する。dαは表現行列の次元である。これを表現行列についての大直交性定理と呼ぶ。大直交性定理はシューアの補題から導かれる。.

新しい!!: 指標表と大直交性定理 · 続きを見る »

対称操作

結晶学における対称操作とは、格子点を不変にする操作である。 対称操作には次のものがある。.

新しい!!: 指標表と対称操作 · 続きを見る »

中心化群と正規化群

数学、とくに群論において、群 の部分集合 の中心化群 (centralizer) とは、 の各元と可換な の元全体からなる集合であり、 の正規化群 (normalizer) とは、「全体で」 と可換な の元全体からなる集合である。 の中心化群と正規化群は の部分群であり、 の構造について知る手掛かりを得られる。.

新しい!!: 指標表と中心化群と正規化群 · 続きを見る »

丸善雄松堂

丸善雄松堂株式会社(まるぜんゆうしょうどう、)は、日本の大手書店、出版社、専門商社。文化施設の建築・内装、図書館業務のアウトソーシング等も行い、幅広い業務を手がけている。大日本印刷の子会社である丸善CHIホールディングスの完全子会社である。 なお、かつての丸善石油(後のコスモ石油)、「チーかま」など珍味メーカーの丸善、業務用厨房機器メーカーのマルゼン、エアソフトガンメーカーのマルゼンとは無関係である。 本店は東京都中央区日本橋二丁目に、本社事務所は港区海岸一丁目にある。.

新しい!!: 指標表と丸善雄松堂 · 続きを見る »

平行移動

ユークリッド幾何学における平行移動(へいこういどう、translation)は全ての 点を決まった方向に一定の距離だけ動かす写像である。 物理学における平行移動は並進運動 (translational motion) と呼ばれる。.

新しい!!: 指標表と平行移動 · 続きを見る »

交換子部分群

数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、derived subgroup)は、その群の交換子全体で生成される部分群である。 交換子部分群は、それによる商がアーベル群となるような正規部分群のうちで最小のものであるという点で重要である。すなわち、 がアーベル群となる必要十分条件は正規部分群 が交換子部分群を含むことである。ゆえにある意味で交換子部分群は、群がアーベル群からどれくらい離れているかを測るものということができる。つまり、交換子部分群が大きいほど、その群はアーベル群から遠くなる。.

新しい!!: 指標表と交換子部分群 · 続きを見る »

二面体群

二面体群(にめんたいぐん、dihedral group)とは、正多角形の対称性を表現した数学的対象である。より正確には、正多角形を自分自身に移す合同変換全体の成す群のことである。そのような合同変換は、回転と鏡映の二種類がある。二面体群は、有限非可換群の最も単純な例であり、群論、幾何学、化学などの分野において重要な役割を果たす。類似の概念は、3次元以上の正多面体や正多胞体に対しても与えることができる。「二面体」とは、正多角形を3次元空間内で見て裏表の区別を付けたもの、といった意味合いである。.

新しい!!: 指標表と二面体群 · 続きを見る »

位数 (群論)

数学の分野である群論において、m.

新しい!!: 指標表と位数 (群論) · 続きを見る »

区分行列

区分行列(くぶんぎょうれつ)もしくはブロック行列 (block matrix) とは、いくつかの長方形のブロックに「区分け」された行列である。.

新しい!!: 指標表と区分行列 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 指標表と化学 · 続きを見る »

マリケン記号

マリケン記号とは、点群の既約表現を表す記号のひとつである。分子などを扱う場合に便利なように工夫してある。.

新しい!!: 指標表とマリケン記号 · 続きを見る »

トレース

トレース (trace) は、すでにある物をなぞること。またはなぞるべき痕跡のこと。.

新しい!!: 指標表とトレース · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: 指標表と分光法 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 指標表とアーベル群 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 指標表とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: 指標表と商群 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 指標表と全単射 · 続きを見る »

共役類

数学、とくに群論において、任意の群は共役類(きょうやくるい、conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする。.

新しい!!: 指標表と共役類 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 指標表と元 (数学) · 続きを見る »

回転

回転(廻転、かいてん、rotation)は、大きさを持たない点または大きさを持つ物体が、ある点を中心としてあるいは直線を軸として、あるいは別の物体の周りを回る運動。この点を回転中心、この直線を回転軸という。回転中心や回転軸が回転する物体の内部にある場合を特に自転というときもある。まさに運動している状態を指す場合も、運動の始状態から終状態への変化や移動を指す場合もある。前者の意味を強調したい場合は回転運動ということもある。 転じて、資金などの供給・サービス業の客の出入りなどをこう称する場合がある。.

新しい!!: 指標表と回転 · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

新しい!!: 指標表と群の表現 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 指標表と群論 · 続きを見る »

結晶学

結晶学(けっしょうがく、英語:crystallography)は結晶の幾何学的な特徴や、光学的な性質、物理的な性質、化学的性質等を研究する学問である。今日では結晶学の物理的側面は固体物理学、化学的側面は結晶化学で扱われる。.

新しい!!: 指標表と結晶学 · 続きを見る »

点群

数学における点群(てんぐん、point group)とはある図形の形を保ったまま行う移動操作のうち、少なくとも1つの不動点を持つものを元とする群のこと。 このような抽象的な群の概念を導入することによって、物理学や化学における結晶や分子対称性を数学的に記述することができる。そのような応用との関係からふつう3次元ユークリッド空間における変換の範疇で考えることが多い。.

新しい!!: 指標表と点群 · 続きを見る »

D軌道

配位子場によるd軌道の分裂 d軌道(ディーきどう)とは、原子を構成している電子軌道の1種である。 方位量子数は2であり、M殻以降の電子殻(3以上の主量子数)についてdxy軌道、dyz軌道、dzx軌道、dx2-y2軌道、dz2軌道という5つの異なる配位の軌道が存在する。各電子殻(主量子数)のd軌道は主量子数の大きさから「3d軌道」(M殻)、「4d軌道」(N殻)、、、のように呼ばれ、ひとつの電子殻(主量子数)のd軌道にはスピン角運動量の自由度と合わせて最大で10個の電子が存在する。 d軌道のdは「diffuse」に由来し、電子配置や軌道の変化分裂によるスペクトルの放散、広がりを持つことから意味づけられた。.

新しい!!: 指標表とD軌道 · 続きを見る »

遷移

遷移(せんい)とは、「うつりかわり」のこと。類義語として「変遷」「推移」などがある。 自然科学の分野では transition の訳語であり、一般に、何らかの事象(物)が、ある状態から別の状態へ変化すること。さまざまな分野で使われており、場合によって意味が異なることもある。以下に解説する。.

新しい!!: 指標表と遷移 · 続きを見る »

類関数

数学の群論における類関数(るいかんすう、class function)は、群上で定義される関数であって、共軛類上では定数となるもののことをいう。複素数値の類函数はコンパクト群の表現論で重要である。自乗可積分な複素数値類函数は(例えば有限離散群の群環や位相群の群環)の中心元として現れるため、中心函数 (central function) とも呼ばれる。 が位相群のとき、一般に類函数としては可測あるいはさらに連続であるものに限って言う。.

新しい!!: 指標表と類関数 · 続きを見る »

行列の相似

線型代数学において、ふたつの n 次正方行列 A, B が相似(そうじ、similar)であるとは、n 次正則行列 P で となるようなものが存在するときに言う。互いに相似な行列は同じ線型写像を異なる基底に関して表現するもので、さきほどの P はそれらの基底の間の基底変換 (change of basis) を与える行列である。上記のような変換はしばしば、変換行列 P に関する相似変換 (similarity transformation) と呼ばれる。線型代数群の文脈では、行列の相似性は(群の元としての)共軛性として言及されることも多い。.

新しい!!: 指標表と行列の相似 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 指標表と複素数 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: 指標表と跡 (線型代数学) · 続きを見る »

部分群の指数

数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。例えば、H が G において指数 2 をもてば、直感的には G の元の「半分」は H の元である。H の G における指数は通常 |G: H| あるいは あるいは (G:H) で表記される。 正式には、H の G における指数は H の G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は 2 である。一般化すると、任意の正の整数 n に対して である。 N が G の正規部分群であれば、G における N の指数はまた商群 G / N の位数にも等しい、なぜならばこれは G における N の剰余類の集合における群構造の言葉で定義されるからである。 G が無限であれば、部分群 H の指数は一般には 0 でない基数になる。上の例が示すように、それは有限 - つまり、正の整数 - かもしれない。 G と H が有限群であれば、H の G における指数は 2 つの群の位数の商に等しい: これはラグランジュの定理であり、この場合商は必ず正の整数である。.

新しい!!: 指標表と部分群の指数 · 続きを見る »

重複度 (数学)

数学において、多重集合の元の重複度(ちょうふくど、じゅうふくど、multiplicity)は、それがその多重集合において現れる回数である。例えば、与えられた多項式方程式が与えられた点において持つ根の数など。 重複度の概念は、(「二重根」は二個と考えるなどの)例外を指定せずとも「重複度を込めて」(with multiplicity) と表現すれば正確に数えることができるという点で重要である。 重複度を無視する場合には、そのことを「相異なる根の個数」というように相異なる(あいことなる、distinct)と言って強調することもある。ただし、(多重集合ではなく)集合を考える場合には「相異なる」と断らずとも自動的に重複度は無視される。.

新しい!!: 指標表と重複度 (数学) · 続きを見る »

量子状態

量子状態(りょうしじょうたい、)とは、量子論で記述される系(量子系)がとる状態のことである。 これは系の物理量(可観測量、オブザーバブル)を測定したとき、その測定値のバラつき具合を表す確率分布によって定義される。 以下に述べるように、量子状態には、純粋状態と混合状態とがある。.

新しい!!: 指標表と量子状態 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 指標表と集合 · 続きを見る »

Well-defined

数学における は、ある概念が数学的あるいは論理学的に特定の条件を公理に用いて定義・導入されるとき、その定義(における公理の組)が自己矛盾をその中に含み持たぬ状態にあることを言い表す修飾語句である。また、ある概念の定義をする場合、そう決めることによって、何も論理的な矛盾なく上手くいくということ(定義の整合性)が確認されているということを言い表す言葉である。文脈により、「うまく定義されている」「矛盾なく定まった」「定義可能である」などと表現されることもある。 でないことは、 であることとは異なる。 は「状態」を表す形容詞であるが、日本語の定訳はなく慣例的に形容詞と動詞の複合語に訳されるか、そのまま形容動詞的に「 である」といった形で用いる。名詞形 などもあり、これを 性と記すことはできるが日本語訳としてこなれたものは特には存在しない(文脈によっては「定義可能性」などで代用可能である)。.

新しい!!: 指標表とWell-defined · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 指標表と抽象代数学 · 続きを見る »

束 (束論)

数学における束(そく、lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合論と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。.

新しい!!: 指標表と束 (束論) · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 指標表と核 (代数学) · 続きを見る »

次数

数学において次数とは、位数・階数などと同じくある種の指標 (index) として働く数に用いられる。degree(もしくはorder)の和訳語 degree.

新しい!!: 指標表と次数 · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: 指標表と正規部分群 · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: 指標表と正方行列 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: 指標表と準同型 · 続きを見る »

振動準位

振動準位(しんどうじゅんい)は分子の重心の移動を伴わず、核の相対的な位置の変位にともなう運動を表す量子状態である。分子内において核は、結合する隣接核と結合エネルギーに相当するポテンシャルの井戸を形成し、お互いバネで結ばれた様な状態にあるために、上記のような運動は振動運動によって記述される(詳細は以下の章を参照)。振動準位間の遷移は振動遷移(しんどうせんい)と呼ばれ、主に赤外分光法またはラマン分光法によって観測される。.

新しい!!: 指標表と振動準位 · 続きを見る »

指標

指標(しひょう)とは、物事を判断したり評価したりするための目じるしとなるもの。.

新しい!!: 指標表と指標 · 続きを見る »

指標理論

数学,特に群論において,群の表現の指標(しひょう,character)は,群の各元に対応する行列のトレースを対応させる写像である.指標は表現の本質的な情報をより凝縮された形で持っている.ゲオルク・フロベニウスは最初に,指標のみに基づいて,表現の明示的な行列表示は用いずに,を発展させた.これは有限群の複素表現はその指標によって(同型を除いて)決定されるから可能である.正標数の体上の表現,いわゆる「モジュラー表現」の場合には,状況はより繊細であるが,はこの場合にも指標の強力な理論を発展させた.有限群の構造に関する多くの深い定理はモジュラー表現の指標を用いる..

新しい!!: 指標表と指標理論 · 続きを見る »

有限群

数学および抽象代数学において、有限群(ゆうげんぐん、finite group)とは台となっている集合Gが有限個の元しか持たないような群のことである。20世紀の間数学者は、特に有限群のや、可解群や冪零群 の理論などといった、有限群の理論のさまざまな面を深く研究していた。全ての有限群の構造の完全な決定は余りに遠大な目標だった: あり得る構造の数はすぐに圧倒的に大きくなった。しかし、単純群の完全な分類という目標は達成された。つまり任意の有限群の「組み立て部品」は現在では完全に知られている(任意の有限群は組成列を持つ)。 20世紀の後半には、シュヴァレーやといった数学者によってや関連する群の有限類似の理解が深まった。それらの群の族の一つには有限体上の一般線型群がある。 有限群は、ある数学的・物理的対象の構造を保つ変換が有限個しかない場合に、その対象の対称性を考えるときに出て来る群である。他方で、""を扱っているようにもみなせるリー群の理論は、関連するワイル群の影響を強く受ける。有限次ユークリッド空間に作用する鏡映によって生成される有限群も存在する。それゆえ、有限群の特性は、理論物理学や化学などの分野で役目を持つ。.

新しい!!: 指標表と有限群 · 続きを見る »

既約表現

数学のとくに群あるいは多元環の表現論における(代数的構造の)既約表現(きやくひょうげん、irreducible representation; irrep) とは、真の閉部分表現を持たない非零表現を言う。 複素内積ベクトル空間 V 上の任意の有限次元ユニタリ表現は、既約表現の直和である。既約表現は常に直既約である(すなわち、別の表現の直和にかくことができない)であり、この二つはしばしば混同されるが、例えば上半三角冪零行列として作用する実数の二次元表現など、一般には可約だが直既約な表現が無数に存在する。.

新しい!!: 指標表と既約表現 · 続きを見る »

ここにリダイレクトされます:

簡約公式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »